CLASSIFICATION OF SO(3)-ACTIONS ON FIVE-MANIFOLDS
WITH SINGULAR ORBITS

Kiki Hudson

INTRODUCTION

We describe the smooth SO (3)-actions on simply-connected, connected, closed
five-dimensional manifolds admitting at least one orbit whose dimension is strictly
less than the dimension of the principal orbits. We will show that such an
SO (3)-manifold must be diffeomorphic to S° S? X S° or the connected sum
kX _,#/M,, k, /=0, where the five-manifold X _, is diffeomorphic to the
Wu-manifold SU (3) /SO (3) and M, to the Brieskorn variety of the type (2,3,3,3).

Let @iso(a, be the set of all smooth orientable SO (3)-manifolds of dimension
five which admits no exceptional orbits (defined in I) and whose orbit spaces are
diffeomorphic to the i-dimensional ball D’, i = 2 or 3. Then using the techniques
of Bredon [3], Hsiang and Hsiang [5] and Janich [7], we can classify Z fgow). Every
manifold in &%, has two or three distinct orbit types; if exactly two distinct
orbit types appear then the orbit structure is determined by the invariants (H, K; b}
where SO(3)/H and SO (3)/K are the orbit types and

bel=[S',NH)/NH)N NK)]/w,(N(H)/H);

I' is isomorphic to the trivial group, Z, or Z, depending on the subgroups H and K.
The pair (H, K) is ({e}, SO (2)), (Z,,80(2)), or (D,,N(SO(2)). If M € 23, admits
three orbit types, one of them is the fixed point type and this M is determined
by an equivalence class of a finite sequence of symbols {0,1,2}; the length of
the sequence equals the number of the fixed points. For example, S° admits an
SO (3)-action with two fixed points which is the one-point compactification of the
irreducible linear action on R° [11]. We show that every manifold in.2 %, admitting
two fixed points is equivalent to this action on S°. A manifold in 2%, with
three fixed points is equivalent to the Wu-manifold SU(3) /SO (3) with SO (3) acting
by the left coset-multiplication. For a manifold with four fixed points we have
two equivalence classes. One of them is the equivariant connected sum

SU(3)/S0O3) # SU(3)/SO3),

and the other is M,. From our classification theorem we know that there is exactly
one SO(3)-action on M, and that this action has four fixed points, but this action
is not natural in a sense that a manifold with four fixed points was constructed
first and then it was identified as M, by Barden’s classification (1). One might
try to give a direct construction of this action. Every manifold in 2%, with
fixed points is simply-connected.
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The set 9%, consists of one element, namely the triple suspension of the
usual SO(3)-action on S®. These results agree with the work of Richardson [11]
who tried to classify all SO(3)-actions, not necessarily smooth, on S°.

By the codimension of an action we mean the codimension of a principal orbit.
The orbit space M* of a five dimensional simply-connected, connected closed
codimension-two SO (3)-manifold M is diffeomorphic to D? or S?; for a codimension-
three action the orbit space M* is diffeomorphic to a homotopy three-ball A® or
a homotopy three-sphere =°. In any case, the boundary of the orbit space is precisely
the image of the orbits whose dimensions are strictly less than the dimension
of the principal orbits. Call these orbits singular. We notice that every manifold
in 9% admits singular orbits and that 235, contains the class 9, of all
simply-connected, connected, closed five-manifolds admitting singular orbits, On
the other hand, the discussion of codimension-three actions involves the Poincaré
conjecture. If the Poincaré conjecture is true, every codimension-three SO(3)-action
on a simply-connected closed five-manifold with singular orbits is equivalent to
the triple suspension of S? which is the single element of 2%,5,.

The organization of the paper is as follows: In 1. we recall the minimum amount
of standard theorems and definitions necessary and also recall some facts about
the group SO(3). We refer to Bredon [3] and Hsiang [6] for details of the
fundamentals of the theory of differentiable actions. In II. we give examples of
manifolds in 9%, and indicate their fundamental groups, in III. we classify
D30, and in IV. we give a topological classification for Z,. In the appendix,
we discuss simply-connected SO (3)-manifolds whose orbit spaces are three dimen-
sional.

This is a part of the author’s PhD thesis [4] with some extra observations
about actions with fixed points and the appendix. The author expresses her gratitude
to Wu-Yi Hsiang and Tomoyoshi Yoshida for their useful suggestions and help.

I. PRELIMINARIES

Let G be a compact connected Lie group and M a smooth G-manifold (this
means that the action of G is smooth). One denotes by G (x) the orbit of G through
x, and by G, the isotropy group at x. The orbit space is indicated by M* or M/G
or sometimes M /¢ when the action ¢: G X M — M is specifically mentioned. Let
w: M — M* be the orbit map. We give M* the quotient topology. If H C G is
a subgroup, write

(H) = {K C G:K is conjugate to H by an inner automorphism of G}.

Write My, = {x € M:G, € (H)}. If X is a G-invariant subspace of M we write
FH,X)={x€ X:gx=xforall g € H}. We say that two G-manifolds M, and M,
are equivalent if there is an equivariant diffeomorphism F: M, - M,.

1. We recall the much-cited notion of a slice representation for smooth actions.
The references are abundant [3], [5], [7], [8],[10]. Here we adopt the one given
in [5], [6].
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The slice representation. Let M be a smooth G-manifold, and assume M is equipped
with an invariant Riemannian metric. Let x € M. Then the induced action of
G, on the normal vectors of G(x) at x gives us a representation ¢.: G, — O (/)
(/= dim M — dim G(x)), which is called the slice representation of G, at x. Then
we have (8).

Differential Slice Theorem. Let m be the normal vector bundle of the embedding
G/G,— G(x) C M and let £ be the canonical G,-bundle G, — G — G/G,. Denote
by a.(y,) the associated vector bundle R-> G (>;< R— G/G,. Then q = o (¥,). The

left translations are naturally bundle maps of & and they induce a natural G-action
on m = a.(p,). With respect to this natural G-action on m and a given invariant
Riemannian metric on M, the usual exponential map gives an equivariant diffeo-
morphism between a sufficiently small disk bundle of m and an equivariant tubular
neighborhood of G (x).

Because of this theorem, in dealing with smooth SO (3)-manifolds, we will not
have to confront the question whether the double suspension of the Poincaré sphere
is homeomorphic to S° (II1.1A). The formulation of a topological SO (3)-action on
the double suspension of the Poincaré sphere appeared in a paper of Richardson
[11}].

Remark. Since writing this paper, J. Cannon [16] has shown that the double
suspension of the Poincaré sphere is homeomorphic to S° and so S° admits
non-smoothable non-linear SO(3)-actions.

