INVARIANT SIMPLE CLOSED CURVES ON THE TORUS
Nelson G. Markley

The behavior of the orbits of a continuous flow on the torus is potentially
considerably more complicated than that of a continuous flow on a portion of
the plane. Specifirally, nonperiodic recursion can occur on the torus. However,
if there exists a simple closed invariant but not necessarily periodic curve which
is not null-homotopic, then this difficulty does not arise, because by cutting along
this curve one obtains a flow on a closed annulus in the plane. Our goal is to
obtain sufficient conditions for the existence of such a curve.

The main theorems (Theorems 1, 2, and 7) state that such a curve exists if
there exists a positive orbit on the torus satisfying the following conditions: (a)
its lift to the plane does not deviate too much from a ray with rational slope,
and (b) its w-limit set is locally connected or the fixed points in its w-limit set
are totally disconnected.

An earlier version of Theorem 2 with (b) replaced by the hypothesis that there
are only finitely many fixed points in the w-limit set appears in William O’Toole’s
master’s thesis [4], which the author directed. I wish to thank him for his assistance
in organizing and clarifying some of the arguments which are needed for both
results.

Let X be a metric space and let R denote the real numbers. A continuous
flow on X is a continuous mapping 7: X X R — X such that w(x,0) = x and

w(w(x,s),t) =n(x,s+1t), forallx € Xands, t, € R.
We will suppress the w and simply write xt for mw(x,t). The set of fixed points

of a continuous flow is defined by F = {x: xt = x for all t € R}, and the orbit
and positive semi-orbit of a point x in X are defined by

o) ={xt:t€ R} and & (x) = {xt:5t= 0}
respectively. The w-limit set which is defined by

w(x) = n (?‘T—(E= n {xs:s =t}

t=0 t=0

will play an important role in the sequel.

Let (X,p) be a covering space of X. Given a continuous flow = on X, there
exists a unique continuous flow & on X such that
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p(xt) =p(x)t, forallx € Xandt € R.

Moreover, x is a fixed point of 7 if and only if p(x) is a fixed point of w, and
for any covering transformation T we have T(xt) = T(x)t forallx € X andt € R.
Given a point in X, say w, we will only use the notation W, W,, and W, to denote
points in p~!(w).

Suppose w is a continuous flow on a two-manifold X. A local cross section
of m at x € X is a subset S of X containing x which is homeomorphic to [0,1] and
for which there exists an € > 0, called the length of the local cross section, such
that the map (x,t) » xt is a homeomorphism of S X [—¢, €] onto the closure of
an open neighborhood of x. In fact we can and will assume that

So(—e,e) = {xt: x € S;and t € (—¢,¢)}

is open, where S, denotes S with its end points removed. If x& F, then there
exists a local cross section of w at x [5].

For simplicity we will use the following notation for segments of curves and
orbits. If S is a simple curve in some space X with a and b lying on S, then
(a,b)s and [a,b] g will denote the open and closed segments of S between a and
b. If 7 is a continuous flow on X, x € X, and s,t € R with s <t, then (xs, xt)_
and [xs,xt]_ will denote {x7: 7 € (s,t)} and {x7: 7 € [s,t]}, respectively.

Let .7 denote the torus and let (R?, p) be the usual representation of its universal
covering space; i.e., the covering transformations are of the form

T(x,y) = (x + m,y + n)

where m and n are arbitrary integers. This group of covering transformations
will be denoted by &. When we are working with a continuous flow on .7, notation
like xt, @(x), etc., for x € R? will always refer to the lifted flow.

One source of continuous flows on .7 is a system of differential equations

(B) % ey Y la,my)
dt - 1X,y, dt — 2Xsy)

where @, and ®, are continuously differentiable and ®;(x + n, y + m) = ®,(x,y)
for any pair of integers n and m. In this case the orbits of the lifted flow are
the solutions of (E) in R? and our theorems can be applied by examining these
solutions. When &, (x,y) = 1 we have the classical case considered by Poincare,
and Theorem 7 generalizes his result that a periodic orbit occurs on the torus
if the rotation number is rational.

