A NORM INEQUALITY IN HYPONORMAL OPERATOR THEORY

C. R. Putnam

1. INTRODUCTION

Recall that a bounded operator T on a Hilbert space § is hyponormal if

$$(1.1) T^*T - TT^* = D > 0,$$

and $completely\ hyponormal$ if, in addition, there is no nontrivial subspace on which T is normal. If T = H + iJ is the Cartesian representation of T, then (1.1) is equivalent to

(1.2)
$$HJ - JH = -iC, \quad \text{where } D = 2C \ge 0.$$

It is known that the spectra of H and J are the (real) sets obtained by projecting the spectrum $\sigma(T)$ of T onto the x- and y-axes; see [2, p. 46]. Also, by [3],

$$(1.3) 2\pi \|C\| \leq \operatorname{meas}_{2}(\sigma(T)).$$

Further, if $H = \Re(T)$ has the spectral resolution

$$(1.4) H = \int t dE_t,$$

and if T is completely hyponormal, then the spectral family $\{E(\cdot)\}$ is strongly absolutely continuous, that is, $\|E_t f\|^2$ is absolutely continuous in t for each f in \mathfrak{S} ; see [2, pp. 20, 42].

If α is a Borel set on the real line, then $T_{\alpha} = E(\alpha) T E(\alpha)$ is hyponormal, in fact, $T_{\alpha}^* T_{\alpha} - T_{\alpha} T_{\alpha}^* = E(\alpha) D E(\alpha) \ge 0$. If $\alpha = \Delta$ is an open interval, and if $E(\alpha) \ne 0$, it follows from the results of [4] that

(1.5)
$$\sigma(\mathbf{T}_{\Delta}) = (\sigma(\mathbf{T}) \cap \{\mathbf{z} : \Re(\mathbf{z}) \in \Delta\})^{-},$$

where $T_{\Delta} = E(\Delta) T E(\Delta)$ is regarded as an operator on $E(\Delta)$ \mathfrak{P} . Since $\sigma(E(\Delta) J E(\Delta))$ is the projection of $\sigma(T_{\Delta})$ onto the y-axis, one easily obtains from (1.5) the norm of $E(\Delta) J E(\Delta)$ (as an operator either on \mathfrak{P} or on $E(\Delta) \mathfrak{P}$) in terms of the spectrum of T in the form

(1.6)
$$\|E(\Delta)JE(\Delta)\| = \sup\{|\Im(z)|: z \in \sigma(T) \text{ and } \Re(z) \in \Delta\}.$$

If F(t) denotes the linear measure of the intersection of $\sigma(T)$ with the line $\Re(z) = t$, so that

(1.7)
$$F(t) = \text{meas}_{1} [\sigma(T) \cap \{z: \Re(z) = t\}],$$

Received July 30, 1975.

This work was supported by a National Science Foundation research grant.

Michigan Math. J. 22 (1975).

then, corresponding to (1.3), one has for each open interval Δ the inequality

(1.8)
$$2\pi \| \mathbf{E}(\Delta) \mathbf{C} \mathbf{E}(\Delta) \| \leq \operatorname{meas}_{2} (\sigma(\mathbf{T})) = \int_{\Delta} \mathbf{F}(t) dt.$$

Next, let α and β be disjoint Borel sets on the real line, so that

$$\alpha \cap \beta = \emptyset.$$

In case T is normal, it is well-known that $E(\alpha)JE(\beta)$ (= $E(\alpha)TE(\beta)$) = 0. On the other hand, if T is only hyponormal, this relation need not hold. In fact, it is easily shown that if T = H + iJ is a bounded operator and if $E(\alpha)JE(\beta) = 0$ for all α and β satisfying (1.9), then necessarily HJ = JH, so that T must be normal. We shall obtain an estimate for $||E(\alpha)JE(\beta)||$ (= $||E(\alpha)TE(\beta)||$), whenever α and β satisfy (1.9) and T is hyponormal; the estimate involves the spectrum of T and is, in a certain sense, best possible (see Section 3).

