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1. INTRODUCTION

All objects in this paper are in the PL category. Let h be a periodic homeo-
morphism of a space M. The cyclic group generated by h shall be denoted by <h>

Two actions of <h> and ( h' > on M are said to be conjugate if there exists a
homeomorphism t of M such that <tht'1> = (h' > In this case, h and h' are
called weakly equivalent. If tht-1 =h', then h and h' are said to be equivalent.

E. E. Moise [11] and F. Waldhausen [17] have shown that up to weak equiva-
lences, the 3-sphere S3 admits exactly one orientation-preserving homeomorphism
of even period with nonempty fixed-point set (see P. A. Smith [15] and Kim [4] for
alternative proofs). In the present paper, we show that up to weak equivalences S3
admits exactly one orientation-reversing homeomorphism of period 4k. It follows
that there are exactly four Z4-actions on S3, up to conjugation (see P. M. Rice [13]
for free actions and Kim [4] for semi-free actions). Therefore, all Z,,-actions
(n < 2) on 83 are classified (for Z,-actions, see [8], [9], and [17]). We show
further that no lens space L(p, q) (p > 2) admits an orientation-reversing homeo-
morphism of period n for all n # 4. We also discuss some free involutions on a
lens space L(p, q). '

Let h be a homeomorphism of period n on L = L(p, q). Then there exists a
homeomorphism h of L/ <hk> , uniquely determined by h, such that ﬁg = gh, where
g: L — L/(hk> is the orbit map generated by < hk>. We call h the homeomor-
phism on L/< hk> induced by h. We say that h is sense-preserving if hy in-
duces the identity on H;(L). We shall denote the fixed-point set of h by Fix (h).
Note that if h is orientation-reversing, then n must be even, and Fix(h) # ¢ by the
Lefschetz fixed-point theorem.

2. ACTIONS ON §3

Consider S3 as a subset of C2, defined by {(z;, z,) € C2|z;2; +2,2, = 1}.
Define an orientation-reversing homeomorphism T of S3 by T(zy, z;) = (wz; , Z),
where w = e27i/n and n is even. We call T the standard homeomorphism (of
period n). Remark 2.1 may be helpful in elucidating the meaning of Theorem 2.2.

Remavrk 2.1. Let ¢ be an orientation-preserving homeomorphism of period n
on S3 and with Fix(¢) # @. It is known [11] that Fix(¢) is a simple closed curve.
By Waldhausen [17], Fix(¢) is unknotted for n = 2, and it is unknotted for n = 2k for
all k. A well-known conjecture, due to P. A. Smith, asserts that Fix(¢) is unknotted
for all n (see S. Eilenberg [1]). It can be seen that the fixed-point set of each
orientation-reversing periodic homeomorphism on S3 consists of two points. In
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Theorem 2.2, h? is obviously an orientation-preserving homeomorphism whose
fixed-point set is a simple closed curve. All orientation-reversing involutions on
S3 (the case n = 2) are known [9].

THEOREM 2.2. Let h be an ovientation-reveysing homeomorphism of period
n> 2 on S3. If Fix(h2) is unknotted, then h is weakly equivalent to the standard
homeomorphism. ,

Proof. Since n must be even, n = 2k for some k. Let h; and h, be two orien-
tation-reversing homeomorphisms of period n. Let F; = Fix (hiz) and
M; = S3/{h?), and let g;: 8> — M; be the orbit map (i = 1, 2). It is known that M;
is homeomorphic to S3 and 7;(M; - gi(F;)) = Z (see [4]). Let h; be the homeo-
morphism on M; induced by h;. Then h;j is an orientation-reversing involution.
Therefore, Fix(h;) must consist of two points, say xj; (j = 1, 2). Let g(xij) = yij
and g;(F;) =J;. Then h; interchanges the two open arcs J; - {y;1, yi>| and
ﬁi(yij) = yij- Take invariant balls Bjj in M; containing y;j such that Bj; N B2 = @.
Let C; =cl(J; - B;; - B;p). Let K; be an invariant regular neighborhood of C; in
cl(M - B;; - B;y) such that K; U B;; U Bj2 is a regular neighborhood of J;. Then
K; has two components, say N; and N; (see Figure 1), and h; interchanges Nj and
N. Let U; = Bj; U Bj, UN; U N;. Since 7;(M; - U;) = Z, one can show by a result
of J. Stallings [16] that c¢1(M; - U;) is a solid torus. Therefore we may reparame-
trize cl(M; - U;) in terms of A; X1 so that

dA;XI ~ 9K; N9U;, A;X0 ~ cl(dB;; - N;-Ni), A;X1 = cl(dBjp - N; - Nj)

