ON AUTOMORPHIC FORMS AND CARLESON SETS

Ch. Pommerenke

1. INTRODUCTION

Let Γ be a Fuchsian group in the unit disk $D \subseteq \mathbb{C}$ and let $L \subseteq \partial D$ be its limit set. An automorphic form of weight q $(q = 0, \pm 1, \cdots)$ is an analytic function f(z) $(z \in D)$ such that

(1.1)
$$f(\gamma(z)) \gamma'(z)^{q} \equiv f(z) \qquad (\gamma \in \Gamma).$$

Let $A_2^{\infty}(\Gamma)$ be the space of automorphic forms of weight 2 with

(1.2)
$$\sup_{z \in D} (1 - |z|^2)^2 |f(z)| < \infty.$$

This space was introduced by L. Bers [1] and has applications, for instance, in Teichmüller space theory [2, p. 272]. The theory of the related spaces $A_q^p(\Gamma)$ $(1 \le p \le \infty, q = 2, 3, \cdots)$ is described, for instance, in the book of Kra [5].

The *Eichler integral* of $f \in A_2^{\infty}(\Gamma)$ is defined by

(1.3)
$$h(z) = \frac{1}{2} \int_0^z (\zeta - z)^2 f(\zeta) d\zeta \quad (z \in D);$$

that is, by h'''(z) = f(z) and h(0) = h'(0) = h''(0) = 0. It follows from (1.1) that

(1.4)
$$h(\gamma(z))/\gamma'(z) = h(z) + c_{\gamma}(z) \qquad (\gamma \in \Gamma),$$

where the *Eichler period* $c_{\gamma}(z)$ is a polynomial of degree ≤ 2 . The Eichler periods are elements of the Eichler cohomology group $H^1(\Gamma, \Pi_2)$ [5, pp. 148, 196], and (1.4) defines a homomorphism from $A_2^{\infty}(\Gamma)$ into $H^1(\Gamma, \Pi_2)$. Bers [1] has shown that this homomorphism is injective for groups of the first kind (that is, $L = \partial D$). We shall prove that it is injective if and only if L is not a Carleson set.

A closed set $E \subset \partial D$ is called a Carleson set if

(1.5)
$$\sum_{n} \ell_{n} = 2\pi, \qquad \sum_{n} \ell_{n} \log \frac{2\pi}{\ell_{n}} < \infty,$$

where ℓ_n are the lengths of the component arcs of $\partial D \setminus E$. It was proved by L. Carleson [3] that if a function is analytic in D and belongs to $\operatorname{Lip}\alpha$ for some $\alpha>0$, then its zero set on ∂D is a Carleson set; conversely, every Carleson set is the zero set on ∂D of an analytic function even with bounded derivative. We shall use results of Taylor and Williams [9] and of Nelson [7] on Carleson sets.

Received December 1, 1975.

Michigan Math. J. 23 (1976).

THEOREM 1. Let Γ be a Fuchsian group without elliptic elements and with limit set L.

- (a) If L is a Carleson set then there exist infinitely many linearly independent functions $f \in A_2^{\infty}(\Gamma)$ with $c_{\gamma}(z) \equiv 0$ for $\gamma \in \Gamma$.
- (b) If L is not a Carleson set then there exists no function $f(z) \neq 0$ in $A_2^{\infty}(\Gamma)$ with $c_{\gamma}(z) \equiv 0$ for $\gamma \in \Gamma$.
- T. A. Metzger [6] has shown for all Bers spaces $A_q^p(\Gamma)$ $(1 \le p \le \infty, q = 2, 3, \cdots)$ that the existence of a non-trivial function with vanishing Eichler periods implies that L is a Carleson set; the converse is still open in the general case. I want to thank him for our discussions on this subject.

The theorem shows that the limit set of a finitely generated Fuchsian group of the second kind is a Carleson set. This is, in general, not true for infinitely generated groups of the second kind because then the limit set may be of positive measure (see for instance [8], Example 2).

