ON THE BREAKDOWN PHENOMENA OF
SOLUTIONS OF QUASILINEAR WAVE EQUATIONS

Peter H. Chang

0. INTRODUCTION

We consider the quasilinear wave equation y - Q2(y,)yyx = 0 subject to the
initial and boundary conditions: y.(x, 0) = g(x), y(x, 0) = {(x), 0 <x < L;
y(0, t) = y(L, t) = 0, t > 0. We can transform this system to the initial-value prob-
lem of a hyperbolic conservation law if f(x) and g(x) satisfy some compatibility
conditions.

We consider two cases:
Case 1. g(x) = 0 and f(x) satisfies some convexity conditions;
Case 2. f(x) = 0 and g(x) satisfies some convexity conditions.

We prove that a necessary condition for the existence of a C2 global solution is
that the solution be periodic in t in some sense, which is the classical one for the
linear problem. We present a necessary and sufficient set of conditions for the solu-
tion to break down in the sense that some second-order derivatives of the solution
become unbounded at a finite time. By this set we mean that if the solution breaks
down, then one condition in this set holds. Conversely, if one condition in this set
holds, then the solution eventually breaks down. We derive some conditions on Q',
which are weaker than those considered in [5], [6], and [4], which are sufficient for
the solution to break down.

F. John [2] has obtained the breakdown result for the general, genuinely non-
linear conservation laws with n-characteristics and with initial functions which are
sufficiently small. For our special conservation law, the genuine nonlinearity con-
dition is Q' # 0. We derive the breakdown results under some conditions on Q'
weaker than Q' # 0.

1. DEFINITIONS AND NOTATION

We define u(x, t) = yx(x, t) and v(x, t) = y¢(x, t). The problem is equivalent to
the system

u - vy = 0,
(1)
ve - Q¥(wuy, = 0;
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u(x, 0) = g(x), vix, 0 =x), 0<x<L,
(2)

v(0,t) = v(L, t) = 0, t>0.
We assume the following:

(3)
(4)

Q € C%((~, »)) and Q(£) > 0 for & € (-, ©),

f, g € C2([0, L]), £#(0) = £(L) = 1"(0) = £(L) = g'(0) = g'(L) = 0.

We extend f and g to be an odd periodic function and an even periodic function,
respectively, with respect to x = 0, with periods 2L. Under (4), f, g € C2((-o, «)).

Suppose U =I: 3:' is a solution of (1), (2). By defining u(x, t) = u(-x, t),

v(x, t) = -v(-x, t) for -L <x <0, and U(x + 2kL, t) = U(x, t) for -L < x < L, where
k is any integer, the extended U is a solution of (1) with the initial conditions

u(x, 0) = g(x), v(x, 0) = f(x) (-0 <x <),

3
We define r = v+ M(u), s = v - M(u), where M(&) = S Q(n)dn. Then r and s
0
are Riemann invariants of (1). Let q(n) = Q(M-1(5/2)). The following three sys-
tems were derived in [5].

Under the transformation R = l: : ], (1) is transformed to

ri(x, t) - qlr(x, t) - s(x, t)ry(x, t) = 0,

(5)
si(x, t) +q(r(x, t) - s(x, t))s(x, t) = 0.

Under the hodograph transformation, (5) is transformed to

d 0
(6) Z£X = 0:] , Where £= and X =
L 0 0
35 dr-s)oc t(r, s)

Eliminating x in (6) gives

(7) t.s = plr-s)t,-ty),

where p(§) = Q'(M~1(£/2))/4q%(¢) .

By (6), the Jacobian det VR X = 2qt, g .

LEMMA 1. Suppose that X(R) is a solution of (6) in an open vegion W with the
property that any two points in W can be connected by one of the following:

(1) a horizontal segment in W,

(ii) a vertical segment in W,

(iii) one or two line segments in W of positive slopes,
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(iv) ome o two line segments in W of negative slopes.

If tyr - ts# 0 in W, then X(R) is a homeomorphism on W and the image D = X(W)
is an open vegion.

The following lemmas are Lemmas 1 and 2 in [5].

LEMMA 2. Suppose that X(R) is a solution of (6). If W is an open region con-
tained in the domain of the function X(R) such that X(R) is one-to-one on W with
nonvanishing Jacobian det VR X = 2qt.tg, then

M-! ( r(x, t) é s(x, t))

(8) U(X) =
r(x, t) + s(x, t)
2

is a solution of (1) on D = X(W).