THEOREM. Let T = H + iJ be a hyponormal operator, and suppose that $H = \Re(T)$ has the spectral resolution (1.4). Let α and β denote disjoint Borel sets of the real line, so that (1.9) holds. Then

(1.10)
$$\| \operatorname{E}(\alpha) \operatorname{J} \operatorname{E}(\beta) \| \leq (2\pi)^{-1} \left(\int_{\alpha} \int_{\beta} \operatorname{F}(x) \operatorname{F}(y) (x - y)^{-2} dx dy \right)^{1/2},$$

where F(t) is defined by (1.7).

2. PROOF OF THE THEOREM

Since each normal part of T can be split off as a component of a direct sum, it is clear that there is no loss of generality in supposing that T is completely hyponormal.

Next, let Δ and δ be two disjoint open (or closed) intervals on the real line for which $d = \operatorname{dist}(\Delta, \delta) > 0$. Then multiply relation (1.2) on the left by $E(\Delta)$ and on the right by $E(\delta)$. If a and b denote the midpoints of Δ and δ , respectively, one obtains the relation

$$\int\limits_{\Delta} (t-a) dE J E(\delta) - E(\Delta) J \int\limits_{\delta} (t-b) dE = -iE(\Delta) C E(\delta) + (b-a) E(\Delta) J E(\delta),$$

and hence

$$\| \operatorname{E}(\Delta) \operatorname{J} \operatorname{E}(\delta) \| \leq \| \operatorname{E}(\Delta) \operatorname{C} \operatorname{E}(\delta) \| / d = \| \operatorname{E}(\Delta) \operatorname{C}^{1/2} \operatorname{C}^{1/2} \operatorname{E}(\delta) \| / d.$$

(See [4, p. 697] for a similar calculation.) In view of (1.8),

$$(2\pi)^{1/2} \| E(\Delta) C^{1/2} \| \le \left(\int_{\Delta} F(x) dx \right)^{1/2} \text{ and } (2\pi)^{1/2} \| C^{1/2} E(\delta) \| \le \left(\int_{\delta} F(y) dy \right)^{1/2},$$

and consequently,

(2.1)
$$\|\mathbf{E}(\Delta)\mathbf{J}\mathbf{E}(\delta)\| \leq (2\pi)^{-1} \left(\int_{\Delta} \mathbf{F}(\mathbf{x}) d\mathbf{x} \int_{\delta} \mathbf{F}(\mathbf{y}) d\mathbf{y}\right)^{1/2} / d.$$

We shall prove (1.10) first in the special case when

(2.2)
$$e = dist(\alpha, \beta) > 0.$$

Let $\epsilon > 0$, and let $\{\Delta_1, \Delta_2, \cdots\}$ be a covering of α by closed intervals that are pairwise essentially disjoint (that is, have at most an end-point in common), and such that $\Delta_n \cap \alpha \neq \emptyset$ and $|\Delta_n| < e/2$ for all n, and $\text{meas}_1 \left(\bigcup \Delta_n - \alpha \right) < \epsilon/2$. If $\{\delta_1, \delta_2, \cdots\}$ is a similar covering for β , then $\{\Delta_j, \delta_k\}$ is a covering of $\alpha \cup \beta$ by essentially disjoint intervals satisfying $d_{jk} = \text{dist}(\Delta_j, \delta_k) > 0$ (for all j, k) and

(2.3)
$$\operatorname{meas}_{1}\left(\left[\bigcup \Delta_{n}\right] \cup \left[\bigcup \delta_{n}\right] - (\alpha \cup \beta)\right) < \epsilon.$$

If f and g are fixed elements of \mathfrak{F} , then, in view of the absolute continuity of $\|\mathbf{E}_t \mathbf{f}\|^2$ and $\|\mathbf{E}_t \mathbf{g}\|^2$, it is clear that the intervals $\{\Delta_j, \delta_k\}$ can be chosen so that also

(2.4)
$$\left|\left(E\left(\mathsf{U}_{\Delta_{j}}\right)JE\left(\mathsf{U}_{\delta_{k}}\right)f, g\right) - (E(\alpha)JE(\beta)f, g)\right| < \epsilon.$$

By (2.1) and the Schwarz inequality, we have the relations

Since ϵ can be chosen arbitrarily small, relation (1.10), under the restriction (2.2), follows from (2.3) and (2.4) if we let $\sup d_{ik} \to 0$.