2. AUTOMORPHIC FORMS OF WEIGHT -1

The condition that $c_{\gamma}(z) \equiv 0 \ (\gamma \in \Gamma)$ is, by (1.4), equivalent to

(2.1)
$$h(\gamma(z)) \gamma'(z)^{-1} = h(z) \qquad (\gamma \in \Gamma),$$

so that h(z) is an automorphic form of weight -1.

THEOREM 2. Let Γ be a Fuchsian group without elliptic elements. Then L is a Carleson set if and only if there exists an automorphic form $h(z) \not\equiv 0$ of weight -1 such that

$$\sup_{z \in D} |h'(z)| < \infty.$$

Remark. Let 0, a_0 , a_1 , \cdots , a_n be given non-equivalent points in D. If L is a Carleson set we shall actually construct the function h(z) such that it has fourfold zeros at 0, a_1 , \cdots , a_n and satisfies $h(a_0) \neq 0$.

We derive now Theorem 1 from Theorem 2.

(a) Let z_{μ} (μ = 1, 2, ...) be non-equivalent points \neq 0. According to the above remark we can construct automorphic forms $h_{m}(z)$ (m = 1, 2, ...) of weight -1 that satisfy (2.2),

(2.3)
$$h_m(z_\mu) = 0 \ (\mu = 1, \dots, m-1), \quad h_m(z_m) \neq 0,$$

and $h_m(0) = h_m'(0) = h_m''(0) = 0$. Then h_m is the Eichler integral of $f_m = h_m'''$, and we see from (1.4) and (2.1) that all Eichler periods vanish. Differentiating (2.1) three times, we obtain $f_m(\gamma(z)) \gamma'(z)^2 = f_m(z)$ [5, p. 197], and (2.2) implies (1.2) by a standard argument. Hence $f_m \in A_2^\infty(\Gamma)$, and it follows from (1.3) and (2.3) that the functions f_m ($m = 1, 2, \cdots$) are linearly independent.

(b) Conversely, let there exist $f(z) \neq 0$ in $A_2^{\infty}(\Gamma)$ with $c_{\gamma}(z) \equiv 0$ for $\gamma \in \Gamma$. Then the Eichler integral (1.3) satisfies (2.1). Now

$$h'''(z) = f(z) = O((1 - |z|)^{-2}) (|z| \rightarrow 1)$$

implies $h \in \text{Lip } \alpha$ ($0 < \alpha < 1$) by a result of Hardy and Littlewood [4, p. 74]. In particular, h(z) is continuous in \overline{D} . Given $\zeta \in L$, we can find $\gamma_n \in \Gamma$ with $\gamma_n(0) \to \zeta$ ($n \to \infty$), and it follows from (2.1) that

(2.4)
$$h(\gamma_n(0)) = \gamma'_n(0) h(0) \to 0 \quad (n \to \infty).$$

Hence $h(\zeta) = 0$ for $\zeta \in L$, and we conclude from Carleson's theorem that L is a Carleson set.

The proof of one direction of Theorem 2, namely that L has to be a Carleson set under the given condition, is contained in the last paragraph (where we did not use h(0) = 0); we have $h \in \text{Lip 1}$ because of (2.2). The proof of the other direction will be postponed to Section 4.

3. GROUPS OF WIDOM TYPE

Let Γ be a Fuchsian group with limit set L and let

(3.1)
$$u(z) = \sum_{\gamma \in \Gamma} |\gamma'(z)| \quad (z \in \overline{D});$$

the group is, by definition, of convergence type if $u(z) < \infty$ ($z \in D$). We call Γ of *Widom type* if

$$(3.2) \qquad \qquad \int_{\partial D} \log u(z) |dz| < \infty.$$

These groups were first considered by H. Widom [10] in his investigations of bounded character-automorphic functions; see [8] for a discussion of these groups. We shall need:

