INVARIANT SIMPLE CLOSED CURVES ON THE TORUS

Nelson G. Markley

The behavior of the orbits of a continuous flow on the torus is potentially considerably more complicated than that of a continuous flow on a portion of the plane. Specifically, nonperiodic recursion can occur on the torus. However, if there exists a simple closed invariant but not necessarily periodic curve which is not null-homotopic, then this difficulty does not arise, because by cutting along this curve one obtains a flow on a closed annulus in the plane. Our goal is to obtain sufficient conditions for the existence of such a curve.

The main theorems (Theorems 1, 2, and 7) state that such a curve exists if there exists a positive orbit on the torus satisfying the following conditions: (a) its lift to the plane does not deviate too much from a ray with rational slope, and (b) its ω -limit set is locally connected or the fixed points in its ω -limit set are totally disconnected.

An earlier version of Theorem 2 with (b) replaced by the hypothesis that there are only finitely many fixed points in the ω -limit set appears in William O'Toole's master's thesis [4], which the author directed. I wish to thank him for his assistance in organizing and clarifying some of the arguments which are needed for both results.

Let X be a metric space and let \mathbb{R} denote the real numbers. A continuous flow on X is a continuous mapping $\pi: X \times \mathbb{R} \to X$ such that $\pi(x,0) = x$ and

$$\pi(\pi(x,s),t) = \pi(x,s+t),$$
 for all $x \in X$ and $s,t, \in \mathbb{R}$.

We will suppress the π and simply write xt for $\pi(x,t)$. The set of fixed points of a continuous flow is defined by $F = \{x: xt = x \text{ for all } t \in \mathbb{R} \}$, and the orbit and positive semi-orbit of a point x in X are defined by

$$\mathcal{O}(\mathbf{x}) = \{\mathbf{x}t: t \in \mathbb{R}\} \quad \text{and} \quad \mathcal{O}^+(\mathbf{x}) = \{\mathbf{x}t: 5t \ge 0\}$$

respectively. The ω -limit set which is defined by

$$\omega(\mathbf{x}) = \bigcap_{t \ge 0} \overline{\mathscr{O}^+(\mathbf{x}t)} = \bigcap_{t \ge 0} \{\mathbf{x}s : s \ge t\}^-$$

will play an important role in the sequel.

Let (\tilde{X},p) be a covering space of X. Given a continuous flow π on X, there exists a unique continuous flow $\tilde{\pi}$ on \tilde{X} such that

Michigan Math. J. 25 (1978).

Received October 4, 1976. Revision received August 8, 1977.

This research was supported by the National Science Foundation (MPS 75-07078).

$$p(xt) = p(x)t$$
, for all $x \in \tilde{X}$ and $t \in \mathbb{R}$.

Moreover, x is a fixed point of $\tilde{\pi}$ if and only if p(x) is a fixed point of π , and for any covering transformation T we have T(xt) = T(x)t for all $x \in \tilde{X}$ and $t \in \mathbb{R}$. Given a point in X, say w, we will only use the notation \tilde{w} , \tilde{w}_1 , and \tilde{w}_2 to denote points in $p^{-1}(w)$.

Suppose π is a continuous flow on a two-manifold X. A *local cross section* of π at $x \in X$ is a subset S of X containing x which is homeomorphic to [0,1] and for which there exists an $\varepsilon > 0$, called the length of the local cross section, such that the map $(x,t) \to xt$ is a homeomorphism of $S \times [-\varepsilon, \varepsilon]$ onto the closure of an open neighborhood of x. In fact we can and will assume that

$$S_0(-\varepsilon, \varepsilon) = \{xt: x \in S_0 \text{ and } t \in (-\varepsilon, \varepsilon)\}$$

is open, where S_0 denotes S with its end points removed. If $x \notin F$, then there exists a local cross section of π at x [5].

For simplicity we will use the following notation for segments of curves and orbits. If S is a simple curve in some space X with a and b lying on S, then $(a,b)_S$ and $[a,b]_S$ will denote the open and closed segments of S between a and b. If π is a continuous flow on X, $x \in X$, and $s, t \in \mathbb{R}$ with s < t, then $(xs,xt)_{\pi}$ and $[xs,xt]_{\pi}$ will denote $\{x\tau:\tau\in(s,t)\}$ and $\{x\tau:\tau\in[s,t]\}$, respectively.