The idea that a curve does not deviate too much from a ray will have two
meanings. The first, which is defined below, is geometrical and the second, which
appears in Theorem 7, is analytical. Let B: [a,0)) - R® be a simple curve. We
say that B is of the type of a ray if %im | B(t)| = o, where | | is the usual norm

on R? and if there exists a pair of parallel lines L, and L, such that B(t) lies
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_between L, and L, for all t. When in addition to these conditions the slope of
L, is rational, we say B is of the ¢ype of a rational ray. Given a continuous flow
on .7, we will say that & (w) is of the type of a ray if the curve t -» wt fort = 0
is of the type of a ray. It is easy to check that if & (w) is of the type of a
rational ray, then for every x € R?, Z(x) lies between two parallel lines.

THEOREM 1. Let w be a continuous flow on J and let w € 7 If T (w)
is of the type of a rational ray and w(w) is locally connected, then w(w) contains
a simple closed invariant curve which is not null-homotopic.

Proof. Since the w-limit sets of a continuous flow on a compact Hausdorff
space are compact and connected, we know that w(w) is arcwise connected. Let
&(w) be an arc component of p~* (w(w)), and note that p((w)) = w(w).

Next, arguing by contradiction, we will show that p is not one-to-one on @(w).
By the Hahn-Mazurkiewicz theorem there exists a: [0,1] — w(w) which is onto.
Let & be a lift of a lying in @(w), and observe that & must map [0,1] onto & (w)
if p is one-to-one on &®(w). Thus ®(w) is compact. Now it is easy to see that
there exists € > 0 such that

{(x € R*: d(x,06(w)) =&} N p " (wWw) = b(W).

Because lim | Wt | = o« for every W € p~' (w), there exist sequences

t— o0
{(w}>_,Cp'(w) and ({t,}°_,C R

such that d(w,t,o(w)) =g, t,—> o, and w,t,— %z as n— . By our choice of
e, p(z) € w(w); and because wt,— p(z) and t,— = as n— o, we must have
p(Z) € o(w). This contradiction establishes our claim that p is not one-to-one
on w(w). We can push this a little further by noting that T (®(w)) N o (w) # @
implies T(&®(w)) = & (w) and hence p~'(z) N &(w) contains more than one point
" for all z € w(w).

Since o (x) is a compact invariant set, it must contain a minimal set. By Theorem
3.3 in [3] this minimal set can not contain an almost periodic point which is
not periodic, because & " (w) is of the type of a rational ray. Therefore, o(w)
contains a fixed point or a periodic orbit. Using local cross sections, it is easy
to check that a periodic orbit in w (x) can not be null-homotopic, becauselim Wt = co.

t— oo

From now on we will assume that o(w) N F # ¢.

Leta € F N w(w), 3, 8, € ®(w), and let B be an arc in ®(w) joining a,
and a,. We will show that the range of 8 is an invariant set; that is, if x is
in the range of B, then so is @(x). We may as well assume x is not a fixed
point. Let S be a local cross section of length ¢ at x. Consider ®(w) N S as
a subset of S. If it has interior, then w must be positively recurrent, which is
impossible by Theorem 3.3 in [3]. Hence there exists 8 > 0 such that |t —t,]| <&
implies B (t) € (x(—¢),x¢€) ., where B(t,) = x. Writing B (t) = xp(t) with |p(t)| < & for
t € (t,— 9, t, + 3) defines a continuous one-to-one function from (t, — 8, t, + d)
into (—¢, €). Since p(t,) = 0, the range of p must be an open interval containing
0, and we have established that {xt: xt € B([0,1])} is an open subset of (x).
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This set is clearly a closed subset of & (x), which implies Z(x) C B([0,1]) by the
connectedness of 7'(x).