LEMMA 1 [8, Theorem 4]. Let Γ be of Widom type. Then the analytic function

(3.3)
$$w(z) = \exp \left\{ \frac{1}{2\pi} \int_{\partial D} \frac{\zeta + z}{\zeta - z} \log u(\zeta) |d\zeta| \right\} \qquad (z \in D)$$

satisfies

(3.4)
$$|w(\gamma(z)) \gamma'(z)| = |w(z)| \qquad (\gamma \in \Gamma),$$

$$(3.5) 1 \leq u(z) \leq |w(z)| (z \in D).$$

We will consider only groups of the second kind (that is, $\partial D \setminus L \neq \emptyset$), and these are of convergence type.

LEMMA 2. Let

(3.6)
$$\delta(\mathbf{z}) = \inf_{\gamma \in \Gamma} |\mathbf{z} - \gamma(0)|.$$

If $z = e^{i\theta} \in \partial D \setminus L$, then

$$|u(z)| \leq \frac{|u(0)|}{\delta(z)^2}, \qquad \left|\frac{\partial u(z)}{\partial \theta}\right| \leq \frac{2u(z)}{\delta(z)} \leq \frac{2u(0)}{\delta(z)^3}, \qquad \left|\frac{\partial^2 u(z)}{\partial \theta^2}\right| \leq \frac{6u(0)}{\delta(z)^4}.$$

Proof. If $\gamma \in \Gamma$ we write

(3.7)
$$\gamma(z) = e^{i\alpha} \frac{z-a}{1-\bar{a}z}, \quad a = \gamma^{-1}(0).$$

Let $z = e^{i\theta} \in \partial D \setminus L$. We obtain from (3.6) that

$$|\gamma'| = \frac{1 - |a|^2}{|z - a|^2} \le \frac{|\gamma'(0)|}{\delta(z)^2}, \qquad \left|\frac{\gamma''}{\gamma'}\right| = \left|\frac{2a}{z - a}\right| \le \frac{2}{\delta(z)}.$$

Hence it follows from (3.1) that

$$\begin{split} u(z) & \leq \frac{1}{\delta(z)^2} \sum_{\gamma} \left| \gamma'(0) \right| = \frac{u(0)}{\delta(z)^2} \,, \\ \left| \frac{\partial u}{\partial \theta} \right| & = \left| \sum_{\gamma} \left| \gamma' \right| \, \Im \left[z \, \frac{\gamma''}{\gamma'} \right] \right| \leq \frac{2u(z)}{\delta(z)} \leq \frac{2u(0)}{\delta(z)^3} \,. \end{split}$$

Using $[\gamma''/\gamma']' = (\gamma''/\gamma')^2/2$, we see that

$$\left|\frac{\partial^2 \mathbf{u}}{\partial \theta^2}\right| = \left|\sum_{\gamma} |\gamma'| \left(\frac{1}{2} \left|\frac{\gamma''}{\gamma'}\right|^2 + \Re\left[\mathbf{z} \frac{\gamma''}{\gamma'}\right]\right)\right| \leq \frac{6\mathbf{u}(0)}{\delta(\mathbf{z})^4}.$$

LEMMA 3. If Γ is of Widom type then

(3.8)
$$\frac{\left|\mathbf{w}'(\mathbf{z})\right|}{\left|\mathbf{w}(\mathbf{z})\right|^2} \leq \frac{K}{\delta(\mathbf{z})^4} \quad (\mathbf{z} \in \mathbf{D})$$

for some constant K.

Proof. Making a suitable rotation, we see that it is sufficient to prove (3.8) for z = r, 0 < r < 1. It follows from (3.5) that |1/w(z)| < 1 for $z \in D$, hence that

$$\frac{|w'(r)|}{|w(r)|^2} \le \frac{1}{1-r^2} < \frac{1}{1-r}.$$

Thus (3.8) holds if $\delta(r) \leq 3(1 - r)$.