Finally, we suppose that α and β satisfy only the condition (1.9). Since the spectrum of $\mathfrak H$ is bounded, there is no loss of generality in supposing also that α β are bounded. By a standard result in measure theory, there exist compact sets α_n and β_n such that $\alpha_n \subset \alpha$ and $\beta_n \subset \beta$ (hence dist $(\alpha_n, \beta_n) > 0$), and such that both meas $\alpha_n \cap \beta_n \cap \beta_$

3. OPTIMALITY OF THE INEQUALITY

Suppose that x < y and that Δ and δ are open intervals containing x and y, respectively. It follows from (1.10) that for almost all x, y (each variable considered separately),

(3.1)
$$\limsup_{|\Delta|, |\delta| \to 0} \| \mathbf{E}(\Delta) \mathbf{J} \mathbf{E}(\delta) \| / |\Delta|^{1/2} |\delta|^{1/2} \le (2\pi)^{-1} |\mathbf{x} - \mathbf{y}|^{-1} (\mathbf{F}(\mathbf{x}) \mathbf{F}(\mathbf{y}))^{1/2}.$$

We shall show by an example that the equality sign may hold.

To see this, let $\mathfrak{H} = L^2(-1, 1)$, and let the self-adjoint operators H and J be defined by

(3.2)
$$(Hf)(x) = xf(x), (Jf)(x) = (-i\pi)^{-1} \int_{-1}^{1} (y - x)^{-1} f(y) dy,$$

where the integral operator is a Cauchy principal-value integral. Then T = H + iJ is an irreducible hyponormal operator having the set $[-1, 1] \times [-1, 1]$ as its spectrum; see [1, p. 452]. For convenience, suppose that -1 < x < y < 1, where $x \in \Delta$ and $y \in \delta$, and that the open intervals Δ and δ are so small that they lie in [-1, 1] and do not overlap.

If we define $f_{\delta} = E(\delta)f_{\delta}$ on [-1, 1] by putting $f_{\delta} = |\delta|^{-1/2}$ on δ and f = 0 otherwise, we see that $||f_{\delta}|| = 1$ and

$$(Jf_{\delta})(t) \cong (-i\pi)^{-1} d^{-1} |\delta|^{1/2}$$
 for $t \in \Delta$,

where $d = dist(\Delta, \delta)$ and Δ and δ are small. Thus,

$$\|\mathbf{E}(\Delta)\mathbf{J}\mathbf{E}(\delta)\mathbf{f}_{\delta}\|^{2} \cong \pi^{-2}\mathbf{d}^{-2}|\Delta||\delta|;$$

more precisely,

$$\|\mathbf{E}(\Delta)\mathbf{J}\mathbf{E}(\delta)\mathbf{f}_{\delta}\|^{2}/|\Delta| |\delta| \rightarrow \pi^{-2}(\mathbf{x} - \mathbf{y})^{-2}$$
 as $|\Delta|, |\delta| \rightarrow 0$,

and hence

$$\lim_{\left|\Delta\right|,\left|\delta\right|\to 0} \|E(\Delta)J\,E(\delta)\|/\big|\Delta\big|^{1/2}\,\big|\delta\big|^{1/2}\,\geq \pi^{-1}\,\big|x-y\big|^{-1}\;.$$

But F(x) = F(y) = 2, so that equality must hold in (3.1) and also $\lim \sup = \lim$.

4. AN APPLICATION

It is easy to see from the Theorem that if $\{\Delta_1, \Delta_2, \cdots\}$ is a sequence of intervals for which $|\Delta_n| \to 0$ as $n \to \infty$ and if δ is a fixed interval satisfying the conditions

(4.1)
$$\operatorname{dist}(\Delta_{n}, \delta) > \operatorname{const} > 0,$$

then

(4.2)
$$\| \mathbf{E}(\Delta_n) \mathbf{J} \mathbf{E}(\delta) \| \to 0 \quad \text{as } n \to \infty.$$

On the other hand, it is not clear what happens when (4.1) is replaced by the weaker hypothesis that $\Delta_n \cap \delta = \emptyset$. We now turn to this question and, for definiteness, consider the operators $E((-\infty, 0)) J E((0, 1/n))$ and $E((-1/n, 0)) J E((0, \infty))$.