If poB is a simple curve on J; then we are finished. If not, we must extract
such a curve from it. To do this, let

A = {o € [0,1]: there existso’ € (0,1]
and T € & such that T(B (o)) =B(a’)}.

It is straightforward to show that A is a nonempty closed subset of [0, 1] not
containing 1. Let o, =sup A € A and let v = B| [0, 05] where T(B (o)) =B (o3)
for some T € & and o € (5,,1]. Clearly powy is a simple closed curve on .7 which
is not null-homotopic. To prove that poy is invariant it suffices to show that
B(o,) is a fixed point, and this is a consequence of the relations

I(B(a,) C B([0,1]), T(B(oy)) C B([0,1]), and T(T (B (a,))) = Z (B (a5)),

which we already know.

THEOREM 2. Let w be a continuous flow on 7 and let w € I If T (w)
is of the type of a rational ray and o(w) N F is totally disconnected, then o(w)
contains a simple closed invariant curve which is not null-homotopic.

Proof. Suppose w(w) C F. Since w(w) is connected and w(w) N F is totally
disconnected, o (w) = {z,} and {wt: t = 0} U {z,} is an arc in .7 which has a bounded
lift to R® This is impossible because we have assumed that lim |Wt] = oo; so

t—ox

there exists z € o(w)\\F. Let S be a local cross section at z and consider some
W. There exist parallel rational lines L, and L, such that ¢ (w) lies between
L, and L,. We will say that two lifts S, and S, of S are equivalent if T(S,) =8,
implies T(L,) = L,, T € &. Clearly the lifts of S lying between L, and L, belong
to only a finite number of equivalence classes. Because z € w (w) and }im | Wt| = oo,

we know that &7 (W) must cross infinitely many lifts of S lying between L,
and L,, and hence two equivalent ones. In particular, we can choose 0 <t, <t,
and equivalent lifts S, and S, of S such that wt, € S, and {Wt: t, <t <t,}does
not cross any lifts of S which are equivalent to S,. Let

= U T {[Wt,Wt,], U (T(Wt,),wty)s,},

n=-—oo

where T is the covering transformation carrying S, onto S,. Then as in [3, Lemma
3.2], ¥, divides the plane into two regions—one positively invariant and the other
negatively. Moreover, ¥, is “paralle]” to L,. (This curve v, is not quite what
I previously called a control curve in |3] because we do not know whether or
not its projection on the torus is simple. For the present argument the direction
of 4, is the crucial thing.) Since ¢ (W) lies between L, and L,, it can intersect
only a finite number of distinct translates of ¥, by covering transformations,
and it can intersect such a curve only once. Therefore, o (w) N (wt,,wt,)g= 0,
and from this we readily have the following:
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There exist real numbers 0 < s, < s, such that ws,, ws, € S;
J = [ws;,ws,] . U (WS, Ws,)g

is a simple closed curve which is not null-homotopic; and w (w) N (ws,, ws,)g = @.

Using the technique in [1], we can construct a new flow with the new orbits
contained in the old ones and with F U J as the set of fixed points. For the moment
it is necessary to let w and w’ denote the old and new flows, respectively, and
to use notation like w{x,m), & (x,7’), etc. Choose 7 such that 7" (wr,m) N J = @
and let w’ = wr. Clearly o(w,n) = o(w’,w’). If we cut S along J we obtain a
flow on a closed annulus which can easily be extended to the whole plane because
the boundary consists of fixed points. In view of Theorem 1 it now suffices to
prove the following theorem:

THEOREM 3. Let w be a continuous flow on an open subset W of R> and
let we W. If 0" (w) is bounded and w(w) N F is totally disconnected, then o(w)
is locally connected.