We may therefore assume that

(3.9)
$$\beta = \delta(r)/3 > 1 - r$$
.

We consider the function

(3.10)
$$v(t) = \log u(e^{it}) \geq 0 \quad (e^{it} \in \partial D \setminus L).$$

If $|t| \le \beta$ then $\delta(e^{it}) \ge \beta$ by (3.9). Hence it follows from Lemma 2 that, for $|t| \le \beta$,

$$(3.11) v(t) \leq \frac{K_1}{\beta^2}, \left|v'(t)\right| \leq \frac{K_1}{\beta^3}, \left|v''(t)\right| \leq \frac{K_1}{\beta^4}.$$

Taking the logarithmic derivative in (3.3), we obtain

(3.12)
$$\frac{w'(r)}{w(r)} = \frac{1}{\pi} \int_{0}^{2\pi} \frac{e^{it}}{(e^{it} - r)^2} v(t) dt.$$

Using (3.2) we see that

(3.13)
$$\left| \int_{\beta}^{2\pi-\beta} \frac{e^{it}}{(e^{it}-r)^2} v(t) dt \right| \leq \frac{4}{\beta^2} \int_{\beta}^{2\pi-\beta} v(t) dt \leq K_2 \beta^{-2}.$$

Since $\{e^{it}: |t| \leq \beta\} \subset \partial D \setminus L$, Taylor's formula shows that, with suitable $|\tau| \leq |t| \leq \beta$,

$$\int_{-\beta}^{\beta} \frac{e^{it}}{(e^{it} - r)^2} v(t) dt = v(0) \int_{-\beta}^{\beta} \frac{e^{it}}{(e^{it} - r)^2} dt + v'(0) \int_{-\beta}^{\beta} \frac{t e^{it}}{(e^{it} - r)^2} dt + \frac{1}{2} \int_{-\beta}^{\beta} \frac{t^2 e^{it}}{(e^{it} - r)^2} v''(\tau) dt.$$

We substitute $z=e^{it}$ in the first two integrals on the right-hand side and then deform the integration path to the outer circular arc from $e^{-i\beta}$ to $e^{i\beta}$ of center 1. Thus we see from (3.11) that these integrals are bounded by $K_3 \, \beta^{-3}$. Since $\left|e^{it}-r\right|\geq \left|\sin t\right|$, it follows from (3.11) that the last integral is bounded by $K_4 \, \beta^{-4}$. Hence we conclude that

$$\left| \int_{-\beta}^{\beta} \frac{e^{it}}{(e^{it} - r)^2} v(t) dt \right| \leq K_5 \beta^{-4},$$

and we see from (3.12), (3.13) and (3.9) that

$$\frac{\left|\mathbf{w}'(\mathbf{r})\right|}{\left|\mathbf{w}(\mathbf{r})\right|^2} \leq \left|\frac{\mathbf{w}'(\mathbf{r})}{\mathbf{w}(\mathbf{r})}\right| \leq \frac{K_6}{\beta^4} = \frac{K_7}{\delta(\mathbf{r})^4}.$$

4. CONSTRUCTION OF THE AUTOMORPHIC FORM

We need two results on Carleson sets.

LEMMA 4 (Taylor and Williams [9]). Let $Z \subset \overline{D}$ be closed and let

$$(4.1) \qquad \qquad \sum_{\mathbf{z} \in D \cap Z} (1 - |\mathbf{z}|) < \infty,$$

$$\int_{\partial D} \log \frac{2}{\operatorname{dist}(z, Z)} |dz| < \infty.$$

Then there exists a function analytic in D whose derivatives of all orders are continuous in \overline{D} , that has Z as its zero set in \overline{D} .