LEMMA 3. If X satisfies the assumptions of Lemma 2 and is continuous on
W, and if t. > 0 o7 ts— 0 as R — Rg € oW, then |u(X(R))| — « or

[v(X(®R))| =~ as R—Ryg.
Definition 1. If there is a point (xg, tg) such that a smooth solution U(x, t) of
(1), (2) exists in D= {(x, t): 0 <x <L; 0<t <tg}, and if one of the derivatives

Uy, Vx, Ut, V¢ becomes unbounded as (x, t) in D tends to (xg, tg), then we say that
the solution U(x, t} breaks down at (xgy, tg).

2. OUTLINE OF RESULTS OF MacCAMY AND MIZEL

R. C. MacCamy and V. J. Mizel [5] considered (1), (2) under the further as-
sumptions:

(9) Q'(¢) >0 for £ <0 and Q'(¢) <0 for £ >0,
(10) g(x) = 0, f(x) is concave over [0, L].

Let a = maxg < x <1, f(x) =f(b) (0 <b <L). We denote the portion of f(x) over
[-b, b] by f;(x) and that of f(x) over [b, 2L - b] by f,(x). We define
Fi(r) = fi'l(r)/Zq(O) (-a<r<a; i=1,2). Let a; = M(»), a, = -M(-»). We assume
that a <min(a;, ap).

The following theorem is the combination of Lemmas 4 and 5 and Theorem {
of [5]:

THEOREM 1. (i) For i =1, 2, the problems (see Figure 1)

0 — 0 0 - .
t).s = p(r - s)(tir - t7) in

B' BB;,

1]
L
i
o
AN
L]
A
o

(11) td (r, r) = ) (r, r) = Fi(r), tdx, )

together with (6) and the initial conditions x?(r, r) = 2q(0) F;(r), -a<r <La, pro-
0
vide a function X? =|: f& :| which is a homeomovrphism on Q;. Moreover, t(l)r >0

i
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t

L X (_a.s a)
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(a,a)

— =
o]
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E' D? u D(Z) g B’ B,
-2L -b 0 b L 2L-b 2L (-a, -2) (a, -2)
Figure 1.

and t7, <0 in Q; t3,. <Oand t3_>0in Q,.
(ii) The problem

zx! =0 in Q=9 UQ,,

(12) X! (a, s) = X(I)(a, s), XMr,a) = Xg(r, a), -a<r<a, -a<s<a,

1
provides a function X! = l: 1};{1 :l which is a homeomovphism on a neighborvhood Z of

r=aand s=ain Q. t. <0 and tl <0 in Z.
(iil) The function U defined by

Ux?) for xeD? (i=1,2),
U(X) =
UX!) for X e D!

as in (8) is a solution in D = D} U D! U DS of the system (1) with initial conditions
u(x, 0) =0, v(x, 0) =1£(x) for -b <x < 2L - b, where DY = XP(;) and D! = xX1(2).

(iv) The function U(X) satisfies u(-x, t) = u(x, t) and v(-x, t) = -v(x, t) for
points (x, t) € D with the property that (-x, t) € D. U(X) also satisfies

u(2L - x, t) = ulx, t) and v(2L - x, t) = -v(x, t)

Jor (x,t) € D such that (2L - x, t) € D. U(X) is a local solution of (1), (2).

Constructing X!(r, s) as in Theorem 1(ii), we can solve a series of character-
istic initial-value problems as described in section 3 of [5] and construct the func-
tions Xf‘n, anﬂ , and X%2tl gyer £. The following recursion lemma is essen-

tially Lemma 6 of [5].

LEMMA 4. Let X! (i=1, 2, 3, 4) be the known solution of (6) in a square W
(see Figure 2) with initial conditions along charactevistic sides [1, 2], [1, 4], [3, 2],
and [3, 4] of W, vespectively, such that X% = X! along side 4, X3 = X! along side
3, X* = X2 glong side 3, and X* = X3 along side 4. Let the images Di = Xi(W) de
as shown in Figuve 2. Then
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Figure 2.
x4 = x2+x3-x! and t¥=t2+t3-t! inW.

Now f(x) is odd with respect to x =0 and to x = L. We can show by the unique-
ness theorems for (7) that for n> 0,

t‘%n(r’ S) = ti?‘n(-sj -r) (i = 1, 2)’
(13)
ti2n+l(r, g) = t2n+l(_s, -r) (i= 1, 2).
Let ¥(r, s) =tl(r, s) +ti(-s, -r) - t?(r, s) - tg(r, s). By (13), ¥(r, s) = ¥(-s, -r).
Applying Lemma 4 and (13), we obtain Lemma 8 of [5]:
LEMMA 5. For k> 0,

t4k+ 1 (r,

s) = 2k¥(r, s) +tl(r, s),

téllk+2(r, s)

Il

(2k + 1) ¥(r, s) +tg(r, s),
t55*2(x, 5) = (2k + 1) ¥(r, s) +t3(r, 8),
t4t3(p) 5) = (2k + 1) ¥(r, s) +ti(-s, -r),
t3kt4(r, 5) = (2 +2)¥(r, s) +t(r, ),
t3<*4(r, 5) = (2 +2)¥(r, s) +tI(r, 5).