(see Figure 2), where each A; is an annulus. It is known [5] that there exists an in-
volution @ on A; such that the product structure on A; X1 can be defined so that
hi(x, t) = (a(x), t) for x € A; and 0 <t < 1. Furthermore, by the argument in [5],
we may choose an equivalence t' between the old and the new h; such that

t(c1(dBjj - N; - Nf)) =A;X 0 if =1 and A; X 1 if j = 2. Therefore, since h; | B;
is essentially the cone over h; | aB; (see [9]), there exists an equivalence t between
h, and h, such that tg(F;) = g»(F,). Since 71(M; - g;(F;)) = Z, one may conclude
by the lifting theorem that h; and h, are weakly equivalent in the usual way.

By Remark 2.1, we have the following corollary.
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COROLLARY 2.3. Up to weak equivalences, theve is exactly one ovientation-
reversing homeomovphism of peviod 4k on S3 .

It is known that up to conjugation, there exist only one free action [13] and only
one semifree action [4] on S3. Therefore, we have the following result.

THEOREM 2.4. Up to conjugation, S3 admits exactly four 7. 4-actions.

3. ACTIONS ON L(p, q)

Define a homeomorphism T of period p on S3 by T(z;, z;) = (wz, 0wlz)),
where w = e27/P and p, q are relatively prime. We consider the lens space
L(p, q) as the orbit space S3/<T > K. W. Kwun [6] showed that no lens space

L(p, q) (p> 2) admits an orientation-reversing involution. Motivated by this, we
shall show the following.

THEOREM 3.1. No lens space L{p, q) (p > 2) admits an orientation-veversing
homeomovrphism of period n for all n + 4.

LEMMA 3.2. Every homeomorphism h on L = L(4s, q) is ovientation-
presevving.

Proof. Let hi#(a) =ka for a € 7j(L). Then k must be odd. Therefore,
k2 = 1 (mod 4). By a result of P. Olum (see [12, p. 467]), k% = deg h (mod 4s).
Hence, deg h = 1 (mod 4), and h is orientation-preserving.

Proof of Theorvem 3.1. Let h be an orientation-reversing homeomorphism of
period n on L = L(p, q) (p > 2). By the Lefschetz fixed-point theorem, Fix (h) # Q.
Obviously, n is even, say n = 2km for some odd m. If k = 1, there exists an
orientation-reversing involution on L, which is a contradiction. Therefore, k > 2
(if k =2, then m > 1, since n # 4). Let hg(a) =ra for a € 7m,(L). Then
r2 = deg h (mod p) [12]. Therefore, h* is sense-preserving. Let g: S3 — L be the
natural projection, and let Fy be a component of Fix(h2). Then Fg C Fix(h4%).

Since h? is sense-preserving, g-1(F;) is connected (use an argument similar to that
used in [7]). Let y be a point of S3 such that g(y) € Fy. Then there exists a lift-

ing homeomorphism R of period 25-1m on S3 such that gh =h2g and f(y) = y.
Since g-1(F,) is connected, Fix (h) = g-1(Fy). Since h is of even period, an easy
application of Waldhausen’s result [17] shows that g-1(F;) is unknotted. Therefore,
71(83 - g-1(Fy)) = Z, and it can be seen that 7,(L - Fy) = Z (for a proof, see [7]).
Let T=h™. Then T is an orientation-reversing homeomorphism of period ok
Since Fix(h?) C Fix(T?2), we see that F C Fix(T?).

Consider first the case where p is odd. Since p and the period of T2 are rela-
tively prime and 7;(L - Fg) = Z, the orbit space L/<T2> is homeomorphic to
L(p, q') for some q' [4] (in fact, Fy = Fix (T2) in this case). Let T be the homeo-
morphism on L/<T2> induced by T. Then T is an orientation-reversing involution
on L(p, q') (p > 2), which is a contradiction.