COROLLARY OF THE THEOREM. Let T = H + iJ be hyponormal, where H has the spectral resolution (1.4) and F(t) is defined by (1.7). If

(4.3) either
$$\int_{-\infty}^{0-} x^{-1} F(x) dx < \infty$$
 or $\int_{0+}^{\infty} x^{-1} F(x) dx < \infty$,

then both

(4.4)
$$\|E((-\infty, 0)) J E((0, 1/n))\| \to 0$$
 as $n \to \infty$

and

(4.5)
$$\| E((-1/n, 0)) J E((0, \infty)) \| \to 0 \text{ as } n \to \infty.$$

Proof. It will be clear that it is sufficient to prove (4.4) only. Since, by the Theorem,

$$\| E((-\infty, 0)) J E((0, 1/n)) \| \le (2\pi)^{-1} \left(\int_{-\infty}^{0} \int_{0}^{1/n} F(x) F(y) (x - y)^{-1} dx dy \right)^{1/2},$$

the relation (4.4) obviously follows whenever

(4.6)
$$M = \int_{-\infty}^{0} \int_{0}^{\infty} F(x) F(y) (x - y)^{-2} dx dy < \infty.$$

Suppose that the first relation of (4.3) holds. Since $|F(y)| \le const = c$ for all y, we see that

$$M \le c \int_{-\infty}^{0} F(x) \left[\int_{0}^{\infty} (x - y)^{-2} dy \right] dx = c \int_{-\infty}^{0} x^{-1} F(x) dx < \infty.$$

A similar argument can be used to establish (4.6) when the second relation of (4.3) holds.

5. REMARKS

Since $F(x) \equiv 0$ when |x| is sufficiently large, we see that a sufficient condition for the validity of (4.4) or (4.5) is that for some constant k>0, $F(x)/x^k\to 0$ as either $x\to 0+$ or $x\to 0-$. However, we do not know whether, for instance, either $F(x)\to 0$ as $x\to 0+$ or $F(x)\to 0$ as $x\to 0-$ (or even both) is sufficient to imply (4.4) or (4.5). Nevertheless, these relations surely cannot hold for an arbitrary hyponormal operator without some smallness restriction on F(x) near x=0. To see this, let T=H+iJ, where H and J are defined by (3.2) on $\mathfrak{H}=L^2(-1,1)$. For $n=2,3,\cdots$, let $\delta_n=(1/n,2/n)$ and $\delta_n=(-2/n,-1/n)$, and define $f_n=E(\delta_n)f_n$ by putting $f_n=\left|\delta_n\right|^{-1/2}$ on δ_n and $f_n=0$ otherwise. Then $\left\|f_n\right\|=1$, and for $x\in \Delta_n$,

$$E(\Delta_n) (Jf_n) (x) = (-i\pi)^{-1} |\delta_n|^{-1/2} \int_{1/n}^{2/n} (y - x)^{-1} dy$$
$$= (-i\pi)^{-1} |\delta_n|^{-1/2} \log[1 + (1 - nx)^{-1}].$$

Thus, $\|E(\Delta_n) J E(\delta_n) f_n\|^2 \ge \pi^{-2} \log^2(4/3) = \text{const} > 0$; hence

$$\|E((-2/n, -1/n)) J E((1/n, 2/n))\| \ge const > 0$$
 $(n = 2, 3, ...),$

so that, in particular, neither (4.4) nor (4.5) holds.

REFERENCES

- 1. K. F. Clancey and C. R. Putnam, *The spectra of hyponormal integral operators*. Comment. Math. Helv. 46 (1971), 451-456.
- 2. C. R. Putnam, Commutation properties of Hilbert space operators and related topics. Ergebnisse der Mathematik, Vol. 36. Springer-Verlag, New York, 1967.
- 3. ——, An inequality for the area of hyponormal spectra. Math. Z. 116 (1970), 323-330.
- 4. ——, A similarity between hyponormal and normal spectra. Illinois J. Math. 16 (1972), 695-702.

Purdue University West Lafayette, Indiana 47907