Remavk 1. Lemma 4 was derived without assuming (9) and (10). Lemma 5 was
derived without assuming (9).

Remark 2. Without assuming (9), we can prove a local existence theorem simi-
lar to Theorem 1. Indeed, we note that t?r(r, r) - t?s(r, r) # 0 and

ti(a, a) " t;(a, a)# 0.

Then there exist neighborhoods N; of r =s in €; and N of (a, a) in  which satisfy
the assumptions on W of Lemma 1 for the functions t? and t!, respectively. By
Lemmas 1 and 2, and by the method used in showing Theorem 1(iv), we can show that
U(X) constructed as in Theorem 1(iii) is a local solution of (1), (2).
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Remark 3. By the methods introduced in [5] and in Remark 2, we can prove a
more general local existence theorem under the assumptions (3) on Q and (4) and
the following on f and g: f'(x) + Q(g(x)) g'(x) and f'(x) - Q(g(x)) g'(x) vanish on only
two finite sets contained in [0, L] respectively;

max(M;, M) < min(a;, ap), where M; = max{|f(x) + M(g(x))|: 0 <x <L}
and M, = max{ |f(x) - M(g(x))|: 0 <x < L}.
The essential arguments are that the initial curve of (6) is the union of a finite num-
ber of strictly increasing or decreasing curves. Suppose s = s(r) describes one of
these curves. By setting x(r, s(r)) = (f + M(g))~! (r) = F(r) and using (6), we can set
the initial conditions
t(r, s(r)) = -s'(r)t (r, s(r)) = F'(r)/2q(r - s(r)) and t(r, s(r)) =0

for (7). Applying Lemmas 1 and 2, we can construct a local solution U of (1), (2)
represented as in (8).

3. FINITENESS OF ¥, AND OF ¥

We can write (7) as

(14) (2Vq(r - s) t(r, s)) g = q*(r - s) ty(r, 8),
or
(15) (2Vq(r - 8) tylr, 8) . = -q*(r - s) t(r, ),

where q*(£) = -Q'(M-1(£/2))/2q3/2(¢).

In sections 3 and 4, we assume (3), (4), and (10). As we observed in Remark 2,
we can construct a local solution U of (1), (2) as described in Theorem 1. By (10)
and (11),

t(l)r(a,, a) —t(l)s(a, a) = t(l)r(—a, -a) -t(l)s(—a, -a) = «,
tgs(a, a) = -tgr(a, a) = tgs(—a, -a) = -tgr(-a, -a) = o,

Integrating (14) and (15) give

(16) 2V ql(r - s) t?r(r, s)

I

Ss a*r - ) 10 (r, s7) ds' +2Vq £ (x, 1),

(17 2V q(r - s) t?s(r, s)

- Sr q*(r' - 8) t?r(r', s) dr' + 2V q(0) t?s(s, s).

Equations (16) and (17) form a system of Volterra integral equations. In S%, the in-
terior of €, tgr(r, s) and t?s(r, s) are finite. For -a <r < a, by (16) and by inte-
gration by parts,
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2Vq(r - a) td.(z, a)

= -Sa (q*(r - s"), t2(x, s) ds' + q*(r - a) t2(r, a) +2Vq(0) t) (v, r)

is finite. That is, t0 (r, a) is finite for -a <r <a. Similarly, t? (r, -a), t{ (a, s),
and tgs(-a, s) are finite for -a <r <a and -a<s <a.

We define
T(x, 8) = 2Vq(r - 8) t).(r, 5) - 2Vqlr - 2) t{,(x, a)
for (r, s) € 592, or for -a<r <a and -a <s <a. We define
(18) Y2(r, 5) = -2Vq(r - 8) t2(r, s) + 2Vqla - ) t,(a, s)

o
for (r, s) € Q, or for -a-<r<a and -a <s <a.