Let \mathscr{T} denote the torus and let (\mathbb{R}^2 , p) be the usual representation of its universal covering space; i.e., the covering transformations are of the form

$$T(x,y) = (x + m, y + n)$$

where m and n are arbitrary integers. This group of covering transformations will be denoted by \mathfrak{G} . When we are working with a continuous flow on \mathscr{T} , notation like xt, $\mathscr{O}(x)$, etc., for $x \in \mathbb{R}^2$ will always refer to the lifted flow.

One source of continuous flows on \mathcal{T} is a system of differential equations

(E)
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \Phi_1(x, y); \quad \frac{\mathrm{d}y}{\mathrm{d}t} = \Phi_2(x, y),$$

where Φ_1 and Φ_2 are continuously differentiable and $\Phi_i(x+n,y+m)=\Phi_i(x,y)$ for any pair of integers n and m. In this case the orbits of the lifted flow are the solutions of (E) in \mathbb{R}^2 and our theorems can be applied by examining these solutions. When $\Phi_1(x,y)\equiv 1$ we have the classical case considered by Poincaré, and Theorem 7 generalizes his result that a periodic orbit occurs on the torus if the rotation number is rational.

The idea that a curve does not deviate too much from a ray will have two meanings. The first, which is defined below, is geometrical and the second, which appears in Theorem 7, is analytical. Let $\beta \colon [a,\infty) \to \mathbb{R}^2$ be a simple curve. We say that β is of the *type of a ray* if $\lim_{t\to\infty} |\beta(t)| = \infty$, where $|\cdot|$ is the usual norm on \mathbb{R}^2 , and if there exists a pair of parallel lines L_1 and L_2 such that $\beta(t)$ lies

between L_1 and L_2 for all t. When in addition to these conditions the slope of L_1 is rational, we say β is of the *type of a rational ray*. Given a continuous flow on \mathscr{T} , we will say that $\mathscr{O}^+(w)$ is of the type of a ray if the curve $t \to \tilde{w}t$ for $t \ge 0$ is of the type of a ray. It is easy to check that if $\mathscr{O}^+(w)$ is of the type of a rational ray, then for every $x \in \mathbb{R}^2$, $\mathscr{O}(x)$ lies between two parallel lines.

THEOREM 1. Let π be a continuous flow on \mathscr{T} and let $w \in \mathscr{T}$. If $\mathscr{O}^+(w)$ is of the type of a rational ray and $\omega(w)$ is locally connected, then $\omega(w)$ contains a simple closed invariant curve which is not null-homotopic.

Proof. Since the ω -limit sets of a continuous flow on a compact Hausdorff space are compact and connected, we know that $\omega(w)$ is arcwise connected. Let $\tilde{\omega}(w)$ be an arc component of $p^{-1}(\omega(w))$, and note that $p(\tilde{\omega}(w)) = \omega(w)$.

Next, arguing by contradiction, we will show that p is not one-to-one on $\tilde{\omega}(w)$. By the Hahn-Mazurkiewicz theorem there exists $\alpha \colon [0,1] \to \omega(w)$ which is onto. Let $\tilde{\alpha}$ be a lift of α lying in $\tilde{\omega}(w)$, and observe that $\tilde{\alpha}$ must map [0,1] onto $\tilde{\omega}(w)$ if p is one-to-one on $\tilde{\omega}(w)$. Thus $\tilde{\omega}(w)$ is compact. Now it is easy to see that there exists $\epsilon > 0$ such that

$$\{x \in \mathbb{R}^2: d(x, \tilde{\omega}(w)) \leq \epsilon\} \cap p^{-1}(\omega(w)) = \tilde{\omega}(w).$$