2. A partial ordering for {(G,): x € M} exists. If (H), (K) € {(G,): x € M} then
(H) < (K) if H is conjugate to a subgroup of K. Equivalently we may order the
corresponding orbit types by G/H > G/ K if (H) < (K).

2A. THEOREM [9]. There exists a minimum (H) with respect to the above
ordering. M 4, is open dense in M. Equivalently there exists a maximum G/H
for G on M.

The maximum orbit type for orbits in M guaranteed by this theorem is called
the principal orbit type and orbits of this type are called principal orbits. The
corresponding isotropy groups are called principal isotropy groups. If P is a principal
orbit and @ is any orbit such that dim @ < dim P then @ is called a singular
orbit. @ has the type G/K for some K D H with dim (K/H) > 0; such G/K is
called a singular orbit type. If dim P = dim @ but K is not conjugate to H, @
is called an exceptional orbit. Suppose @ = G(x) is an exceptional orbit. Let S
be a slice at x (G, acts on S by a representation ¢ .:G,— O(/), where
/= dim M — dim G(x). We may think of S as a sufficiently small closed disk in
R” in the Differential Slice Theorem). If F(G,,S) is of codimension 1 in S, @
is called a special exceptional orbit.

2B. The bundle structures of a G-manifold.

Theorem [2]. Let G be a compact Lie group and M be a manifold. Let
b: G X M — M be an action. Suppose G/ H appears as an orbit type. Then

&G/ H>Myy—> My, /b
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is a fibre bundle with the associated principal bundle
E:NH)/H- FH,My)—> My, /[ &
where N (H) is the normalizer of H. Conversely let
&£G/H->E— B

be a fibre bundle with the structure group N (H)/H. Then we may give a G-action
on E such that each fibre is an orbit and

&:NH)/H— F(H,E)> B
is the associated principal bundle. Furthermore, if £ is a differentiable fibre bundle,

the action may be made into a differentiable action.

3. Topology of the G-manifold M and its orbit space M*. The reference to
this subsection is Chapter IV of Bredon’s book [3].

Let G be a compact connected Lie group. Let M be a smooth G-manifold, which
is closed and connected.

3A. THEOREM (Equivariant Path Lifting). Let f: I—- M* be any path. Then
there is a lifting f': I —» M such that f' = f.

I == > M*

COROLLARY. SupposeM issimply connected. Then M* is also simply connected.

Write B, E, and SE for the sets consisting of singular orbits, exceptional orbits,
and special exceptional orbits respectively.

3B. THEOREM. If /= n — 2, then the orbit space M* is a two-manifold and
dM* consists exactly of B* U SE*.

3C. THEOREM. If H,(M;Z,) =0 and if a principal orbit is connected then
there are no special exceptional orbits.

3D. THEOREM. Suppose H,(M;Z) = 0 and /= n — 2. Suppose singular orbits
exist. Then E* = ¢ and M* is a 2-disk with boundary B*.

Let us make the following conventions: write (M, ) for a smooth closed connected
orientable manifold of dimension n together with a smooth action : G X M —-> M
of codimension 2. Write (M, &, D?) for (M, ¢) with M* = D? and similarly (M, ,S?)
if M* is S%. Let %, = {(M,$): w, (M) = {e}}, and

2% = {(M, b, D*): M has no exceptional orbits}

F2 = {((M,$,S%)}. Then ¥, C 22U FZ. If we take G=S0(3), n=25, then
Fsom N Dsoe = D, (defined in the introduction).
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4A. The group SO(3) of all proper rotations of SO(3) can be thought of as
the group of 3 X 3 real orthogonal matrices of determinant +1. The references
for this group are abundant, but Wolf [15] has an especially good account of
finite subgroups of SO(3).

4B. Every subgroup of SO(3) is conjugate to one of the following: SO(2) (the
group of proper rotations in R® regarded as a subgroup of SO(3)), O’(2) (the
normalizer of SO(2) in SO(3)), cyclic group Z, of order &, the dihedral group D,
of order 2m, the tetrahedral group 7, the octahedral group O, and the icosahedral
group I (the groups of symmetries of the regular n-gon, the regular tetrahedron,
the regular octahedron, and the regular icosahedron, respectively). The symmetry
groups are given by (15)

D, A"=B?=1, BAB™'=AT"
T: A®=P?’=Q%=1, PQ=QP, APA™'=Q, AQA™'=PQ
A®=P?>=Q?>=R?=1, PQ=QP, RAR'=A""
{ APA™'=Q, AQA™'=PQ, RPR™'=QP, RQR'=Q7!
I. A>=B*=C°=ABC=1
4C. [11]. The coset spaces SO (3)/S0O(2) and SO(3)/0’(2) are diffeomorphic
to S? and RP? respectively. For a finite subgroup H, SO (3)/H is a closed orientable
3-manifold with H,(SO@)/H;Z)=0. Using the double covering
p:S% — SO(3), we get
™ (SOB)/Z}) = Z,,, w,(SO®)/D,,)=D,,
w,(SO0®)/T)=T, =, (S0®)/0)=0, =, (SO@B)/I)=1, and
H,(SO@B)/Z,) =Z,,, H,(SO@B)/D,,)=2,9® 7,
H,(SOB)/D,,, 1) = Z,, H,(SOQ)/T) = 2,,
H,(SO@B)Y0=2,, H,(SO@B3)/I)=0.

4D. N(H)/H for subgroups of SO(3).

H So@ | 0'©@ | z, p,|p, | T |1|W o)
N(H) 0'©@ | o® | NT) o |Dp, | O0|I|S0® | o0
N@H)/H | z, 1 NTY/Z, | D, |2z, | z,| 1|s0@) | 1

T is the maximal torus of SO(3) containing Z, .
Table 1

4E. The irreducible representations of subgroups H of SO(3) in all dimensions
less than or equal to 5 — 3 + dim H. The irreducible representations of H = SO (3)
are (a) the trivial representation SO(3) — {1} (b) the usual matrix representation
p: SO(3) — SO(3) (c) A:SO(3) — SO(5) defined as follows: let X be the space of
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all 3 X 3 real symmetric matrices of trace 0, and let SO(3) act onit by (g,a) — gag ™',
g € SO(3) and a a symmetric matrix with trace 0. Bredon [3, p. 42-44] gives
a detailed discussion of this representation. A is called the weight 2 representation.