LEMMA 5 (Nelson [7]). Let $Z \subseteq \overline{D}$ be closed. If $E = Z \cap \partial D$ is a Carleson set, if (4.1) holds, and if

$$(4.3) \qquad \qquad \sum_{\mathbf{z} \in \mathbf{Z} \cap \mathbf{D}} \left[\operatorname{dist} \left(\frac{\mathbf{z}}{|\mathbf{z}|}, \mathbf{E} \right) \right]^{\lambda} < \infty$$

for some $\lambda \geq 1$, then (4.2) is satisfied.

The next lemma is the only place where we use that Γ has no elliptic elements. Our theorems are probably true without this assumption.

LEMMA 6. Let Γ be a Fuchsian group without elliptic elements whose limit set L is a Carleson set. If $b \in D$ and $B = \{ \gamma(b) : \gamma \in \Gamma \}$, then

and Γ is of Widom type.

Proof. Every Moebius transformation $\gamma \in \Gamma$ is either hyperbolic or parabolic. Hence its fixed points lie in L. We can choose the fixed point ζ such that

(4.5)
$$\frac{\gamma'(z)}{(\gamma(z)-\zeta)^2}=\frac{c}{(z-\zeta)^2}, \quad |c|\geq 1.$$

Since $\zeta \in L$ we deduce that

(4.6)
$$\operatorname{dist}\left(\frac{\gamma(b)}{|\gamma(b)|}, L\right)^{2} \leq \left|\frac{\gamma(b)}{|\gamma(b)|} - \zeta\right|^{2} \leq \frac{|\gamma(b) - \zeta|^{2}}{|\gamma(b)|} \leq 4\left|\frac{\gamma'(b)}{\gamma(b)}\right|.$$

We now apply Lemma 5 with $Z = \overline{B}$ and $\lambda = 2$. Condition (4.1) holds because Γ is of convergence type and (4.3) follows from (4.6). Finally $\overline{B} \cap \partial D = L$ is a Carleson set. We conclude that (4.4) is satisfied. If b = 0 then

$$|\gamma'(z)| \le (1 - |\gamma^{-1}(0)|^2) [dist(z, B)]^{-2},$$

and we see from (3.1) and (4.4) that Γ is of Widom type.

We prove now the converse part of Theorem 2 and establish the Remark following that theorem. We assume that L is a Carleson set. Let

(4.7)
$$A = \{ \gamma(z) : z = 0, a_0, \dots, a_n; \gamma \in \Gamma \} \setminus \{ a_0 \}.$$

We apply Lemma 4 with $Z = \overline{A} = A \cup L$; it follows easily from Lemma 6 that (4.2) is satisfied.

We can thus find a function $g_0(z)$ analytic in D with

$$\left|g_0'(z)\right| < \frac{1}{4} \quad (z \in D)$$

that has A as its zero set in D. It follows from (3.6), (4.7) and (4.8) that $|g_0(z)| \leq \delta(z)$ for $z \in D$. Hence the analytic function

(4.9)
$$g(z) = g_0(z)^4 \quad (z \in D)$$

satisfies $g(a_0) \neq 0$ and

(4.10)
$$|g'(z)| < 1, |g(z)| \le \delta(z)^4 \quad (z \in D).$$

We consider the Poincaré theta series (see Lemma 1)

(4.11)
$$h(z) = \sum_{\gamma \in \Gamma} \frac{g(\gamma(z))}{w(\gamma(z))^2 \gamma'(z)}.$$

We see from (4.10) and (3.4) that its terms are bounded by

$$|w(\gamma(z))|^{-2} |\gamma'(z)|^{-1} = |w(z)|^{-2} |\gamma'(z)|.$$

Thus (4.11) converges absolutely and locally uniformly in D because Γ is of convergence type, and direct calculation shows that h(z) satisfies (2.1) and is therefore an automorphic form of weight -1. Since g(z) has a fourfold zero at every point of A, we obtain from (4.7) and (4.11) that h(z) has a fourfold zero at 0, a_1, \dots, a_n , whereas

$$h(a_0) = g(a_0) w(a_0)^{-2} \neq 0$$
.

