THERE EXIST NONREFLEXIVE INFLATIONS
Avraham Feintuch

1. INTRODUCTION

Let H be a complex Hilbert space, and let B(H) be the algebra of bounded
linear operators on H. If U is a subalgebra of B(H), then Lat U represents the set
of closed subspaces of H invariant under every member of U. If F is any set of
closed subspaces of H, then Alg F is the algebra of bounded linear operators that
leave invariant every member of F.

It is obvious that if U is a weakly closed subalgebra of B(H), and if it contains
the identity operator, then U C Alg Lat U.

Following P. R. Halmos, we say U is reflexive if U = Alg Lat U. Sufficient
conditions for an algebra of operators to be reflexive were given in [9], [4], [6], [1],
and other papers. Most results are obtained by means of techniques developed by
W. B. Arveson [2] and D. E. Sarason [9]. It should be pointed out that the problem
of classifying all reflexive algebras includes various generalizations of the invariant-
subspace problem (see [7], for example).

An algebra of operators & on H is an n-inflalion if there exist a Hilbert space
K, a subalgebra U C B(K), and an integer n (1 <n < ) such that

n

n
H=2 ®K and =10 ={2 ®Ai with Ai=AecU
i=1 i=1

In [8], P. Rosenthal raised the question whether every 2-inflation is reflexive. In
this paper, we show that there exist 2-inflations on an infinite-dimensional Hilbert
space that are not reflexive. For algebras generated by more than one operator, the
answer is still unknown even in the finite-dimensional case.

I would like to thank my teacher Professor Peter Rosenthal for many valuable
disqussions with respect to the results of this paper. The techniques used in the
proof of Theorem 1 were discovered by him and H. Radjavi [7].

2. PRELIMINARIES

By an operator algebra we shall mean a weakly closed subalgebra of B(H) that
contains the identity operator.

Let U be an operator algebra on H. If U is reflexive, then so is U(2), For
suppose C is an operator on H(2) such that Lat U(2) ¢ Lat C. Since H® {0},
{0} ®H, and {<x, xY:x € Hf are all in Lat U(2), it follows that C = B(® B for

some B on H. Therefore Lat U(2) = Lat B(2) implies Lat U c Lat B, and, since U
is reflexive, B € U,
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However, in general it is quite possible for U(2) to be reflexive while U is not.
Suppose that T is a unicellular operator on a finite-dimensional Hilbert space, and
let U be the algebra generated by T and I. Then U(2) is reflexive (this follows
from a result of L. Brickman and P. Fillmore [3]), while it is easy to see that U is
not reflexive.

3. THE MAIN RESULT

Arveson [2] has shown that there exist operator algebras on an infinite-dimen-
sional Hilbert space that contain a maximal abelian self-adjoint algebra and are not
reflexive. The existence of nonreflexive 2-inflations will follow from this and the
following result.

THEOREM. Lef U be an operalor algebra that contains a maximal abelian self-
adjoint algebva. Then U is reflexive if and only if U(2) is reflexive.

It has been shown that reflexivity of U implies the reflexivity of u(2), To
prove the opposite assertion, a series of lemmas is necessary. For the proofs of
Lemmas 3 and 4, we refer the reader to [7].

LEMMA 1. Lel U be an opervator algebva and P a projection in U, If
M € Lat U, then PM € Lat PUP.

Proof. Suppose M ¢ Lat U. Since P € U, we can assert that M € Lat PUP.
Also, since P is a projection, M reduces P and PM is closed. If x € PM, then
APx =y € M and PAPx = Py € PM for all A € U.

LEMMA 2. Suppose Lat U C Lat B. If P and Q ave projections, then
Lat PUQ C Lat PBQ.

Proof. Let M € Lat PUQ, and suppose x € M and y € M! are chosen arbi-
trarily. We show that (PBQx, y) = 0.

Now (PAQx, y) =0 for all A € U. Thus (AQx, Py) =0, and {AQx: A € U} is
orthogonal to Py. Let N be the closure of {AQx: A € U}. Then N € Lat U C Lat B.
Since I € U, we see that Qx € N. Therefore BQx € N and (BQx, Py) = (PBQx, y) = 0.

LEMMA 3. Let T be a linear transformation (ot necessarily bounded) that

commutes with a maximal abelian self-adjoint algebra R, and let & be a stvong
basic neighborhood of the identity, Then theve exists P € & N R such that PTP € R.

LEMMA 4. Let M be a subspace of H, and let U be an operator algebra. If in
every stvong neighbovhood & of the identity theve exists a projection P commuling

with the projection onto M such that PM € Lat PUP, then M € Lat U.

LEMMA 5. Let T be a novmal opevatov. Suppose U is an operator algebra
and B is an opevatov such that Lat U C Lat B. If AT = TA for all A € U, then
BT = TB.

Proof. Since AT =TA for all A € U, each A € U commutes with every spec-
tral projection of T. Since Lat U C Lat B implies that B commutes with every
spectral projection of T, we see that BT = TB.