H = S0O(2) is one dimensional, and so we want its irreducible representations
in dimensions 1, 2, and 3. It has no irreducible representations in dimension 3.
It has (a) the trivial representation 1: SO(2) — {1} (b) for each positive integer
R, p,: SO(2) — SO(2) defined by

cos® —sin® O
sin 0 cos® 0 | (
0 0 1

cosk® —sink6 )
sin 20 cos k0

O’ (2) has (a) 1: O’ (2) = {1} (b) det: O’ (2) — O(1), where

)T )

(c) for each k= 1, p,: O’ (2) = O(2) defined by

1
I
Px1SO@2) =p,, s -1 =( _1)
-1
For finite subgroups H, we will only need H— SO(2) in dimension 1 and 2.

They are the following: Z, has (a) the trivial Z,— 1. (b) foreachl1 =k =< [/ — 1/2],
p.: Z,— SO(2) is given by

( (cos2 k)t —sin21rk//)
P& = \sin2nk/s cos2uk/s
D,,, using the expression in (4B), has two one-dimensional representations:

(a) the trivial one, A— 1, B—>1 (b) A—> 1, B—> —1, for all m. If m is even we
have in addition to (a) and (b), (c) A—> —-1,B—>1,(d) A— -1, B— —1.

T has (a) the trivial representation, (b) Z, + Z, > T— Z,,

10 ' cos 2iw/3 —sin2iw/3 )
P,Q— , A-1{ ) , i=1lor2
01 sin 2iw/3 cos 2iw/3

O has (a) the trivial representation, (b) T->0—->Z,, R— 1and 4,P,Q, —» —1.
The icosahedral group has the trivial representation in the dimension one and
nothing in SO (2).

5. Classification of simply connected, connected five-manifolds [1], [13]. Let
M be a simply connected, connected, five-manifold. The second Stiefel-Whitney
class of M may be regarded as a homomorphism w,: H,(M:Z) — Z,. w, determines
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(by suitable rearrangement of basis for H,(M; Z)) a diffeomorphism invariant i (M)
of M. The theorem of Barden states that H,(M;Z) and i(M) form a complete
set of invariants for the diffeomorphism classification. For manifolds
i(M) = 0, H,(M;Z) is the invariant. This is the Theorem A of Smale [13].

We will need the following identification found in Theorem 2.3 (1).

H,(M;Z) w, (M) (M) M
Z 0 0 S%x 83
Z, +0 1 X_,
Z,+Z, +0 1 X, =X_,#X_,
Z,+ Z, 0 0 M,
Zz+(ZZ+...+ZZJ) F0 1 X_  #M,#% ... % M,
~ v ;ﬂ——_}
2n n
Zz+...+ZzJ %0 1 X, #M,% ... %M,
N v v
2n n—1
Z,+ ...Z, 0 0 M,% .. %M,
T —
n n

1. EXAMPLES OF 2%,

1. Let SO(3) act on R°=R®>X R® by p®p, where p is the usual matrix
representation of SO(3). Then the restriction to S®> C R® defines an SO (3)-action
¢, on S°.

2. The irreducible representation A:SO(3) — SO (5) defines an action on S* and

hence on S° in an obvious way [11], [12]. We write these SO(3)-manifolds as
(S*,A) and (S° A) respectively.

Richardson [11] shows that these are the only smooth SO(3)-actions on S°
admitting three-dimensional orbits.

3. Consider H C K C SO(3), where H=Z, and K = SO(2) so that K/H = S'.

We have the sphere bundle K/H— SO3)/H £> SO (3)/ K, where p is the projection;
so its mapping cylinder M, = SO(3)/H X [0,1] U SO (3)/ K is a (smooth) mani-
P

fold. SO@) acts on SO(@)/H X [0,1] (respectively on SO(3)/K) by
a(BH,t) = aBfH,t) (respectively a (BK) = afK)), o, € SO(3). Hence it also acts
on M,, and so on M X S*' (identity on S') and similarly on SO(3)/H X D?. The

boundary of M,x S* is SO(3)/Hx S*. Let M=S0@)/HxD?> |J M,xS*
f
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where f: SO(3)/H x S'— SO(3)/H x S* is an equivariant diffeomorphism. M is a
smooth SO (3)-manifold of dimension 5 whose principal orbit type is SO(3)/H
and the singular orbit type is SO(3)/K. M* = D® and M 4, * = aM* (= S*).

This construction yields the following SO (3)-manifolds.

3A. Denote by M (1) the manifold obtained by taking H = {e}, K = SO(2) and
[ = the identity map. Then

M) =803 xD* | J M,.x S

id

One can think of M(1) as SO(3) X D?/~, where ~ corresponds to collapsing each
orbit of SO(8) through (a,x), x € 8 € D? by the restricted action of SO(2).

Similarly, let M (k) be the SO(3)-manifold with H=2Z2,, K= S0(2), and
f = the identity, for £ =2, 3,.... Then M(k) = SO(3)/Z, X D* U Mp, X S!is of

id
the principal orbit type SO(3)/Z, and the singular orbit type SO(3)/SO(2). M, .
is the mapping cylinder of p,: SO(3)/Z,— SO(3)/SO(2).

Let H= D, (k= 2), K = O'(2); f = the identity. Let

p,:SO0@)/D,— SO(3)/0’(2)

denote the projection. Let Mp)} = SO(3)/D,x D> |J Mp! xS*. M'(k) is an

id
SO (3)-manifold whose principal and singular orbit types are SO(3)/Z, and
SO(3)/ 0’ (2) respectively.

3B. Let H=0'(1), K = O’ (2),p: SO@3)/0’ (1) = SO(3)/ 0’ (2). Let
f;:NH)/HxS'— NH)/Hx S*

be defined by f o, t) = (e’ (t), t), where o € N(H) /H and o = preferred generator
of w,(N(H)/H) = Z. This defines for j = £0,1,2,3, ..., an SO(3)-equivariant map

f;:80@3)/0’ (1) X (N(H)/H x S") 5 NH)/H = S0(3)/0’ (1) x S*.

Thus we obtain M’ (1,5) = SO(3)/0’ (1) x D* | J M, x S*.
;i
3C. Remark. w,(M(R))={e}, k=1,2,..., w (M (k) +#{e}, =2, and
’I'I'I(M,(l,j)) # {e}aj:: +0,1,2,....

