THERE EXIST NONREFLEXIVE INFLATIONS

Avraham Feintuch

1. INTRODUCTION

Let H be a complex Hilbert space, and let B(H) be the algebra of bounded linear operators on H. If U is a subalgebra of B(H), then Lat U represents the set of closed subspaces of H invariant under every member of U. If F is any set of closed subspaces of H, then Alg F is the algebra of bounded linear operators that leave invariant every member of F.

It is obvious that if U is a weakly closed subalgebra of B(H), and if it contains the identity operator, then $U \subseteq Alg$ Lat U.

Following P. R. Halmos, we say U is *reflexive* if U = Alg Lat U. Sufficient conditions for an algebra of operators to be reflexive were given in [9], [4], [6], [1], and other papers. Most results are obtained by means of techniques developed by W. B. Arveson [2] and D. E. Sarason [9]. It should be pointed out that the problem of classifying all reflexive algebras includes various generalizations of the invariant-subspace problem (see [7], for example).

An algebra of operators $\mathscr S$ on H is an n-inflation if there exist a Hilbert space K, a subalgebra $U \subset B(K)$, and an integer n $(1 \le n < \infty)$ such that

$$H = \sum_{i=1}^{n} \bigoplus K$$
 and $\mathscr{G} = U^{(n)} = \left\{ \sum_{i=1}^{n} \bigoplus Ai \text{ with } Ai = A \in U \right\}$.

In [8], P. Rosenthal raised the question whether every 2-inflation is reflexive. In this paper, we show that there exist 2-inflations on an infinite-dimensional Hilbert space that are not reflexive. For algebras generated by more than one operator, the answer is still unknown even in the finite-dimensional case.

I would like to thank my teacher Professor Peter Rosenthal for many valuable discussions with respect to the results of this paper. The techniques used in the proof of Theorem 1 were discovered by him and H. Radjavi [7].

2. PRELIMINARIES

By an *operator algebra* we shall mean a weakly closed subalgebra of B(H) that contains the identity operator.

Let U be an operator algebra on H. If U is reflexive, then so is $U^{(2)}$. For suppose C is an operator on $H^{(2)}$ such that Lat $U^{(2)} \subset \text{Lat C}$. Since $H \oplus \{0\}$, $\{0\} \oplus H$, and $\{\langle x, x \rangle : x \in H\}$ are all in Lat $U^{(2)}$, it follows that $C = B \oplus B$ for some B on H. Therefore Lat $U^{(2)} \subset \text{Lat B}^{(2)}$ implies Lat $U \subset \text{Lat B}$, and, since U is reflexive, B \in U.

Received November 15, 1972.

Michigan Math. J. 21 (1974).

However, in general it is quite possible for $U^{(2)}$ to be reflexive while U is not. Suppose that T is a unicellular operator on a finite-dimensional Hilbert space, and let U be the algebra generated by T and I. Then $U^{(2)}$ is reflexive (this follows from a result of L. Brickman and P. Fillmore [3]), while it is easy to see that U is not reflexive.

3. THE MAIN RESULT

Arveson [2] has shown that there exist operator algebras on an infinite-dimensional Hilbert space that contain a maximal abelian self-adjoint algebra and are not reflexive. The existence of nonreflexive 2-inflations will follow from this and the following result.

THEOREM. Let U be an operator algebra that contains a maximal abelian self-adjoint algebra. Then U is reflexive if and only if $U^{(2)}$ is reflexive.

It has been shown that reflexivity of U implies the reflexivity of $U^{(2)}$. To prove the opposite assertion, a series of lemmas is necessary. For the proofs of Lemmas 3 and 4, we refer the reader to [7].

LEMMA 1. Let U be an operator algebra and P a projection in U. If $M \in \text{Lat U}$, then $PM \in \text{Lat PUP}$.

Proof. Suppose $M \in Lat U$. Since $P \in U$, we can assert that $M \in Lat PUP$. Also, since P is a projection, M reduces P and PM is closed. If $x \in PM$, then $APx = y \in M$ and $PAPx = Py \in PM$ for all $A \in U$.

LEMMA 2. Suppose Lat $U \subset Lat\ B$. If P and Q are projections, then Lat PUQ $\subset Lat\ PBQ$.

Proof. Let $M \in Lat PUQ$, and suppose $x \in M$ and $y \in M^{\perp}$ are chosen arbitrarily. We show that (PBQx, y) = 0.

Now (PAQx, y) = 0 for all A ϵ U. Thus (AQx, Py) = 0, and {AQx: A ϵ U} is orthogonal to Py. Let N be the closure of {AQx: A ϵ U}. Then N ϵ Lat U \subset Lat B. Since I ϵ U, we see that Qx ϵ N. Therefore BQx ϵ N and (BQx, Py) = (PBQx, y) = 0.