Because $\lim_{t\to\infty} |\tilde{w}t| = \infty$ for every $\tilde{w} \in p^{-1}(w)$, there exist sequences

$$\{\tilde{w}_n\}_{n=1}^{\infty} \subset p^{-1}(w) \text{ and } \{t_n\}_{n=1}^{\infty} \subset \mathbb{R}$$

such that $d(\tilde{w}_n t_n, \tilde{\omega}(w)) = \varepsilon$, $t_n \to \infty$, and $w_n t_n \to \tilde{z}$ as $n \to \infty$. By our choice of ε , $p(\tilde{z}) \notin \omega(w)$; and because $wt_n \to p(\tilde{z})$ and $t_n \to \infty$ as $n \to \infty$, we must have $p(\tilde{z}) \in \omega(w)$. This contradiction establishes our claim that p is not one-to-one on $\omega(\tilde{w})$. We can push this a little further by noting that $T(\tilde{\omega}(w)) \cap \tilde{\omega}(w) \neq \emptyset$ implies $T(\tilde{\omega}(w)) = \tilde{\omega}(w)$ and hence $p^{-1}(z) \cap \tilde{\omega}(w)$ contains more than one point for all $z \in \omega(w)$.

Since $\omega(x)$ is a compact invariant set, it must contain a minimal set. By Theorem 3.3 in [3] this minimal set can not contain an almost periodic point which is not periodic, because $\mathcal{O}^+(w)$ is of the type of a rational ray. Therefore, $\omega(w)$ contains a fixed point or a periodic orbit. Using local cross sections, it is easy to check that a periodic orbit in $\omega(x)$ can not be null-homotopic, because $\lim_{t\to\infty} \tilde{w}t = \infty$. From now on we will assume that $\omega(w) \cap F \neq \emptyset$.

Let $a \in F \cap \omega(w)$, \tilde{a}_1 , $\tilde{a}_2 \in \tilde{\omega}(w)$, and let β be an arc in $\tilde{\omega}(w)$ joining \tilde{a}_1 and \tilde{a}_2 . We will show that the range of β is an invariant set; that is, if x is in the range of β , then so is $\mathcal{O}(x)$. We may as well assume x is not a fixed point. Let S be a local cross section of length ε at x. Consider $\tilde{\omega}(w) \cap S$ as a subset of S. If it has interior, then w must be positively recurrent, which is impossible by Theorem 3.3 in [3]. Hence there exists $\delta > 0$ such that $|t - t_0| < \delta$ implies $\beta(t) \in (x(-\varepsilon), x\varepsilon)_{\pi}$, where $\beta(t_0) = x$. Writing $\beta(t) = x\rho(t)$ with $|\rho(t)| < \varepsilon$ for $t \in (t_0 - \delta, t_0 + \delta)$ defines a continuous one-to-one function from $(t_0 - \delta, t_0 + \delta)$ into $(-\varepsilon, \varepsilon)$. Since $\rho(t_0) = 0$, the range of ρ must be an open interval containing 0, and we have established that $\{xt: xt \in \beta([0,1])\}$ is an open subset of $\mathcal{O}(x)$.

This set is clearly a closed subset of $\mathcal{O}(x)$, which implies $\mathcal{O}(x) \subset \beta([0,1])$ by the connectedness of $\mathcal{O}(x)$.

If $p \circ \beta$ is a simple curve on \mathcal{T} , then we are finished. If not, we must extract such a curve from it. To do this, let

A =
$$\{\sigma \in [0,1]: \text{there exists } \sigma' \in (\sigma,1]$$

and $T \in \mathfrak{G} \text{ such that } T(\beta(\sigma)) = \beta(\sigma')\}.$

It is straightforward to show that A is a nonempty closed subset of [0, 1] not containing 1. Let $\sigma_0 = \sup A \in A$ and let $\gamma = \beta \mid [\sigma_0, \sigma_0']$ where $T(\beta(\sigma_0)) = \beta(\sigma_0')$ for some $T \in \mathfrak{G}$ and $\sigma_0' \in (\sigma_0, 1]$. Clearly $p \circ \gamma$ is a simple closed curve on \mathscr{T} which is not null-homotopic. To prove that $p \circ \gamma$ is invariant it suffices to show that $\beta(\sigma_0)$ is a fixed point, and this is a consequence of the relations

$$\mathcal{O}(\beta(\sigma_0)) \subset \beta([0,1]), \mathcal{O}(\beta(\sigma_0')) \subset \beta([0,1]), \text{ and } T(\mathcal{O}(\beta(\sigma_0))) = \mathcal{O}(\beta(\sigma_0')),$$

which we already know.