4A. One of the most interesting and important SO (3)-manifolds whose orbit
spaces are diffeomorphic to the disk D? is the homogeneous space

X_, =SU(3)/S0@),

which is known as the Wu-manifold. SO(3) acts on X _, by the left coset-multiplica-
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tion. F(SO(3),X_,) = N(SO(8)) /SO (3) = {SO(3), SO0 (3),»>SO(3)} where & is the
complex matrix

=}

€

0 o

with w = the cube root of 1. Hence it admits three fixed points. One can show
that the principal orbit type is SO(3)/(Z, + Z,), and the singular orbit type other
than the fixed points is SO (3) /O’ (2) either by a direct computation or as a corollary
to our classification theorem (IIL.2B). SO(3) can act on X _, in no other way. One
finds another description of X _; in (1). Dennis Sullivan pointed out to us that
X _, is indeed SU(3) /SO (3). By taking connected sums

X #X_ ¥ X

-

ﬁ_r
n times

one obtains SO (3)-manifolds with n + 2 fixed points. Depending on how one connects
X _.’s, one obtains various distinct actions with same number of fixed points. All
these manifolds are simply connected and have the nontrivial second Stiefel-Whitney
class, w, (M) (IV).

4B. For n = 2,3, ..., consider ordered n-tuples (j,,/,,/s,-..,/,) with values in
{0,1,2} such that j; # j,,,,1 =i =n, and j, #j,. We construct an SO (3)-manifold
M’v7n admitting three orbit types SO(3)/(Z, + Z,), SO(3)/0’(2), SO(3)/SO(3)
with F' (SO (3),M) consisting of n distinct points.

Let X be the space with 0 X =1, U ... U I, U J, U ... U J, as indicated
in Figure 1 on page 294.

Fix Z, + Z, C SO(3) as the group of matrices { P, @, PQ, 1} where

() ()

Z,+ Z, is a subgroup of N,, N,, N, where N, is the subgroup consisting of
matrices of the form
*
( +1 ) ’

i.e, N,=0'(2), and
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Ji

Figure 2.

Let p,;:SO@3)/Z, + Z,— SO(3)/N;, i = 0, 1, 2 be the standard projection and
let M, be the mapping cylinder of P;. M, is a smooth SO (3)-manifold because
N/(Z +Z,)—> S0/ Z, + Z,)—> SO(3)/N is an S'-bundle. Now let

=(80Q)/ (@, + Z,)) X X.
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SO(3) acts on M’ by a([B],x) = ([eB],x) for « € SO(3), [B]l € SO@B)/(Z, + Z,)
and x € X. We have (M’)* = X. Each (SO(3)/(Z, + Z,)) X I, is an invariant sub-
manifold of M’. Let L,= ij o X I;- The “bottom” part of L, is

(SO@)/(Z, + Z,)) X I,. Obtain M” by attaching L, to M’ along
(SOB)/(Z,+ Z,) X I,

by the identity map for i = 1,2, ...,n.

The induced action of SO(3) on M” has two orbit types, SO(3)/(Z, + Z,) and
SO(3)/0’(2).

(M”)* is shown below.

M" has n boundary components S,, S,, ...,S,, such that

UM

Piw°

St=dJ,U M*

DPii-1)

Recall we have taken j, #j,,,. Richardson (12) shows each S; is equivalent to
S* with SO(3) acting on it by (S*,A), where A: SO(3) — SO(5) is the irreducible

xI,)* = I,

)

* _ *
SZ-MP
I2

*
U UM

Figure 3.
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representation of SO(3) in dimension 5 (I.4E). Hence we can equivariantly fill
in each S;, in other words, we attach n 5-balls D, along S,s. Denote the center
of D; by z;. Then the resulting SO(3)-manifold has n fixed points z,,...,2,. We
call this manifold M’1"/» Locally the orbit space, (M’!’)* looks like the figure
2.

4C. PROPOSITION. ,(M71/») — {e} for n = 2.

Proof. From the construction we have that
M/t =M"U (D,U D,U ...U D)),
where D, is diffeomorphic to a five-ball and

M ' =M'UL,U ..UL,;
M' = (SO(3)/(Z, + Z,)) X X (X as in Figure 1);

Pim

with ijm the mapping cylinder of p;:SO(@3)/(Z,+ Z,) > SO(@@) X N;, and

M NL,=6003)/(Z,+Z,)) XI,. Applying the Van Kampen Theorem repeatedly,
we see that w, (M”) = {e}; hence w, (M’ i7/») = {e}.

III. EQUIVARIANT CLASSIFICATIONS

In this section we classify D%, (See 1.3, for definition). The main tool for
this is the classification theorem due to Bredon, [1], Hsiang and Hsiang [6],
and Janich [8]. This will include the classification of simply connected five-manifolds
whose orbit spaces are diffeomorphic to D?.

1A. LEMMA. (M,d) € D%, has one of the following set of orbit types: (a)
{S0(3),80(3)/S0(2)}, (b) {SO3)/Z,,S0O(3)/S0O(2)}, (c) {SO(3)/D,,SO(8)/0’(2)},
(d) {SO@®)/Z,,S0(3)/0’(2)}, (e) {SOWQ)/Z, + Z,),S0(3)/0’(2),S0(3)/SO3)}.

Proof. This follows as the result of a case-by-case enumeration of representa-
tions of subgroups of SO(3). We start with the possibilities for the principal orbit
type. Since principal orbits are three dimensional, their isotropy groups must be
conjugate to a discrete group. So if (H) is the principal orbit type, H is conjugate
to {e}, Z,, D,, T, O or I. Let x € M be on a singular orbit (we know by (I.3) sin-
gular orbits exist). G, must be conjugate to SO (2), O’ (2), or SO (3) (note
dim(G/G,) <dim(G/H) = 3, so dim(G/G,) =0, 1, or 2; dimG, = 3,2, or 1). Say
(G@,) = (K), where (K) = (SO(2)), (O'(2)) or SO(3). By the slice representation
theorem (I.1), there is a small normal disk (slice) S, to G(x) at x. Now S, is
D?, /= 5-dim(SO(3)/K) (/= 3 or 5); and ¢ | G, on S, is equivalent to a representa-
tion ¢,: G, — O(/), and a principal, exceptional or singular orbit G, (y), y € S,,
for ¢, corresponds to a principal, exceptional or singular orbit G(y) for ¢. Thus
since ¢ has no exceptional orbits, neither does {_ . Suppose H = {e}. Let x € M
be on a singular orbit. We must seek K C SO(3) sothat G, € (K)andy,: G,— O(/),
Z= 3 or 5, has {e} as the principal isotropy group. From (I.4E) we see
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o, + 1:S0(2) - SO(3)

is the only possibility. Therefore G, € (SO(2)) and we have the case (a).
Suppose H = Z,, k = 3. For the same reasoning as for H = {e}, we must have
G, € (SO(2)) with p, + 1:S0(2) - SO(3); so we have case (b). Similarly if
H = D,, k= 3, we are in case (c). Suppose H = Z,. Then (G,,¥,.) can be

p, + 1:50(2) — SO(3)

or p, +1: 0’ (2) > O(3) (Z, = O’(1)). But since aM* = B* (the image of the set
of singular orbits B) is connected we cannot have both (SO(2)) and (O’ (2)) as
the singular orbit types. Hence we must either have the case (b) with 2 =2 or
the case (d). Suppose H = D, = Z, + Z,. Then ¢, can be either

b, + 1:0'(2) > 0(3),

or A:SO(3)— SO(5). If for all x € B, G, € (0O’ (2)), we have the case (c) with
k= 2. If for some x € B, (G_,{,) is (SO(3),A), then there exists y € S, so that
(G,,¥,)is (O (2), p, + 1). Thus we are in the case (e). H = T, O, or I cannot happen
since SO(2) or O’ (2) has no finite subgroups conjugate to H and SO(3) has no
representation in dimension 5 with the principal isotropy group for such an H.

