A NORM INEQUALITY IN HYPONORMAL OPERATOR THEORY

C. R. Putnam

1. INTRODUCTION
Recall that a bounded operator T on a Hilbert space 9 is hyponormal if
(1.1) T™*T - TT* = D> 0,
and completely hyponormal if, in addition, there is no nontrivial subspace on which

T is normal. If T =H +iJ is the Cartesian representation of T, then (1.1) is
equivalent to

(1.2) HJ - JH = -iC, where D = 2C > 0.

It is known that the spectra of H and J are the (real) sets obtained by projecting the
spectrum o(T) of T onto the x- and y-axes; see [2, p. 46]. Also, by [3],

(1.3) 27 |C|l < meas;(a(T)).

Further, if H = ®(T) has the spectral resolution
(1.4) i = | tag,

and if T is completely hyponormal, then the spectral family {E( . )} is strongly
absolutely continuous, that is, || EtfH2 is absolutely continuous in t for each f in 9;
see [2, pp. 20, 42].

If o is a Borel set on the real line, then T, = E(a) T E(a) is hyponormal, in
fact, TATy - Tq T = E(@)DE(a) > 0. If @ = A is an open interval, and if E(a) # 0,
it follows from the results of [4] that

(1.5) o(Tp) = (a(T) N {z: R(z) € A}),
where Tp = E(A) TE(A) is regarded as an operator on E(A)$. Since o(E(A)J E(4))
is the projection of ¢(Ta) onto the y-axis, one easily obtains from (1.5) the norm of

E(A)J E(A) (as an operator either on $ or on E(A)9) in terms of the spectrum of
T in the form

(1.6) |E(A)TE(A)|| = sup{|S(z)|: 2z € o(T) and %(z) € A}.

I
If F(t) denotes the linear measure of the intersection of ¢(T) with the'line ®R(z) =t,
so that

(1.7) F(t) = meas,[o(T) N {z: %(z) = t}],

Received July 30, 1975,
This work was supported by a National Science Foundation research grant.

Michigan Math. J. 22 (1975).

195



196 C. R. PUTNAM

then, corresponding to (1.3), one has for each open interval A the inequality

(1.8) o1 |E(a)CE(A)| < meas, (o(T)) = S F(t) dt .
A

Next, let @ and B be disjoint Borel sets on the real line, so that

(1.9) anB=d¢g.

In case T is normal, it is well-known that E(a)J E(8) (= E(e) TE(8)) = 0. On the
other hand, if T is only hyponormal, this relation need not hold. In fact, it is easily
shown that if T = H + iJ is a bounded operator and if E(a¢)JE(B) =0 for all @ and B
satisfying (1.9), then necessarily HJ = JH, so that T must be normal. We shall ob-
tain an estimate for ||E(e)JE(B)| (= |E(a) TE(B)]|), whenever o and B satisfy (1.9)
and T is hyponormal; the estimate involves the spectrum of T and is, in a certain
sense, best possible (see Section 3).

THEOREM. Let T =H +iJ be a hyponovymal opevatoy, and suppose that
H = R(T) has the spectral resolution (1.4). Let o and B denote disjoint Borel sets
of the real line, so that (1.9) holds. Then

1/2
(110 |B@IE@] < <zn)-1(jS F(x) F(y) <x-y)-2dxdy) :
a B

wheve F(t) is defined by (1.7).

2. PROOF OF THE THEOREM

Since each normal part of T can be split off as a component of a direct sum, it
is clear that there is no loss of generality in supposing that T is completely hypo-
normal.

Next, let A and & be two disjoint open (or closed) intervals on the real line for
which d = dist(A, 6) > 0. Then multiply relation (1.2) on the left by E(A) and on the
right by E(6). If a and b denote the midpoints of A and §, respectively, one ob-
tains the relation

S (t - a) dEJE(5) - E(A)J S (t - b)dE = -iE(A)C E(6) + (b - a) E(A) JE(8),
A 5
and hence
|E(2)TEG)|| < |E(A)CE®)|/a = |E(a)C!/?2cl/2E@)| /a.
(See [4, p. 697] for a similar calculation.) In view of (1.8),
(277)1/2"E(A)CI/2”§(S F(X)dx)l/z and (2”)1/2"Cl/ZE(G)HS(5F(y)dy)l/z,
A 5

and consequently,
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1/2

(2.1) |E(a)TE®G) || < (217)'1(‘3‘ F(x)de F(y) dy) /d.
A 5

We shall prove (1.10) first in the special case when
(2.2) e = dist(a,p) > 0.

Let € > 0, and let {Al , Ap g oo } be a covering of @ by closed intervals that are
pairwise essentially disjoint (that is, have at most an end-point in common), and

such that A, N @ # @ and lAn] < e/2 for all n, and meas, (UAn- oz) <g/2. If
{61, 02, } is a similar covering for S, then {Aj, (Sk} is a covering of @ U B by
essentially disjoint intervals satisfying dj. = dist (4}, 8) > 0 (for all j, k) and

(2.3) measl<[UAn]U[U6n]—(a UB)) < e.

If f and g are fixed elements of $, then, in view of the absolute continuity of

|E.£]|? and ||E.gl|?. it is clear that the intervals {Aj, 6x} canbe chosen so that
also

(2.4) l(E(UAj)JE(U 6k)f, g) - (BT E@). ¢)] <.

By (2.1) and the Schwarz inequality, we have the relations

(E(UAj)JE(U6k>f, g) = IZ) Z}} (E(A) T E(61, 9|
)

< 23 27 |E(ay)TE@)I TEGYL] (Bl
i ok

1/2
< (am)! (Z) Z)(S P dx | F(y)dy)/djzk) HEEE
ik Ny

A; By

Since & can be chosen arbitrarily small, relation (1.10), under the restriction (2.2),
follows from (2.3) and (2.4) if we let sup djk — 0.