THEOREM 2. Let π be a continuous flow on \mathscr{F} and let $w \in \mathscr{F}$. If $\mathscr{O}^+(w)$ is of the type of a rational ray and $\omega(w) \cap F$ is totally disconnected, then $\omega(w)$ contains a simple closed invariant curve which is not null-homotopic.

Proof. Suppose $\omega(w) \subset F$. Since $\omega(w)$ is connected and $\omega(w) \cap F$ is totally disconnected, $\omega(w) = \{z_0\}$ and $\{wt: t \geq 0\} \cup \{z_0\}$ is an arc in \mathscr{T} which has a bounded lift to \mathbb{R}^2 . This is impossible because we have assumed that $\lim_{t \to \infty} |\tilde{w}t| = \infty$; so there exists $z \in \omega(w) \setminus F$. Let S be a local cross section at z and consider some \tilde{w} . There exist parallel rational lines L_1 and L_2 such that $\mathscr{O}^+(\tilde{w})$ lies between L_1 and L_2 . We will say that two lifts \tilde{S}_1 and \tilde{S}_2 of S are equivalent if $T(\tilde{S}_1) = \tilde{S}_2$ implies $T(L_1) = L_1$, $T \in \mathfrak{G}$. Clearly the lifts of S lying between L_1 and L_2 belong to only a finite number of equivalence classes. Because $z \in \omega(w)$ and $\lim_{t \to \infty} |\tilde{w}t| = \infty$, we know that $\mathscr{O}^+(\tilde{w})$ must cross infinitely many lifts of S lying between L_1 and L_2 , and hence two equivalent ones. In particular, we can choose $0 < t_1 < t_2$ and equivalent lifts \tilde{S}_1 and \tilde{S}_2 of S such that $\tilde{w}t_i \in \tilde{S}_i$ and $\{\tilde{w}t: t_1 < t < t_2\}$ does not cross any lifts of S which are equivalent to \tilde{S}_1 . Let

$$\tilde{\gamma}_{u} = \bigcup_{n=-\infty}^{\infty} T^{n} \{ [\tilde{w} t_{1}, \tilde{w} t_{2}]_{\pi} \cup (T(\tilde{w} t_{1}), \tilde{w} t_{2})_{\tilde{S}_{2}} \},$$

where T is the covering transformation carrying \tilde{S}_1 onto \tilde{S}_2 . Then as in [3, Lemma 3.2], $\tilde{\gamma}_u$ divides the plane into two regions—one positively invariant and the other negatively. Moreover, $\tilde{\gamma}_u$ is "parallel" to L_1 . (This curve $\tilde{\gamma}_u$ is not quite what I previously called a control curve in [3] because we do not know whether or not its projection on the torus is simple. For the present argument the direction of $\tilde{\gamma}_u$ is the crucial thing.) Since $\mathcal{O}^+(\tilde{w})$ lies between L_1 and L_2 , it can intersect only a finite number of distinct translates of $\tilde{\gamma}_u$ by covering transformations, and it can intersect such a curve only once. Therefore, $\omega(w) \cap (wt_1, wt_2)_S = \emptyset$, and from this we readily have the following:

There exist real numbers $0 < s_1 < s_2$ such that $ws_1, ws_2 \in S$;

$$J = [ws_1, ws_2]_{\pi} \cup (ws_1, ws_2)_{S}$$

is a simple closed curve which is not null-homotopic; and ω (w) \cap (ws₁, ws₂)_S = \emptyset .

Using the technique in [1], we can construct a new flow with the new orbits contained in the old ones and with $F \cup J$ as the set of fixed points. For the moment it is necessary to let π and π' denote the old and new flows, respectively, and to use notation like $\omega(x,\pi)$, $\mathscr{O}^+(x,\pi')$, etc. Choose τ such that $\mathscr{O}^+(w\tau,\pi) \cap J = \emptyset$ and let $w' = w\tau$. Clearly $\omega(w,\pi) = \omega(w',\pi')$. If we cut \mathscr{T} along J we obtain a flow on a closed annulus which can easily be extended to the whole plane because the boundary consists of fixed points. In view of Theorem 1 it now suffices to prove the following theorem:

THEOREM 3. Let π be a continuous flow on an open subset W of \mathbb{R}^2 and let $w \in W$. If $\mathscr{O}^+(w)$ is bounded and $\omega(w) \cap F$ is totally disconnected, then $\omega(w)$ is locally connected.