1B. Remark. Inthe above setting when K = SO(2) or O’ (2), the representation
of K(p, + 1 etc.) on R® is via a representation into O(2) C O(3) and is transitive
on the unit sphere S* in the orthogonal complement R* X {0} to the fixed point
set F(K,R®) = {0} X R. This point is crucial in our classification. It enables us
to use the classification theorem V.6.2 [3, pp. 326-333] for the differentiable
case. Also this fact makes the orthogonal extension in the proof of Theorem 4.7
[5, p. 762] possible, although we have k = 1.

Now we consider the notion of simultaneous conjugacy classes of a pair of
subgroups H C K of a group G. We say H C K and H' C K’ are simultaneously
conjugate, H C K ~ H' C K’, if and only if there is an element g € G such that
gHg ' = H' and gKg ' = K’. We write (H C K) for the conjugacy class of H C K.

1C. Arithmetic of SO (3) Recall the definitions in terms of generators and rela-
tions (I14B), D,=2,+Z,:P*=Q*=1, PQ=QP T:P>’=Q*=1, PQ = QP,
APA™' = Q, AQA™" = PQ, and A® = 1. We may pick

1 0 0 -1 0 0
P=|o -1 o}, @=( o -1 0},

0 0 -1 0 01

-1 0 0 010

PQ = 0], A=|0 0 1

~1 1 00

with H, = (Q), H, = (P), H, = (PQ) ({P) equals the cyclic group generated by
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P, etc.). Let Ty, T,, T, be the maximal tori of SO(3) containing H,, H,, H,,
respectively, and let N, = N(T}), i = 0, 1, 2. Notice that earlier in II[4A we made
the convention that O’(1) = H,, SO(2) = T,, and O’(2) = N,. We will use the
notations interchangeably. We observe

AT;‘A—I = Ti+2(mod3)’ AN;'A_I = Ni+2(mod3)
A—IT':'A = Ti+1(m0d3)7 A_INiA = Ni+1(mod3)

Now using these matrices, it is easy to check
F(H,,SO3)/N,) = {A’N,} U NH,)/N,.

These correspond to the simultaneous conjugacy classes for (H) = (O’(1)) and
(K) = (O’ (2)); i.e., there are two simultaneous conjugacy classes, (H, C N,) and
(H, C N,). Clearly if HC K € (H, C N,), K/H cannot be isomorphic to S*.

1D. LEMMA. Let H C K be subgroups appearing in (a)-(d) in Lemma 1A.
LetH € (H), K' € (K),withH Cc K'and K'/H' =S'.Then H C K’ ~HC K.

The proof is immediate.

1E. THEOREM. Equivalence classes of (M,d) € D%, with two orbit types
are classified by theinvariants {H, K ; b} where (H, K) ranges over the sets ({e}, SO (2)),
(Z,,80(2)),(D,,0'(2)),(0’(1),0’(2)),and b= 0if (H,K) = (Z,,S0(2)) or (D,,, 0’ (2)),
and b € Z, if (H,K) = ({€},S0(2)), and b € Z, if (H,K) = (0’'(1),0'(2)).

This theorem says that for each %, 2= 2 there is _a unique SO(3)-manifold
M({Z,,SO(2)}), whose principal orbit type is SO(3)/Z, (the singular orbit type
is automatically SO (2)). Similarly, (M,d) € @20(3, whose principal orbit type is
SO@3)/D, is unique for each %k, & = 2. There are exactly two non-equivalent
SO (3)-manifolds which have SO(3) and SO(3)/SO(2) as their orbit types. We will
call them M ({{e}, SO(2);0}) and M({{e}, SO(2); 1}).

Proof. Given (M,0) € 920(3,, let SO(3)/H and SO(3)/ K be the principal and
singular orbit types respectively. By Lemma 1A, (SO(3)/H,SO(3)/K) must be
one of (a)-(d). Let w: M— M* = D? be the orbit map. Denote by B the boundary
circle of D®. Then 7w *(B) = M, and 7w~ (D® — B) = M ;,. Write

S=NH)NNK)/H.

The Tube Theorem [3, p. 242] and the remark (1B) imply that for some small
g>0, w '([0,e] X 8') is an invariant tubular neighborhood of M g, which is
equivalently diffeomorphic to M, X €, where p: G/H — G /K is some equivariant
homomorphism, and @ is a principal S-bundle, S— @ — S'. By Lemma 1D, p
can be chosen to be the standard projection. By V.4. (3), we see that (M,d) is
a proper SO(3)-manifold satisfying the hypothesis of V.6.2 [3, p. 257]. By the
remark (1B), of this section, the classification is valid for the smooth case. Hence
equivalence classes of (M,$) € D%, with orbit types SO(3)/H and SO(3)/K,
are the same as equivalence classes of proper (M,d) € D%y, with these orbit
types. By V.6.2 (3) the latter set is in one-one correspondence with
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r=|s* NED N(H) N@H)/H
I N(H) o

N(H)
where N NED N(H) is the orbit space of the left N(H) N N(K)-action
on N(H). It is easy to check the following chart.

N(H)

H K N NH) woN(H)/H r

N(K)
e SO (2) RP? 1 Z,
Z, SO (2) 1 Z, 1
k=3,D, 0’ (2) 1 Z, 1
Z,+ Z, 0’ (2) Z, D, 1

N, L
0’'(1) 0'(2) —_ =S5 Z, Z,
N, NN,
Table 3.

Hence if (H, K) = ({e}, SO(2)), then (M, d) dependson b € Z,.If (H,K) = (Z,,S0(2))
or (D,, O’ (2)) then (M, ¢) isunique. Andif (H, K) = (O’ (1), O’ (2)), then (M, ) depends
onbeEZ,.