Proof of the theovem. Suppose U(2) is reflexive. To show that U is reflexive,
it is enough to show that if B is an operator such that Lat U C Lat B, then
Lat U(2) c Lat B(2),

Suppose M € Lat U(2) . We consider two cases.
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Case 1. M N ({0} ®H) ={0} @ {0}; that is, <0, y> € M implies y = 0. Be-
cause M is a linear subspace, the second coordinate of a vector in M is linearly
determined by the first coordinate. Thus, there exists a linear transformation T
(possibly unbounded) such that

M = {(X,TX)ZXED},

where D is the domain of T.

M € Lat U(2) implies AD C D and AT = TA for all A € U. In particular, every
member of R commutes with T. Thus it follows from Lemma 3 that for each basic
strong neighborhood & of the identity there exists a projection P € & N R such that
PTP is normal.

The operator P(2) is in every basic strong neighborhood of 1{(2), For let

2 = {c e BH?): lCy; - yill <€ for i=1, ., m},

where y; = <xil, xi2>, and let
¥ = {D e B(H): ”Dx}—x}” <¢e/2fori=1, -, mand j=1, 2} .
Then
1Py, -yl = [ (P - xj, Pxb - X12>”
< ”Pxi1 - xll" + ”Px:l2 - XE" < 2e/2 = €.

Thus P?) ¢ 2.

) oW P(Z)l\(/IZ)e Lat 1(3(22)) U'?) p(2) | and by Lemma 4, it suffices to show that
P*“’M € Lat P'*“' B\“/ pP‘\~*/,

Now P(2)M = {{Px, PTPx): x ¢ PD}, where PTP ¢ R and
P(2) M e Lat P(2) p(2) p(2)

implies (PAP) (PTP) = (PTP) (PAP) for all A € U. Thus, by Lemma 4,
(PTP) (PBP) = (PBP) (PTP) and P(?'M ¢ Lat P(2)B(2)p(2),

Case 2. The intersection of M with {0} () H does not consist of the zero vec-
tor alone. Let N = {( 0, y> € M} Then N € Lat U(2) c Lat B(2), Let

M' = MON. Then M'n ({0} @ H) = {0} @ {0} and M' = {{x, Tx):x € D},
where T is again a linear transformation (possibly unbounded). Since R is self-
adjoint, R reduces N, and therefore M' € Lat R. Thus T commutes with every
member of R. By Lemma 3, we can find P € & N R such that PTP is normal.
Thus it again suffices to show that P(2)M c Lat P(2) B(2) p(2)

Since P(2) leaves M' and N invariant, it follows that
p2)m = PRIM @ PR2IN = {{Px, PTPx): x ¢ PD} @ {0, Py)}.

For the sake of convenience, we shall henceforth omit the letter P, with the
understanding that M will really mean P(Z)M, and so forth. Then
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M={(x Tx):xe B} @{{0,y):yeE ]},

where T is a normal operator and E,, E, € Lat U.

If AT =TA for all A € U, Lemma 5 implies BT = TB, and there is nothing
more to prove. Therefore we assume that there exists some A € U such that
AT # TA. Then, if {x, Tx ) € M,

AR)(x, Tx ) = (Ax, TAx ) + {0, (AT - TA)x ),

where (0, (AT - TA)x> € N.

Since T € R, (AT - TA) € U and (AT - TA)x € E. Therefore
(AT-TA)xe EjNE,. Let F=E; NE,. Since F € Lat U and T € R, F reduces
T. Observe that in M'(H N we can write

M = {(x, Tx>:xe Ez@F}@{<x, Tx>:x€ F},
N={{0y):yeE OF}®{{0,y):yeF}.

An examination of the second direct summands of M' and N shows that (Tx, y) =0
for all x, y € ¥, Thus T =0 on F, and

M= {{x, Tx):xe E, OF}®{(0, y)ye E,OF DF?,

Let Q be the progection onto FL. Since F(2) e Lat B(2) , it is enough to show
that Q(2)M € Lat Q2)B(2)Q(2) | Now

QIm = {{x, TX ): X € Ez@F}@{<0, y>:y € E, OF},

and it is clear that Q(2)M e Lat Q(2)U(2)Q(2), Since (E) O F) n(E2(OF) =0, it
follows that (QAQ) T = T(QAQ) for all A € U. Thus, by Lemma 5, (QBQ) T = T(QBQ),
and the proof is complete.

COROLLARY. Theve exists a 2-inflation that is not reflexive.

4., REMARKS

1. Whether every singly generated 2-inflation is reflexive is not known. A posi-
tive answer would lead to a number of existence theorems for invariant subspaces.
One example: If the algebra generated by an operator A and the identity is not maxi-
mal abelian, then A has an invariant subspace.

2. It is not known whether there exist 2-inflations on a finite-dimensional Hilbert
space that are not reflexive.

3. A sufficient condition for a 2-inflation to be reflexive is given in [5].
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