Proof. If x € w(x), then from the Poincaré-Bendixson theorem for flows in-
the plane we know that x is periodic or fixed, and in either case the theorem
is trivially true. Similarly, if o (x) C F, then w(x) consists of a single fixed point
and there is nothing to prove. We will now assume that y € o (x), x € w(x), and
o(x) # {y}. It suffices to show that w(x) is connected im kleinen at y [2,
Theorem 3-11, page 114]. Let D = {z: [z —y|=r} and let D' = {z: |z — y| =1r/2}
where r is any positive real number less than half the diameter of w(x). We will
show that only a finite number of the components of w(x) N D meet D’ from
which it follows that w(x) is connected im kleinen at y because these components
are compact.

Giveny’ € w(x) N D’, we will construct a compact connected subset C of w(x)
which contains y’, meets 8D, and can be nicely approximated by arcs in
7% (x) N D. There exists a sequence {t,} in R such that t ,— o and xt, — y’.
For each t, pick v, <t, <o, such that x7,, x0, € D and |y — xt] <r for all
t € (v,,0,). We can assume that (r,,0,) N (1,,0,) = @ forn # m. By taking
subsequences we can also assume that [x7,xc,],.— C in the Hausdorff metric.
It follows that C is a compact connected subset contained in w(x) N D which
meets both 4D and D’. Suppose y” € C and [y"a,y"B]. C D°={z: |z — y| <71},
where o < 0 < B. Using the continuity of m, it can readily be shown that

[y”a’ y”B] T C C'

Now suppose infinitely many components of w(x) N D meet D’. We can then
use the preceding construction to obtain a sequence of disjoint compact connected
subsets {C_} in w(x) € D which meet D’ and D and which have the above invariance
property. By taking a subsequence we can assume that C, — C’ in the Hausdorff
metric. Clearly C’ is not a point. Since C’ is also a compact connected subset
of w(x), C' ¢ F. Let y" € C'"\\F and let S be a local cross section of length ¢
at y” such that S, [—e,e] N w(x) = [y’ (—¢),y"€] . C D°. For large n we must have
C.N Sy(—e€) # @ and hence [y’(—e),y"e].C C, which contradicts the dis-
jointness of the C_’s and completes the proof.
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For the next two results we will need the following notation: If a and b are
distinct points in R?, then .#(a, b) and .% (a, b) will denote the line and line segment,
respectively, determined by a and b.

LEMMA 4. Let o: [0,0) — R? be a simple curve such that |a(t)| > wast N o0,
If there exists a constant D > 0 such that for any [a,b] C R,

d(a(t), - L(a(a), a(b)) < D, forallt € [a,b],

then o is of the type of a ray.

Proof. Let L, =.Z(a(0),a(n)), let 6, be the angle L, makes with the positive
x-axis. Choose a convergent subsequence {6, } with its limit denoted by 6. Let
L be the line through «(0) with slope equal to tan 6, and suppose

d(a(t,),L) > 8D.

Let ¢, be the acute angle between L and L,,,. Clearly, ¢, — 0 ask— o. Let L*
be the line through a(t,) perpendicular to L, and letx, = L* N L, . Clearly,

x,—»x=LNLY ask— o,
Choose k so that n, > |t,], | x, — a(t,) | > 2D, and cos ¢,, > 1/2. Then
d(a(ty), L, ) = cos b, d(x,, a(t,)) > D.

This is a contradiction because | t,| < n, implies that d(a(t,), L, ) <D. Therefore,
o (t) lies between the two lines parallel to L and at a distance of 3D from L.

THEOREM 5. Let w be a continuous flow on Jand let w € 7 If o(w)Z F
and |Wt| — © as t — », then & *(w) is of the type of a ray.

Proof. The conclusion certainly holds if w is periodic, and we will assume
throughout the rest of the proof that w is not periodic. Let z € w (W)\\F and
let S be a local cross section at z. Because |Wt|—>  as t— o we can find
0 <t,<t,suchthat y= [wt, wt,],. U (wt,, wt,)sis a simple closed curve which
is not null-homotopic. Let {¥,}._._. be the universal lifts of v; that is, each 5,
is arc component of p ' (y) homeomorphic to R which divides R? into two open

connected sets. Moreover, ¢ (x) can cross a given ¥, at most once [3, Lemma
3.2].