According to [3, p. 255], b € T corresponds to an S-reduction @ of the principal
N (H) /H-bundle over S* (which in our case = N(H)/H X 8'). We have then

M,=S0@3)/Hx D> |J M, x:Q,
i

where f,: SOB) /H X5 Q— SO (3)/H X y sy, (N (H) / H X S*') is the induced equi-
variant map.

We also notice that with the notion of properness and the remark (1B), we
may use Theorem 4.1 [6, p. 757] for our classification. The value b = 0 corresponds
to

§——>»Sx§'—> S

| o [
NH)/H—> NH)/H %X §*—> 8,
where b(x,t) = (x,2), x €S, t € 8. That is, for each HC K, b=0 coi'responds
to M =SO(3)/H x D* | J M, x S*, where f,: SO(3)/H x S*— SO(3)/H x S*is

fo
the identity. Recall the examples in II. We see that M (1) = M({{e}, SO(2); 0}),
M) =M{Z,, SO(2)}), and M’ (1,0) = M({O’ (1),0’ (2)}). Since in II we saw that
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(S®, &,) is not equivalent to M (1), we conclude that it corresponds to
M({{e},SO(2); 1}).

Now look at M, = M({O’(1), O’ (2); b}). We want to show that M, is equivalent
to M’ (1,7) for some ¢ € Z. (II 3B). We shall use the notations O’ (1) = H,,0’(2) = N,
as in (1C). Let

S=N(H,)N N(N,)/H,=N,N N,/H, = Z,.

Let p: SO (3)/H, — SO (3)/ N, be the projection. We show that M, X3 Q@ = M, X S*.
First of all we have a trivial SO(3)/N,-bundle over S' = M ~, since

N(©N,)/N, = 1.

Thus by (1.2B), M, = SO(3)/N, X S'. We also have that 9 (M, X 5 @) (being the
boundary of the (trivial) SO(3)/H-bundle over D?) is trivial; i.e.,

aM, %xsQ)=S0(3)/H, xS

So the sphere bundle (1) N,/ H, — a (M, X s @)— SO(3) /N, X S'with the structural
group S, is the same as the product of the sphere bundle (2)
N,/H,— SO(3)/H,— SO(3)/N, with S'. Since M, X, S is the associated disk
bundle of (1), obviously it must be the product of the associated disk bundle M,
of (2) with S*. So M, X 3 @ =M, X S*. Thus M, is diffeomorphic to

SO@3)/H, xD* |J M, xS,

fy

where
f6:SO@)/H, X5(SX S — SO@3)/H, X wany,a (N (H) /H X S*)

is the reduction corresponding to b € Z,. Hence M, is equivalent to some M ;
constructed in (IL.3B) and thus w, (M,) # e.

Together with the remark (II 3C), we have proved

1F. THEOREM. If M,¢) € 9 20(3, has two orbit types and w, (M) = {e}, then
it must be equivalent to one of (S°,&,), or M(k), k = 1,2, ..., given in IL. 3A.

2. Classification of 22, with fixed points.
0(3)

2A. THEOREM. If (M,d) € D%y, has three orbit types then they must be
SO@3)/(Z, + Z,), SO3) /0O’ (2), and SO(3) /SO(3). It must admit at least two fixed
points. The orbit invariant is the equivalence class [ j,,] s, .-, J,] by cyclic permuta-
tion, reflexion, and the diagonal action of o, (the symmetric group on three letters),
of an n-tuple (j,,js,---,J,), Where j; € {0,1,2} subject to j;# j;,1, and j, # j,. The
SO (3)-manifold corresponding to [j,,...,j,] is equivalent to M’+"’» of the examples
11.4B.
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Remark. Notice if there are only two distinct numbers appearing in (j,,...,7,,),
it is in [0,1,0,1,...,0,1]. This is because dividing out by the diagonal action of
oy, we can start our sequence with 0, 1; i.e, our sequence can be taken as
[0,1,73,...,7,]. Given n, there are £=2"2-2""24+2""*  +1 many
0,1,7,,...,7,)ssatisfying j; # j,;,, and j, # 0. So there are at most £ non-equivalent
SO (3)-actions with n fixed points. The number becomes reduced by dividing out
by cyclic permutations and reflexion. For example when n =2 or 3, k=1, and
when n = 5, £ = 5 but the number of distinct classes is 2. In general computing
the number of distinct actions for a given »n is possible but difficult.

2B. COROLLARY. The SO(3)-manifold with 2 (respectively 3) fixed points is

unique. Any manifold corresponding to [J,,Js,J15J0s-J1,J2] IS equivalent to
— 7

length n

0101..01
M T_Vt_h—J We know that (S°,A) has two fixed points and the Wu-manifold
eng .

X _, =8SU(3)/SO3) has three fixed points. Hence, M** must be equivalent to (S°,A)
and M°*? to SU(3)/SO(3).

Proof of 2A. When (M,¢) € D5, has three orbit types, by Lemma (IIL.1A)
they must be {SO3)/(Z, + Z,),SO(3)/0’ (2),SO(3)/SO(3)}, and the representa-
tion of SO(3) at a fixed point 2z € M is given by A: SO(3) —» SO(5), as in (I.4E).
Thus F = F(SO(3),M) is discrete and the compactness of M implies that F' has
only finitely many elements, say F = (z,,...,2,}. Notice by (I.3B) that
zf = {z;} € aM* = B. For each i, choose a small 5-ball D, about z; such that ¢|D,
is equivalent to A. Each dD; = S; is SO(3)-invariant and ¢ |S, is equivalent to
(H* A). The orbit space M* = D? has the structure shown in Figure 4.

Z,
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of (M,d) € 9230(3, with three orbit types (and hence with n fixed points) amounts
to the classification of (IV,{,X) with X as described in example (II.4), satisfying
the following conditions:

(a) The principal orbit type is SO(3)/(Z, + Z,).

(b) The singular orbit type is SO(3)/0’(2). The image of the singular orbits
in X istheunion B=1, U ... U I,.

© oN—- U =7'U) =w""(J,,...,J") is a disjoint union of S¥s, S,,...,S,,
i=1
where each (S, ¢|S;,J;) is equivalent to M ,; U ((SO@Q)/Z, + Z,) X J) U M, .

2B. LEMMA. The triple (N,¥,X) satisfying (a), (b) and (c) corresponds to the
equivalence class [j,,....,J,].