LEMMA 3. Let T be a linear transformation (not necessarily bounded) that commutes with a maximal abelian self-adjoint algebra R, and let $\mathscr F$ be a strong basic neighborhood of the identity. Then there exists $P \in \mathscr F \cap R$ such that $PTP \in R$.

LEMMA 4. Let M be a subspace of H, and let U be an operator algebra. If in every strong neighborhood $\mathcal S$ of the identity there exists a projection P commuting with the projection onto M such that PM ϵ Lat PUP, then M ϵ Lat U.

LEMMA 5. Let T be a normal operator. Suppose U is an operator algebra and B is an operator such that Lat $U \subset Lat B$. If AT = TA for all $A \in U$, then BT = TB.

Proof. Since AT = TA for all $A \in U$, each $A \in U$ commutes with every spectral projection of T. Since Lat $U \subset L$ at B implies that B commutes with every spectral projection of T, we see that BT = TB.

Proof of the theorem. Suppose $U^{(2)}$ is reflexive. To show that U is reflexive, it is enough to show that if B is an operator such that Lat $U \subset Lat \ B$, then Lat $U^{(2)} \subset Lat \ B^{(2)}$.

Suppose M ϵ Lat U⁽²⁾. We consider two cases.

Case 1. $M \cap (\{0\} \oplus H) = \{0\} \oplus \{0\}$; that is, $\langle 0, y \rangle \in M$ implies y = 0. Because M is a linear subspace, the second coordinate of a vector in M is linearly determined by the first coordinate. Thus, there exists a linear transformation T (possibly unbounded) such that

$$M = \{\langle x, Tx \rangle : x \in D\},\$$

where D is the domain of T.

M ϵ Lat U⁽²⁾ implies AD \subset D and AT = TA for all A ϵ U. In particular, every member of R commutes with T. Thus it follows from Lemma 3 that for each basic strong neighborhood $\mathscr S$ of the identity there exists a projection P ϵ $\mathscr S \cap R$ such that PTP is normal.

The operator $P^{(2)}$ is in every basic strong neighborhood of $I^{(2)}$. For let

$$\mathscr{L} = \{ C \in B(H^{(2)}): \|Cy_i - y_i\| < \varepsilon \text{ for } i = 1, \dots, m \},$$

where $y_i = \langle x_1^i, x_2^i \rangle$, and let

$$\mathscr{S} = \left\{ D \in B(H) \colon \left\| Dx_j^i - x_j^i \right\| < \epsilon/2 \text{ for } i=1, \, \cdots, \, m \text{ and } j=1, \, 2 \right\} \text{ .}$$

Then

$$\begin{split} \| \, P^{(2)} \, y_i \, - \, y_i \, \| \, &= \, \| \, \left\langle \, P x_1^i \, - \, x_1^i \, , \, \, P x_2^i \, - \, x_2^i \, \right\rangle \| \\ \\ &\leq \, \left\| \, P x_1^i \, - \, x_1^i \, \right\| \, + \, \left\| \, P x_2^i \, - \, x_2^i \, \right\| \, < \, 2 \epsilon / 2 \, = \, \epsilon \, . \end{split}$$

Thus $P^{(2)} \in \mathscr{L}$.

Now $P^{(2)}M \in \text{Lat } P^{(2)}U^{(2)}P^{(2)}$, and by Lemma 4, it suffices to show that $P^{(2)}M \in \text{Lat } P^{(2)}B^{(2)}P^{(2)}$.

Now $P^{(2)}M = \{\langle Px, PTPx \rangle : x \in PD \}$, where $PTP \in R$ and

$$P^{(2)}M \in Lat P^{(2)}U^{(2)}P^{(2)}$$

implies (PAP) (PTP) = (PTP) (PAP) for all A ϵ U. Thus, by Lemma 4, (PTP) (PBP) = (PBP) (PTP) and $P^{(2)}M$ ϵ Lat $P^{(2)}P^{(2)}$.

Case 2. The intersection of M with $\{0\} \oplus H$ does not consist of the zero vector alone. Let $N = \{\left\langle 0, y \right\rangle \in M \}$. Then $N \in \text{Lat } U^{(2)} \subset \text{Lat } B^{(2)}$. Let $M' = M \ominus N$. Then $M' \cap (\{0\} \oplus H) = \{0\} \oplus \{0\}$ and $M' = \{\left\langle x, Tx \right\rangle : x \in D \}$, where T is again a linear transformation (possibly unbounded). Since R is self-adjoint, R reduces N, and therefore $M' \in \text{Lat R}$. Thus T commutes with every member of R. By Lemma 3, we can find $P \in \mathscr{S} \cap R$ such that PTP is normal. Thus it again suffices to show that $P^{(2)}M \subseteq \text{Lat } P^{(2)}B^{(2)}P^{(2)}$.