Finally, we suppose that ¢ and j satisfy only the condition (1.9). Since the
spectrum of $ is bounded, there is no loss of generality in supposing also that «
B are bounded. By a standard result in measure theory, there exist compact sets
«, and B, such that o, C @ and B, C B (hence dist(a,, B;) > 0), and such that
both meas;(a - a,) — 0 and meas; (8 - B,) — 0 as n — «. Clearly, (1.10) holds
with « and B replaced by «, and B, , respectively. On letting n — « and noting
that E(a - @,) and E(8 - 8,,) converge strongly to 0 as n — « (absolute continuity
of E( -)), one obtains the desired relation (1.10).

3. OPTIMALITY OF THE INEQUALITY

° g . - / . B .
Suppose that x <y and that A and 6 are open intervals containing x and y,
respectively. -It follows from (1,10) that for almost all x, y (each variable consid-
ered separately), ‘ ' : . .
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(3.1) | hlml silp IE)IE®) | /[a]t/2]6]12 < @n) Y x - y]| L (F&) F(y)/2.
Al,|s| —o

We shall show by an example that the equality sign may hold.

To see this, let § = L2(-1, 1), and let the self-adjoint operators H and J be
defined by

1
(3.2 () = xi6), D@ = i | -0,
-1

where the integral operator is a Cauchy principal-value integral. Then T = H +iJ
is an irreducible hyponormal operator having the set [-1, 1] X [-1, 1] as its spec-
trum; see [1, p. 452]. For convenience, suppose that -1 < x <y < 1, where x € A
and y € 6, and that the open intervals A and 8 are so small that they lie in [-1, 1]
and do not overlap.

If we define fg = E(8)fg on [-1, 1] by putting f5 = |6|-1/2 on 6 and f=0
otherwise, we see that ||f5 | =1and

nt

Jf5)t) = (-im)~1al|6|l/2  for te 4,
where d = dist(A, 6) and A and 6 are small. Thus,
[E(A)TEG)s)|% = 772a72 |a] |6];

more precisely,

IE(A) JE®) £5]%/|A| |8] = 772 (x-y)"% as |a|,

6| — 0,
and hence

liminf  ||E(A)JE®)|/]a[Y/2 6|12 > 771 |x-y]| .
|al,|6] —o0

But F(x) = F(y) = 2, so that equality must hold in (3.1) and also lim sup = lim.

4. AN APPLICATION

It is easy to see from the Theorem that if {A;, A, .-} is a sequence of in-
tervals for which |An| — 0 as n — » and if 6 is a fixed interval satisfying the
conditions

(4.1) dist (A,, 6) > const > 0,
then
(4.2) IE(A)ITEG)| - 0 asn—ow.

On the other hand, it is not clear what happens when (4.1) is replaced by the weaker
hypothesis that A, N 6 = @. We now turn to this question and, for definiteness, con-
sider the operators E((-«, 0))J E((0, 1/n)) and E((-1/n, 0))J E((0, «)).

COROLLARY OF THE THEOREM. Let T =H +iJ be hyponormal, wheve H
has the spectral resolution (1.4) and F(t) is defined by (1.7). If
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0- oo

(4.3) either 5 x1FPEdx <o  or S x 1Pxdx < «,
-00 0+

then both

(4.4) |E((-, 0)JE((0, 1/n))|] - 0 asn-—w

and

(4.5) I E((-1/n, 0)) TE((0, ©))| — 0 as n — «.

Proof. It will be clear that it is sufficient to prove (4.4) only. Since, by the
Theorem,

0 1/n 1/2
|E((-, 0))JE((0, 1/0) ] < (217)"10 5 F(x) F(y) (x - y)-ldxdy> ,
-0 0

the relation (4.4) obviously follows whenever
0 =]

(4.6) M= POFE -y 2y <o
-0 Y0

Suppose that the first relation of (4.3) holds. Since lF(y)I < const = ¢ for all y, we
see that

0

M<ec S_O F(X)I:S: (x—y)'zdy:Idx =c S x 1FEx)dx < «.

-0

A similar argument can be used to establish (4.6) when the second relation of (4.3)
holds.

5. REMARKS

Since F(x) = 0 when le is sufficiently large, we see that a sufficient condition
for the validity of (4.4) or (4.5) is that for some constant k > 0, F(x)/xKk — 0 as
either x —- 0+ or x — 0-. However, we do not know whether, for instance, either
F(x) >0 as x — 0+ or F(x) —» 0 as x — 0- (or even both) is sufficient to imply
(4.4) or (4.5). Nevertheless, these relations surely cannot hold for an arbitrary
hyponormal operator without some smallness restriction on F(x) near x = 0. To
see this, let T = H +iJ, where H and J are defined by (3.2) on $ = L2(-1, 1). For
n=2 3, -, let 6 =(1/n, 2/n) and A, =(-2/n, -1/n), and define f, = E(6,)f, by
putting £, = |6,]-1/2 on &, and f, =0 otherwise. Then |f,] =1, and for x € A,

2/n
(y -0 ldy

1/n

E(Ap) (0f,) (x) = (-in)"! [6,] "1/ S

= (cim (8, 1/ tog[1 + (1 - ).

Thus, ||E(A,)JE(6,)f,]|%2 > 7-%10g?(4/3) = const > 0; hence
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|E((-2/n, -1/0)) JE((1/n, 2/n))|| > const > 0 (n=2, 3, --.),

so that, in particular, neither (4.4) nor (4.5) holds.
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