Proof. It is easy to check that (V,V¥,X) satisfies the hypothesis of (V.6.2(3));
hence it corresponds to an element b in

([ N \N(H) ]/ )/
r={|B5B, n wo (NH) JH | [ ~.
N(K)

where K=0'2), H=Z,+Z,,B=1, U ... U I, and ~ is the equivalence given
by the action on B of cyclic permutations and the reflection of {I,,...,I,}. Now
using the presentation for N(Z, + Z,) = O = {P,Q,R,A} as in (I.4B) we see that
N(H)\ N(H)
N
N(K)

I

2

is generated by A/O = {P,Q,R}, and w,N(H)/H = D, is generated by A/{P,Q}
and R/{P,Q}. b € T corresponds to a choice of the projection

p;:S0@)/(Z, + Z,) — SOB)/N,,,j, € {0,1,2},i=1,...,n.

N is equivalent to

S0®)/Z,+Z)xX)u | W1, x1I).

i=1

But the condition (c) forces us to choose j;’s so that j, # j,.,, and j, # j,.. Hence
we have the equivalence class [j,,...,j,] as claimed. This completes the proof
of the lemma.

Lemma 2B and the paragraph before that prove the first part of the theorem.
It is also clear that [j,,...,7,] corresponds to M't~“» of II. 4B.

It remains to show that (M, $) with a single fixed point does not exist. Suppose
that it did. Let z € M be the fixed point. Remove a small disk D° centered at
z from M. N =M — D°® has the boundary equivalent to (S*,A). The orbit space
N* is a half disk as indicated in Figure 6.
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Figure 6.

By Lemma 2B, N = {SO@3)/(Z, + Z,) X X} U {Mpo X I}. Hence
w ') =M, U {SO@®)/(Z,+Z,)xI'} U M,,

but this is not S* This finishes the proof of the theorem.

IV. TOPOLOGICAL CLASSIFICATIONS

In this section we will identify the manifolds M (%), k=1, 2, ...,and M’ /» n = 2,
We already know that M ({{e}, SO(2); 1}) is equivalent to (S° &,), M°" is diffeomor-
phic to S°, and M°? is SU(3) /SO (3).

1A. THEOREM. The manifolds M (k) are diffeomorphic to S* X S° for k=1,
2,....

Proof. From the construction,
M@)=S0@3) xD* |J M, x S*
id
where p: SO(3) - SO(3)/S0(2),
M, =50@3) x [0,1] {J S0(3)/50¢).

/ D
Write N, = SO@3) x D% N, = M, x S, N, n N, = SO(3) x S*. Then
we have H, (N,) =~ H, (SO(3)) and H,(N,) = ® (H,(M,) ® H,_,(S")).

=0
H,(M,) = H,(SO(3)/S0(2)) = H,(S?).

From this we obtain Mayer-Vietoris sequence for M = N, U N,, which gives
H,M;Z) = Z.

To show w,(M) =0, we first notice that w,(N,) =0 and w,(M,x S*) =0.
w,(N,) = 0 is obvious as w,(SO(3)) = 0. w,(M, X S') = 0 is also clear if we can
show w,(M,) = 0. Notice first that we have v: D* > M, — S® associated with the
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tangent sphere bundle p: SO(3) — SO(3)/S0O(2) and its second Stiefel-Witney
class is trivial (S” is almost parallelizable). Thus w,(M,) = w,(S”) + w, ) = 0.
Now look at the Mayer-Vietoris cohomology sequence in Z,,.

HYM) - H*(N,) ® H'(N,) - H*(N,N N,) b HEM) S H*(N,) ® H*®,)

[ I I

0o - 2o+ Z, - Z,+ Z, - Z, - Z,+ Z,
w w®  ®
2 2 2
We see that B is the zero map and so « is injective. If w,, w$’, w? are w, (M),

w,(N,), w,(N,) respectively we must have o (w,) = W, w?) (w, is natural with

respect to cohomology maps) = (0, 0).

Therefore w,(M) = 0. By Theorem A [13] we have that M is diffeomorphic
to S? x S°,

With exactly the same argument, we show that the manifold M (%) is diffeomor-
phic to S x S® k = 2.

1B. THEOREM. Mt /zai=X  # M, % ... % M,.

\______v,_____/
k-1

M/vdn=X % M,# .. % M,

k—2
2k
r—t——
if all 0, 1, 2 appear among the j’s. M**"®° =M, % ... % M,. Here X _,, X,, and
" J/
E=1

M, are given in (1).

1C. LEMMA. H, M’/ 2)=Z,+ ... + Z,.
N——
n—2
Proof. Writing L= |J L,, M,nL=J S03)/Z2, + Z,) X I,), we obtain

i=1 i=1

the Mayer-Vietoris sequence
(1)

HZ(M;) ® H,(L) —>H2(M':/;) - H, (M, N L) "\‘!;) HI(M,n) ® H,(L)-» 0
¢

I I I I I
0 0 n(Z, + Z,) Z,+ Z, nZ,

0> H, M) —>Zy+ ...+ Zy—>Zy+ ... +Z,— 0
2n n¥2
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Hence H,(M,)) =Z, + ... + Z,. See II 4B for the notations M’, M”. Hence
n-—2

HM)=2,+..+2Z,
TaYs
(Adding D*’s to M” does not change H,). Here n denotes the number of fixed
points.
1D. PROPOSITION., M’i*/2k+i =X 4 M, # ... % M,.
N —~ =
Proof. H,(M,, ,.;Z) =\Z2 + ...+ ZzJ, hence by a theorem of Wall [14]

2k -1
w,(M,, ,,) # 0. Hence by (I.5) the proposition follows.

1E. LEMMA. w2(M°b"‘“b) =0, forany a # b € {0,1,2}. w,(M’17»)+# 0 if all
0, 1, 2 appear.

To compute w, (M’1"/») note that w,(M’1-7/») = w, (M71-7n)"),

Now w, is a homomorphism: H,(M";Z) — Z,. Hence w, (M”) # 0 if there is
a basis element « € H,(M",Z) with w,(a) # 1.

From the exact sequence (1) we see that a 2-cycle realizing a‘basis element
of H,(M") is in ker . Write

HM)=H,(SOQ)/Z,+ Z,)=Z,+ Z, = {uy,u,,u, + u,, 0}
so that the following holds:
0 ifi=yj 1=0,1,2
m»*wg={1 ifi#j j=0,1
where
(p)s: H(SOB)/Z, + Z,) - H,(SO(3)/N,)
| I
Z,+ Z, Z,
Now choose a basis for
@ H,(SOB3)/Z,+ Z,) X I,) = é:) Z,+ Z,)
i-1
as follows: for each Z, + Z, in the ith component, we choose a basis (a;,b;) so
(P;x) (@) = 0 and (P;) 4 (b;) = 1, eg.,
Ji=0 then a;=u,, b,=u;(oru,+ u,)
J;=1 then a;,=u,, etc.