Since $P^{(2)}$ leaves M' and N invariant, it follows that

$$P^{(2)}M = P^{(2)}M' \oplus P^{(2)}N = \{\langle Px, PTPx \rangle : x \in PD\} \oplus \{\langle 0, Py \rangle\}.$$

For the sake of convenience, we shall henceforth omit the letter P, with the understanding that M will really mean $P^{(2)}M$, and so forth. Then

$$M = \{\langle x, Tx \rangle : x \in E_2\} \oplus \{\langle 0, y \rangle : y \in E_1\},\$$

where T is a normal operator and E_1 , $E_2 \in Lat U$.

If AT = TA for all A ϵ U, Lemma 5 implies BT = TB, and there is nothing more to prove. Therefore we assume that there exists some A ϵ U such that AT \neq TA. Then, if $\langle x, Tx \rangle \epsilon$ M,

$$A^{(2)}\langle x, Tx \rangle = \langle Ax, TAx \rangle + \langle 0, (AT - TA)x \rangle,$$

where $\langle 0, (AT - TA)x \rangle \in N$.

Since $T \in R$, $(AT - TA) \in U$ and $(AT - TA) \times E_2$. Therefore $(AT - TA) \times E_1 \cap E_2$. Let $F = E_1 \cap E_2$. Since $F \in Lat \ U$ and $T \in R$, F reduces T. Observe that in $M' \oplus N$ we can write

$$M' = \{ \langle x, Tx \rangle : x \in E_2 \oplus F \} \oplus \{ \langle x, Tx \rangle : x \in F \},$$

$$N = \{ \langle 0, y \rangle : y \in E_1 \oplus F \} \oplus \{ \langle 0, y \rangle : y \in F \}.$$

An examination of the second direct summands of M' and N shows that (Tx, y) = 0 for all x, y \in F. Thus T = 0 on F, and

$$\mathbf{M} = \{ \langle \mathbf{x}, \mathbf{T} \mathbf{x} \rangle \colon \mathbf{x} \in \mathbf{E}_2 \oplus \mathbf{F} \} \oplus \{ \langle \mathbf{0}, \mathbf{y} \rangle \colon \mathbf{y} \in \mathbf{E}_1 \oplus \mathbf{F} \} \oplus \mathbf{F}^{(2)}.$$

Let Q be the projection onto F^{\perp} . Since $F^{(2)} \in \text{Lat } B^{(2)}$, it is enough to show that $Q^{(2)}M \in \text{Lat } Q^{(2)}B^{(2)}Q^{(2)}$. Now

$$Q^{(2)}M = \{\langle x, Tx \rangle : x \in E_2 \ominus F\} \oplus \{\langle 0, y \rangle : y \in E_1 \ominus F\},$$

and it is clear that $Q^{(2)}M \in \text{Lat }Q^{(2)}U^{(2)}Q^{(2)}$. Since $(E_1 \bigcirc F) \cap (E_2 \bigcirc F) = 0$, it follows that (QAQ)T = T(QAQ) for all $A \in U$. Thus, by Lemma 5, (QBQ)T = T(QBQ), and the proof is complete.

COROLLARY. There exists a 2-inflation that is not reflexive.

4. REMARKS

- 1. Whether every singly generated 2-inflation is reflexive is not known. A positive answer would lead to a number of existence theorems for invariant subspaces. One example: If the algebra generated by an operator A and the identity is not maximal abelian, then A has an invariant subspace.
- 2. It is not known whether there exist 2-inflations on a finite-dimensional Hilbert space that are not reflexive.
 - 3. A sufficient condition for a 2-inflation to be reflexive is given in [5].

REFERENCES

- 1. W. B. Arveson, A density theorem for operator algebras. Duke Math. J. 34 (1967), 635-647.
- 2. ——, Invariant subspaces and spectral synthesis (to appear).
- 3. L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation. Canad. J. Math. 19 (1967), 810-822.
- 4. J. Deddens and P. Fillmore, *Reflexive linear transformations*. Linear Algebra and Appl. (to appear).
- 5. A. Feintuch, On para-unicellular operator algebras. Indiana Univ. Math. J. (to appear).
- 6. H. Radjavi and P. Rosenthal, On invariant subspaces and reflexive algebras. Amer. J. Math. 91 (1969), 683-692.
- 7. ——, A sufficient condition that an operator algebra be self-adjoint. Canad. J. Math. 23 (1971), 588-597.
- 8. P. Rosenthal, *Problems on invariant subspaces and operator algebras*. Coll. Math. Soc. Janos Bolyai, 1970, 479-487.
- 9. D. Sarason, *Invariant subspaces and unstarred operator algebras*. Pacific J. Math. 17 (1966), 511-517.

University of the Negev Beer-Sheva, Israel