Proof. If $x \in \omega(x)$, then from the Poincaré-Bendixson theorem for flows in the plane we know that x is periodic or fixed, and in either case the theorem is trivially true. Similarly, if $\omega(x) \subset F$, then $\omega(x)$ consists of a single fixed point and there is nothing to prove. We will now assume that $y \in \omega(x)$, $x \notin \omega(x)$, and $\omega(x) \neq \{y\}$. It suffices to show that $\omega(x)$ is connected im kleinen at $y \in \{z\}$ where $y \in \{z\}$ and let $y \in \{z\}$ where r is any positive real number less than half the diameter of $\omega(x)$. We will show that only a finite number of the components of $\omega(x) \cap D$ meet D' from which it follows that $\omega(x)$ is connected im kleinen at y because these components are compact.

Given $y' \in \omega(x) \cap D'$, we will construct a compact connected subset C of $\omega(x)$ which contains y', meets ∂D , and can be nicely approximated by arcs in $\mathcal{O}^+(x) \cap D$. There exists a sequence $\{t_n\}$ in \mathbb{R} such that $t_n \to \infty$ and $xt_n \to y'$. For each t_n , pick $\tau_n < t_n < \sigma_n$ such that $x\tau_n, x\sigma_n \in \partial D$ and |y-xt| < r for all $t \in (\tau_n, \sigma_n)$. We can assume that $(\tau_n, \sigma_n) \cap (\tau_m, \sigma_m) = \emptyset$ for $n \neq m$. By taking subsequences we can also assume that $[x\tau_n, x\sigma_n]_{\pi} \to C$ in the Hausdorff metric. It follows that C is a compact connected subset contained in $\omega(x) \cap D$ which meets both ∂D and D'. Suppose $y'' \in C$ and $[y''\alpha, y''\beta]_{\pi} \subset D^0 = \{z: |z-y| < r\}$, where $\alpha < 0 < \beta$. Using the continuity of π , it can readily be shown that

$$[y''\alpha, y''\beta]_{\pi} \subset C.$$

Now suppose infinitely many components of $\omega(x) \cap D$ meet D'. We can then use the preceding construction to obtain a sequence of disjoint compact connected subsets $\{C_n\}$ in $\omega(x) \in D$ which meet D' and ∂D and which have the above invariance property. By taking a subsequence we can assume that $C_n \to C'$ in the Hausdorff metric. Clearly C' is not a point. Since C' is also a compact connected subset of $\omega(x)$, C' $\not\subset F$. Let $y'' \in C' \setminus F$ and let S be a local cross section of length ε at y'' such that $S_0[-\varepsilon,\varepsilon] \cap \omega(x) = [y''(-\varepsilon),y''\varepsilon]_\pi \subset D^0$. For large n we must have $C_n \cap S_0(-\varepsilon,\varepsilon) \neq \emptyset$ and hence $[y''(-\varepsilon),y''\varepsilon]_\pi \subset C_n$, which contradicts the disjointness of the C_n 's and completes the proof.

For the next two results we will need the following notation: If a and b are distinct points in \mathbb{R}^2 , then $\mathcal{L}(a, b)$ and $\mathcal{L}(a, b)$ will denote the line and line segment, respectively, determined by a and b.

LEMMA 4. Let $\alpha: [0,\infty) \to \mathbb{R}^2$ be a simple curve such that $|\alpha(t)| \to \infty$ as $t \to \infty$. If there exists a constant D > 0 such that for any $[a,b] \subset \mathbb{R}$,

$$d(\alpha(t), \mathcal{L}(\alpha(a), \alpha(b)) < D,$$
 for all $t \in [a, b],$

then α is of the type of a ray.

Proof. Let $L_n = \mathcal{L}(\alpha(0), \alpha(n))$, let θ_n be the angle L_n makes with the positive x-axis. Choose a convergent subsequence $\{\theta_{n_k}\}$ with its limit denoted by θ . Let L be the line through $\alpha(0)$ with slope equal to $\tan \theta$, and suppose

$$d(\alpha(t_0), L) > 3D.$$

Let ϕ_k be the acute angle between L and L_{n_k} . Clearly, $\phi_k \to 0$ as $k \to \infty$. Let L^{\perp} be the line through $\alpha(t_0)$ perpendicular to L, and let $x_k = L^{\perp} \cap L_{n_k}$. Clearly,

$$x_k \to x = L \cap L^{\perp}$$
, as $k \to \infty$.