We will now assume that &7 (w) is not of the type of a ray. Then & (wt,)
can not lie between any two ¥,.’s, and we can find t, > t; > t, such that Wwt,
and wt, lie on adjacent ¥ ’s. Now {y,}.__. and {T([Wt,;, wt,].): T € &} divide
the plane into bounded congruent regions which an orbit can leave only by crossing
some v ,,. In particular, if r is the common diameter of these regionsand |x — xt| > qr,
then (x, xt) _ crosses q different ¥, ’s.

By assuming that & (w) is not of type of a ray, we know from Lemma 4
that we can find sequences {a;};_, C &7 (w)and {t;}]_, C Rsuch that t;>0
and sup {d(a;t,-£(a;, a; t;)): 0= t =< t,;} > i. Moreover, these sequences can be cho-

sen so that .#(a;, a;t;) N (a;, a; t;); = #. It follows that
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J, =% (a;a;t;)U (a; a; t;);

is a simple closed curve and contains no points z in its interior such that
p(z) = p(a;) or p(z) = p(a; t;) [3, Lemma 2.2].

It is entirely possible that [a; — a; t;| — % as i — o, but the following argument
will show that this can be avoided. Fix i and let s; be the first time in [0, t;]
that d(a; t,.#(a,, a; t;)) achieves its maximum. Let L’ be the line parallel to L
on the same side as a; s; with d(L, L") = 2, let L, be perpendicular to L at a;,
let H be the half-plane determmed by L, containing a; t;, and let

B, ={a;t:t€ [0,s;],d(a;t,L)=< 2,and a;t € H}.

There exists a b; € B, such that d(b;, L,) = max d(z L;) and there exist lines
L, and L, in H parallel to L, such that d(L,, L ) =d(b,;, L) and

d(L,,L,) =d(b,L,) + 2.

Now L,L’,L, and L, form a square which contains a fundamental region and
thus cannot be contamed inside J;. Therefore, there exists 7; € [s;,t;] such that

= b, o; lies in this square region. Set A;=_.%4(b;,,b;0;) U (b;,b;0;); and
note that |b; — b,0;] = 2 and the diameter of Ai goes to infinity as i— c. Let
b; be the unique point in [0,1) X [0,1) such that p(b;) = p(b{). By picking a
subsequence we can assume that b - cand b]o;— ¢’.

We can now assemble the contradiction that will complete the proof. We can
find ¥, and ¥, such that ¢ and ¢’ lie between them. Let q be the number of
Y. s which lie between ¥, and ¥ ,-, and choose I such that |b; —a;s;| > (q + 2)r
when i > I. Therefore, (b;, a;s;); must cross at least q + 2 different ¥, ’s and
consequently leave the region between ¥, and v,., never to return again. Since
a;s; € (b;,b;0;)., we get the contradiction that b;o; does not converge to c’.

COROLLARY 6. Let w be a continuous flow on J and let w € 7. If w is
positively recurrent and not periodic, then & (w) is of the type of an irrational
ray.

Proof. Use Theorem 5 and [3, Theorem 3.3 and Corollary 3.5].
THEOREM 7. Let 7 be a continuous flow on 7, w € I, W € p ' (w), and

wt = (x(t), y(t)).

Assume that |Wt| = {(x(t))® + (y(t))*}V? > wast— oo,

L.y
(a) The limit —E exists as an extended real number.
t—m X

oy@®) '
(b) If lim is rational or + w and either w(w) is locally connected or o(w) N F

t—o x(t)

is totally disconnected, then there exists a simple closed invariant curve which
is not null-homotopic.
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Proof. (a). This follows from the existence of lim — [3, Theorem 2.1].

t —o thl

(b). Use Theorem 5 and either Theorem 1 or 2.
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