By (16) and by integration by parts,

S
lim T?(r, s) =S a*@ - s') tgs(a, s') ds'
a

r—a

is finite. We define T{(a, s) as this limit. We define Y?(r, a), T?(—a, s), and
Yg(r, -a) similarly.
We have shown the following:

LEMMA 6. In &, t0 and t2_ ave finite. t0.(r, a), t2.(r, -2), t2 (a, 5), and
t) (-a, s) are finite for -a <r <a and -a <s <a. TY and Y ave finite in Q and

19 t(l)r(a, s) = -t?s(r, a) = t(l)r(-a, s) = —t?s(r, -a) = ©,

1l

tgs(r, a) = —tgr(a, s) tgs(r, -a) = —tgr(—a, s) = «,

By (12), tl(a, s) = t¥(a, s) and t!(r, a) = tJ(r, a). We define

Ti(r, s) = 2Vq(r - s) ti(r, s) - 2V q(r - a) tgr(r, a)
and ‘
(20) Yl(r, s) = -2V/qlr - 8) ti(r, s) +2Vqla - 5) ) _(a, 5).

By a method similar to that used in showing Lemma 6, we can show:

LEMMA 7. In S%, tL and tl ave finite. ti.(r, a), tll.(r, -a), ti(a, s), and
tl(-a, s) are finite for -a <r <a and -a<s <a. T! and Y! ave finite in Q and
tl(a, s) = tl(r, a) =tl(-a, ) = ti(r, -a) = -=.

Now

lim (tl(r, s) - t5 _(r, ) = 1

r—oa ZVq(a-s)

(THa, s) - THa, s)) .
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By (13),

lim (-t;(-s, -r) - t?r(r, s)) = 1

r—a 2Vqla - s)

It follows from Lemmas 6 and 7 that

(Y(-s, -a) - Y0(-s, -a)).

1
(21) \Ifr(a, s) =m [Tl(a, s) - Tg(a, s) +Y1(-S, -a) - Y(I)(-S, -a)]
is finite. Similarly,
‘Ils(r, a) = - Z_—Ji——(—rl—_—-—a)- [Yl(r, a) - Y(l)(r, a) +T1(-a, -r) - Tg(—a, -r)]

is finite. By (13), ¥.(r, s) = -¥4(-s, -r). Thus ¥ (r, -a) and ¥ (-a, s) are finite.
We have shown the following:
LEMMA 8. The function ¥, which is the solution of

V.. =plr-8)T,. -¥)in @, ¥a,s) = tl(-s, -a) - tg(a, s),
¥(r, a) = ti(-a, -r) - t(l)(r, a),

has finite fivst-ovder partial derivatives in K.

4., CONDITIONS FOR BREAKDOWN
THEOREM 2. If ¥ # constant in Q, then U breaks down.

Proof. ¥ # constant implies that there is a point (ry, sg) in  such that either
¥.(rg, sg) # 0 or ¥ (rp, sg) # 0. Suppose ¥.(rg, so) > 0. By Lemmas 5, 6, and 8,

0 < t3(ry, 5)) = 2k¥ (ry, so) +t5,.(rg, o) <

for sufficiently large k. By (19) and Lemma 8, t;fllf(a, s) =2k \Ilr(a, s) +tgr(a, §) = -,
Thus t‘zuf_ changes sign in . By Lemma 3, U must break down.

Similarly, we can prove the breakdown of U for other cases.

THEOREM 3. If t} (i=1, 2 j=0, 2) and t! satisfy one of the following three
conditions:

(i) tl =0 or t. =0 somewhere in Q,

as 2 _ 2 .

(ii) t{.=0 ort5 =0 somewhere in Q,
(iii) ¥ # constant in 9,

then U breaks down. Conversely, if U breaks down, then one of the above three
conditions holds.

Proof. It follows from Lemma 3 and Theorem 2 that each of the conditions (i),
(ii), (iii) is a sufficient condition for U to break down.

Suppose (i), (ii), and (iii) all fail to hold. Then ¥,. =¥ = 0 in &, and by
Lemmas 2 and 5 and by (13), we can extend U as a smooth function for all time over
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0 <x < L. Thus if U does break down, then one of the conditions (i), (ii), (iii) must
hold.
We define

Ay ={g0<t<M ) and Q&) <0}, Aj={£0<t <M-a) and Q'(¢) > 0},
A;={&M1(-a) <& <0 and Q&) <0}, A ={&M-1(-a) <& <0and Q) >0}.

In the next theorem, the word “measure” means Lebesgue measure.
THEOREM 4. If Q' satisfies one of the following four conditions:
(1) Q) <0 for 0<EL M-1(a) and A, is of nonzevo measure,
(ii) Q'(€) >0 for 0 <t M) and AJlr is of nonzero measuve,
(iii) Q'(£) <0 for M~Y(-a) < & <0 and A is of nonzevo measure,
(iv) Q'(£) > 0 for M~1(-a) < & <0 and A} is of nonzero measure,
then U breaks down.