Choose k so that $n_k > |t_0|$, $|x_k - \alpha(t_0)| > 2D$, and $\cos \phi_k > 1/2$. Then

$$d(\alpha(t_0), L_{n_k}) = \cos \phi_k d(x_k, \alpha(t_0)) > D.$$

This is a contradiction because $|t_0| < n_k$ implies that $d(\alpha(t_0), L_{n_k}) < D$. Therefore, $\alpha(t)$ lies between the two lines parallel to L and at a distance of 3D from L.

THEOREM 5. Let π be a continuous flow on \mathscr{F} and let $w \in \mathscr{F}$. If $\omega(w) \not\subset F$ and $|\tilde{w}t| \to \infty$ as $t \to \infty$, then $\mathscr{O}^+(w)$ is of the type of a ray.

Proof. The conclusion certainly holds if w is periodic, and we will assume throughout the rest of the proof that w is not periodic. Let $z \in \omega$ (w) \ F and let S be a local cross section at z. Because $|\tilde{w}t| \to \infty$ as $t \to \infty$ we can find $0 < t_1 < t_2$ such that $\gamma = [wt_1, wt_2]_{\pi} \cup (wt_1, wt_2)_S$ is a simple closed curve which is not null-homotopic. Let $\{\tilde{\gamma}_n\}_{n=-\infty}^{\infty}$ be the universal lifts of γ ; that is, each $\tilde{\gamma}_n$ is arc component of $p^{-1}(\gamma)$ homeomorphic to $\mathbb R$ which divides $\mathbb R^2$ into two open connected sets. Moreover, $\mathscr{O}^+(x)$ can cross a given $\tilde{\gamma}_n$ at most once [3, Lemma 3.2].

We will now assume that $\mathcal{O}^+(\tilde{w})$ is not of the type of a ray. Then $\mathcal{O}^+(\operatorname{wt}_2)$ can not lie between any two $\tilde{\gamma}_n$'s, and we can find $t_4 > t_3 > t_2$ such that $\tilde{w}t_3$ and $\tilde{w}t_4$ lie on adjacent $\tilde{\gamma}_n$'s. Now $\{\tilde{\gamma}_n\}_{n=-\infty}^{\infty}$ and $\{T([\tilde{w}t_3, \tilde{w}t_4]_{\hat{\pi}}): T \in \mathfrak{G}\}$ divide the plane into bounded congruent regions which an orbit can leave only by crossing some $\tilde{\gamma}_n$. In particular, if r is the common diameter of these regions and |x-xt| > qr, then $(x,xt)_{\pi}$ crosses q different $\tilde{\gamma}_n$'s.

By assuming that $\mathscr{O}^+(w)$ is not of type of a ray, we know from Lemma 4 that we can find sequences $\{a_i\}_{i=1}^{\infty} \subset \mathscr{O}^+(\tilde{w})$ and $\{t_i\}_{i=1}^{\infty} \subset \mathbb{R}$ such that $t_i > 0$ and $\sup\{d(a_it,\mathscr{L}(a_i,a_it_i)): 0 \le t \le t_i\} > i$. Moreover, these sequences can be chosen so that $\mathscr{L}(a_i,a_it_i) \cap (a_i,a_it_i)_{\tilde{\pi}} = \emptyset$. It follows that

$$J_i = \mathcal{L}(a_i, a_i t_i) \cup (a_i, a_i t_i)_{\tilde{\pi}}$$

is a simple closed curve and contains no points z in its interior such that $p(z) = p(a_i)$ or $p(z) = p(a_i t_i)$ [3, Lemma 2.2].