It remains to prove (2.2). We obtain from (4.11) that, for $z \in D$,

(4.12)
$$h'(z) = \sum_{\gamma \in \Gamma} \left(-\frac{2w'(\gamma)g(\gamma)}{w(\gamma)^3} + \frac{g'(\gamma)}{w(\gamma)^2} - \frac{\gamma''g(\gamma)}{\gamma'^2w(\gamma)^2} \right).$$

We deduce from Lemma 3 and from (4.10) that

$$(4.13) \qquad \sum_{\gamma \in \Gamma} \frac{\left| w'(\gamma) g(\gamma) \right|}{\left| w(\gamma) \right|^3} \leq \sum_{\gamma} \frac{K}{\delta(\gamma)^4} \frac{\delta(\gamma)^4}{\left| w(\gamma) \right|} = K \sum_{\gamma} \left| \frac{\gamma'(z)}{w(z)} \right| = K \frac{u(z)}{\left| w(z) \right|} \leq K,$$

where we have used (3.4), (3.1) and (3.5). It follows similarly from (4.10) that

(4.14)
$$\sum_{\gamma \in \Gamma} \frac{\left| g'(\gamma) \right|}{\left| w(\gamma) \right|^2} \leq \frac{1}{\left| w(z) \right|} \sum_{\gamma} \left| \frac{\gamma'(z)}{w(z)} \right| \left| \gamma'(z) \right| \leq 1 .$$

Using the notation (3.7) we see that, for $\gamma \in \Gamma$,

$$\left|\frac{\gamma''(z)}{\gamma'(z)}\right| = \frac{2\left|a\right|}{\left|1 - \bar{a}z\right|} = \frac{2\left|az\right| \left|\gamma'(z)\right|}{\left|\gamma(z) - \gamma(0)\right|} \le \frac{2\left|\gamma'(z)\right|}{\delta(\gamma(z))}.$$

Hence we obtain from (4.10), (3.4) and (3.5) that

$$\sum_{\gamma \in \Gamma} \frac{\left| \gamma'' \mid \left| g(\gamma) \right|}{\left| \gamma' w(\gamma) \right|^2} \leq \frac{2}{\left| w(z) \right|^2} \sum_{\gamma} \left| \gamma'(z) \right|^2 \leq 2.$$

Therefore we conclude from (4.12), (4.13) and (4.14) that $|h'(z)| \le 2K + 3$ for $z \in D$, which is the assertion (2.2) of Theorem 2.

REFERENCES

- 1. L. Bers, Automorphic forms and Poincaré series for infinitely generated Fuchsian groups. Amer. J. Math. 87 (1965), 196-214.
- 2. ——, Uniformization, moduli, and Kleinian groups. Bull. London Math. Soc. 4 (1972), 257-300.
- 3. L. Carleson, Sets of uniqueness for functions regular in the unit circle. Acta Math. 87 (1952), 325-345.
- 4. P. L. Duren, Theory of Hp spaces. Academic Press, New York, 1970.
- 5. I. Kra, Automorphic forms and Kleinian groups. W. A. Benjamin Inc., Reading, Mass., 1972.
- 6. T. A. Metzger, On vanishing Eichler periods and Carleson sets. Michigan Math. J., to appear.
- 7. J. D. Nelson, A characterization of zero sets for A^{∞} . Michigan Math. J. 18 (1971), 141-147.
- 8. Ch. Pommerenke, On the Green's function of Fuchsian groups. Ann. Acad. Sci. Fenn., to appear.
- 9. B. A. Taylor and D. L. Williams, Zeros of Lipschitz functions analytic in the unit disc. Michigan Math. J. 18 (1971), 129-139.
- H. Widom, H_p sections of vector bundles over Riemann surfaces. Ann. of Math.
 94 (1971), 304-324.

Technische Universität Berlin Fachbereich Mathematik 1 Berlin 12, Strasse des 17. Juni 135 Germany