Proof. Suppose that Q' satisfies (i). It suffices to assume that U can be ex-

tended to D. By Lemmas 2 and 3, t?r, t?s, t}, , and t; maintain their initial signs.

frhaéis, t9.>0 and t) <0 in €; tJ. <0 and t >0 in 2,; t} <0 and t! <0
in se.

Now TJ(a, a) = T!(a, a) = 0. By (15), (18), and (20),

a
-Y)(-a, -a) = S a*r' +a) t?_(r7, -a) dr' > 0,
-a
and

a
Yi(-a, -a) = -S q*(r' +a) ti(r', -a)dr' > 0.
-a

1
27 q(0)
¥ # constant in . By Theorem 2, U must break down.

It follows from (21) that ¥,.(a, a) = (Y(-a, -a) - Y(l)(—a,, -a)) > 0. Then

Similarly, we can show that each of the conditions (ii), (iii), and (iv) is a suffi-
cient condition for U to break down.

Remark 4. A statement equivalent to that of Theorem 2 is that a necessary con-
dition for the existence of a smooth global solution U is that U be periodic in t in
the sense that ¥ = constant. An example is the linear problem: Q' = 0. For we
know that in this case a smooth global solution U exists, which is periodic in t. By
(12), (13), (14), and (15), ¥ . =¥ = 0 in Q. That is, ¥ = w, a constant. By Lemma
5, 2w is a period of U in t.

Remark 5. MacCamy and Mizel assumed essentially (i) and (iv) of Theorem 4
to derive the breakdown result (see Remark 10 of [5]). We showed that each one of
these two conditions is a sufficient condition for U to break down.
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5. SOME OTHER CASES

For f(x) = 0, g(x) = amcos 7%, and Q%(£) = (1 +e£)®, where o and € are fixed
positive numbers, N. J. Zabusky [6] has shown that the solution of (1), (2) breaks
down. For general g, P. D. Lax [4] extended the breakdown result by assuming
Q'(£) >A>0.

We assume that Q(£) >.0 for £ € (-d,, d;) and that Q € C2%((-d,, dj)), where
d; € (0, ©]. We assume also that f(x) = 0 and that g € C2([0, L]), g'(0) = g'(L) = 0,
and the graph of g over [0, L] consists of three parts: the first part is concave, the
second part is convex, and the third part is concave. Let g(0) = g(1) = 3. Define
b (0 <b <L), by gb) =mingcy<, gx) =a. Define 3 =M@3), a=MG), a; =M(d)),
a, = -M(-d,). We assume that max (||, |Z]) < min(a;, a;).

By the methods introduced in Remark 3, we can construct a local solution U of

(1), (2). By the method of extension in Theorem 1(ii), we can find subdomains of U
as described in Figure 3. We define

&(r, s) = t{(r, s) +t%(—s, -r) +t(1)(r, s) +t§(r, s) - t(l’(r, s) - t?(—s, -r)
- tg(r, s) - tg(—s, -r)

for (r, s) € 9, where  is the square {(r, s):a <r <3a; -a <s<-a}.

S

fo. i
(51 '5-) (51 '5-)

0 1 DY DJ (a,-3) (3, -3)

Figure 3.

By methods similar to those used in sections 3 and 4, we can show:
THEOREM 5. If & # constant in R, then U breaks down.

THEOREM 6. Ifti and tﬁ i=1,2,j=0,2; k=0,1, 2; £=1, 3) satisfy one
of the thvee conditions:

(i) t'ijr =0 or t-.is = 0 somewhere in Q for some i and j,
(ii) tﬁr =0 or tﬁs = 0 somewhere in Q for some k and £,
(iii) ® # constant in 9,

then U breaks down. Conversely, if U breaks down, then one of the above thvee
conditions holds.
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THEOREM 7. Let
={&a< 55 and Q'(t) >0} and A = {5:55535 and Q'(£) <0}.

If Q' satisfies one of the conditions:
() Q&) >0 for a<t< 3 and A* is of nonzevo measure,
(i) Q'(¢) <0 for a<& <a and A~ is of nonzevo measure,
then U breaks down.

We observe that (i) of Theorem 7 is weaker than the conditions assumed on Q'
in [6] and [4].

For the problem considered in Remark 3, it is possible to derive suificient con-
ditions on Q'similar to those in Theorems 4 and 7 for the breakdown. An essential

part of the derivations is to find recursion formulas for the functions tJ by a gen-
eralized version of Lemma 4. For brevity we do not pursue this problem here.
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