It is entirely possible that $|a_i - a_i t_i| \to \infty$ as $i \to \infty$, but the following argument will show that this can be avoided. Fix i and let s_i be the first time in $[0, t_i]$ that $d(a_i t, \mathcal{L}(a_i, a_i t_i))$ achieves its maximum. Let L' be the line parallel to L on the same side as $a_i s_i$ with d(L, L') = 2, let L_1 be perpendicular to L at a_i , let H be the half-plane determined by L_1 containing $a_i t_i$, and let

$$B_i = \{a, t: t \in [0, s_i], d(a, t, L) \le 2, and a, t \in H\}.$$

There exists a $b_i \in B_i$ such that $d(b_i, L_1) = \max_{z \in B_i} d(z, L_1)$ and there exist lines L_2 and L_3 in H parallel to L_1 such that $d(L_1, L_2) = d(b_i, L_1)$ and

$$d(L_1, L_3) = d(b_i, L_1) + 2.$$

Now L, L', L₂ and L₃ form a square which contains a fundamental region and thus cannot be contained inside J_i . Therefore, there exists $\tau_i \in [s_i, t_i]$ such that $a_i \tau_i = b_i \sigma_i$ lies in this square region. Set $A_i = \mathcal{L}(b_i, b_i \sigma_i) \cup (b_i, b_i \sigma_i)_{\tilde{\pi}}$ and note that $|b_i - b_i \sigma_i| \le 2$ and the diameter of A_i goes to infinity as $i \to \infty$. Let b_i' be the unique point in $[0,1) \times [0,1)$ such that $p(b_i) = p(b_i')$. By picking a subsequence we can assume that $b_i' \to c$ and $b_i' \sigma_i \to c'$.

We can now assemble the contradiction that will complete the proof. We can find $\tilde{\gamma}_{n'}$ and $\tilde{\gamma}_{n''}$ such that c and c' lie between them. Let q be the number of $\tilde{\gamma}_{n'}$ s which lie between $\tilde{\gamma}_{n'}$ and $\tilde{\gamma}_{n''}$, and choose I such that $|b_i - a_i s_i| > (q+2)r$ when i > I. Therefore, $(b_i, a_i s_i)_{\tilde{\pi}}$ must cross at least q+2 different $\tilde{\gamma}_n$'s and consequently leave the region between $\tilde{\gamma}_{n'}$ and $\tilde{\gamma}_{n''}$, never to return again. Since $a_i s_i \in (b_i, b_i \sigma_i)_{\tilde{\pi}}$, we get the contradiction that $b_i \sigma_i$ does not converge to c'.

COROLLARY 6. Let π be a continuous flow on \mathscr{T} and let $w \in \mathscr{T}$. If w is positively recurrent and not periodic, then $\mathscr{O}^+(w)$ is of the type of an irrational ray.

Proof. Use Theorem 5 and [3, Theorem 3.3 and Corollary 3.5].

THEOREM 7. Let π be a continuous flow on \mathcal{T} , $w \in \mathcal{T}$, $\tilde{w} \in p^{-1}(w)$, and

$$\tilde{\mathbf{w}}\mathbf{t} = (\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t})).$$

Assume that $|\tilde{\mathbf{w}}\mathbf{t}| = \{(\mathbf{x}(\mathbf{t}))^2 + (\mathbf{y}(\mathbf{t}))^2\}^{1/2} \to \infty \text{ as } \mathbf{t} \to \infty.$

- (a) The $\lim_{t\to\infty} \frac{y(t)}{x(t)}$ exists as an extended real number.
- (b) If $\lim_{t\to\infty} \frac{y(t)}{x(t)}$ is rational or $\pm \infty$ and either $\omega(w)$ is locally connected or $\omega(w) \cap F$

is totally disconnected, then there exists a simple closed invariant curve which is not null-homotopic.

Proof. (a). This follows from the existence of $\lim_{t\to\infty}\frac{\tilde{w}t}{|\tilde{w}t|}$ [3, Theorem 2.1].

(b). Use Theorem 5 and either Theorem 1 or 2.

REFERENCES

- 1. A. Beck, On invariant sets. Ann. of Math. (2) 67(1958), 99-103.
- 2. J. G. Hocking and G. S. Young, *Topology*. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961.
- 3. N. G. Markley, The Poincaré-Bendixson theorem for the Klein bottle. Trans. Amer. Math. Soc. 135(1969), 159-165.
- 4. W. O'Toole, Continuous flows on the plane and on the torus. Master's Thesis, University of Maryland, 1975.
- 5. H. Whitney, Regular families of curves. Ann. of Math. (2) 34(1933), 244-270.

Department of Mathematics University of Maryland College Park, Maryland 20742