J;=2 then aq,=u,+ u,
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Look at

o

® Hl((SO(3)/Z2 +Z,) X Is)

i=1

H, (SOB3)/Z,+ Z, X X)

¥, n
® H,M

Pj

xXI)®H,(SO3)/N,)

U=, — ), ¥ =1, + ... +,, where
1;: H(SOB)/Z,+Z,x1,)> H,(SOB)/Z,+Z,X X)

is the inclusion homomorphism, and ¥, = ((p;,) «, ..., (p; ) ). Notice u, + u, = 0,
u, + u, =0, uy + u, + (U, + u©,) = 0 in H,(SO@B)/Z, + Z,). Thus
a € ker ¢ if and only if a € ker §; N ker ,; so ker § consists of the following: Let
n = n, + n, + ny, where n equals the number of «,’s appearing in (a,,a,,...,a,).
n, equals the number of u,’s appearing in (a,,...,a,), n; equals the number of
(4o + u,)’s appearing in (a, ... a,,). We have arranged the basis (a,, ...,a,,b,, ...,b,)
so that b; & ker ¢. Ker ¢ is generated by

(uO’uO,O,'°"O) A
——
2n — 2

(©0,0,u,,0,...,0)
e —

2n—3
» n, — 1 elements

(©5,0,...,0,u,,0,...,0)

N —
n,—2 2n —n,
J
)
o,...,0,u,,u,, 0,..,0)
n, 2n—n,—2
(0,...,O,u1,0,u1, 0’---) 0)
[ — e — L
n, 2n—n, -3 n, — 1 elements

o,..,0,u,,0,...,0,u,, 0,...,0)
N— — N —— e —
n, n,— 2 2n—n, —n,
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©,....,0, ug + u,, uy + u,, 0,..0

Ny e/ M ot

n,+n, 2n—-n,—n,—2

©,....,0, u, + u,, 0, uy + u,, 0,...,0)

[ [

n,+n, 2n—n,—n,—3 g

n; — 1 elements

©,..,0,uy +u©,,0,...,0,u, + u,, 0,...,0)

| e — e ——
n,+n, n; — 2 2n—n, —n, —n, J
(¥o,0,...,0,u,,0,...,0, uy + u,,0,..,0) 1 element
| — —
n,—1 n,—1 n;—1

Note (n, — 1) + (n, — 1) + (n; — 1) + 1 = n — 2. If one of n/s is zero, say
n = n, + n,, we don’t have the last element (u,,...,u,,...,u,+ u;) and
n,—1)+(@n,—1)=n—2. Write the basis of H,M;Z)=2Z,+ ... +Z, as
{Bys..,B,_3,a} where B, =¢ (g, 0, ..., 0) etc. and

a=¢ (u,0,...,0,u,,0,...,0, u, + u,, 0, ..., 0),

or {Bi,..esBn-2}, Br = ¢ (u;,u;,0,...,0) etc. for appropriate i, if M = M®
Claim (1) w,(B;) = 0, (2) w,(«) # 0.

Once this claim is proven, we will have the result that w,(M:°~°*) = 0, and
wy(M’17n) 4 0 if all 0, 1, 2 appear among the js.

Proof of the claim. (1) B, is realized by a two-sphere C, in M°®, where
C,= C} U C%, C}and C? are mirror images to each other and both are contractible;
hence we can set up 3-frames identical on C; and C?. They agree on the boundary

QU

Figure 7.
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T clnce

Figure 8.

C} N C? (modulo the orientations). Hence these frames agree on C; N C? (mod.
2). Hence we have established a 3-frame on C;. So w,($;) = 0.

(2) To show that w,(a) # 0, look at the Wu-manifold M°'?. The second homology
H,(M:Z) is isomorphic to Z, and the cycle (u,,u,,u, + ©,,0,0,0) is a generator
of this group. Now by a theorem of Wall (14), we know that the second Stiefel-Whitney
class w, (M) is nontrivial and hence w,(a) # 0. This means that we cannot set
up a three-frame along any two-sphere realizing a. Now from the construction
it is clear that for any n = 3, w, does not vanish on

a=¢ '(u,,0,...,u,,0,0,..,u, + u,,0,...,0,...,0);

t.e., w,(a) # 0. This concludes the proof of Lemma 1E.
Now Theorem 1B follows from (1.5), 1D, and 1E.

APPENDIX. THE CODIMENSION-THREE CASE

Let M be a simply-connected, connected closed SO (3)-five-manifold of codimen-
sion three. Then by [3, p. 190] the orbit space M* is a simply-connected three
dimensional manifold A® (or =°) with (or without) boundary. We will show that
M is diffeomorphic to 8% X S% or S°.

The dimension of the principal orbit type SO(3)/H being two, we see that
H is either SO (2) or N(SO(2)). But the latter does not occur since

SO(3)/N(SO(2)) = RP?

[3, p. 188]. Thus the principal orbit type is always SO(3)/SO(2) = S°.

(1) Suppose all orbits are spheres. Then by (1.3) we know that the boundary
dM* is empty. Hence M* is a homotopy sphere =°. By (1.2B), we have a fibre
bundle SO(3)/SO(2) - M — X2, with the structural group Z,. But such a bundle
is trivial; hence we have that M =S?>x =% By Smale [13], M is diffeo-
morphic to S® X 8%, Thus if the Poincaré conjecture is true, M is equivalent to
S0(3)/S0(2) x S? with the usual action.
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(2) Next we notice that SO(3)/N(SO(2)) cannot occur as an exceptional orbit
[3, p. 188]. So the only other possibility is that M admits fixed points. Say x
is a fixed point. Choose a small five-ball about x on which SO(3) acts linearly
with the principal orbit type SO (3) /SO (2). There is exactly one such representation
of SO(3) —» SO(5), namely p + 1, where p is the matrix representation. By (I.3)
the boundary aM* is nonempty and corresponds to the fixed points. The manifold
M* is therefore a homotopy ball A’. Thus the boundary dM* is diffeomorphic
to S®. Hence M is uniquely determined by an element b in

[ ,  N(So@) ] / (N(SO(2)) ) )
r=|S7 w , | ——— ] = {singleton}.
N (SO (2))S0(3) S0(2)

Thus M is equivalent to (SO(3)/SO(2) X A®)/~ where ~ collapses every
SO(3)/SO(2) X {t}, t € 0A® to a point. The manifold M is diffeomorphic to the
standard five-sphere S°. (It is easy to compute H,(M;Z) = 0 and w, (M) is trivial).
If M* is really D® then M is equivalent to the triple-suspension of the SO (3)-mani-
fold S? [11]. Hence if the Poincaré conjecture is true, this triple suspension is
the only simply-connected SO (3)-manifold of dimension five which admits a sphere
of fixed points.
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