Now let p be even; then, by Lemma 3.2, p = 2p' for some odd p'> 3 (note that

i k-1
p > 2). Since F( C Fix(T2), we see that Fg C Fix(T2) (1 <1i <k). Since T2 is
an orientation-preserving involution on L(2p', q) and 7 (L - Fy) = Z, the orbit space

k-1 -~
M = L/<T2 > is homeomorphic to L(p', q') for some q', and 7,(M - g(F)) = 7,
where g: L — M is the orbit map [3]. Since k - 1> 1, the induced homeomorphism
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T on L/<T2k_1> by T is orientation-reversing and of period 2¢ for some £ > 1.
Since g(F,) C Fix(T?2), we can now return to the case where p is odd. This com-
pletes the proof.

Remark 3.3. Let h be a homeomorphism of period 4 on L = L(p, q), where p
is a prime of the form 4¢ + 3. Since h# =1 and the automorphism group on Z; is
Z,.1 , the order of hy is 1 or 2. Therefore, deg h =1 (see [12, p. 461]) and h
must be orientation-preserving. Hence, a lens space L(p, q) does not admit an
orientation-reversing homeomorphism of period 4 if either p = 0 (mod 4) or p has
a prime factor of the form 4¢ + 3.

Now we discuss some properties of sense-preserving free involutions on
L(p, q). All sense-preserving involutions on L(p, q) with nonempty fixed-point sets
are known ([3], [6], [7]).

PROPOSITION 3.4. A free involution h on L = L(p, q) iS sense-presevving if
and only if w 1(L/< h>) is abelian.

Proof. Let o be any path class in L based at X . Consider a path class
w-hga -w-!-a-l, where w is a path joining xq to h(xp). Suppose that h is
sense-preserving. Since 7(L) is abelian, w - hga rw-1l.a-1=1¢€ Z,=m(L).
On the other hand,

gplw - hga -0l -al) = gplw] - gpo - (g#[w])'l (gua)t,

where g is the orbit map induced by h. Hence, letting a = g4[w] and b =gua, we
see that aba-lb-1=1. Since b ¢ gan (L), the group nl(L/<h>) must be abelian.

Conversely, if 7,(L/ <h>) is abelian, one can reverse the argument to complete the
proof.

COROLLARY 3.5. If p is odd, then every free involution h on L = L(p, q) is
sense-presevving.

Proof. Let G =m,(L/ < h>). Then we have the obvious short exact sequence

0—7Zp L G g Z, — 0. Since the order of G is 2p, the group G has an element

of order 2. Since G acts freely on S3, it follows from a theorem of J. Milnor [10]
that B is in the center of G. Since p is odd, g(8) # 0. Therefore, G must be
abelian. Now the result follows from Proposition 3.4.

THEOREM 3.6. Let h be a sense-presevving free involution on L = L(p, q),
where p =4k for some k. Then the ovbil space L/(h) is a lens space L(2p, q'),
where q'q=+1 0r q' = +q (mod p). All such q' can occur. Accordingly, up to
equivalences, those free involutions h on L ave completely determined by the set of
nonhomeomovphic lens spaces L(2p, q'), where q'q = £1 or q' = +q (mod p).

Proof., Let h be a‘free involution on L = L(p, q), where p = 0 (mod 4), and let
M= L/<h>. Suppose that 7; (M) is abelian. Then, since the order of 7;(M) is 2p,
we see by a result of D. B. A. Epstein [2] that 7,(M) = Z,,. We may assume that
71 (M) acts freely on S3 and admits 7;(L) as a subgroup. Let t be a generator of
71(M). Then t2 is a generator of m(L). Hence, t? is equivalent to an orthogonal
transformation. Recently, G. X. Ritter [14] showed that if <t> acts freely on S3
and t2 is equivalent to an orthogonal transformation, then t is also equivalent to an

orthogonal transformation. Therefore M is a lens space L(2p, q'), for some integer
q'. Define a homeomorphism T of S3 by T(z;, z;) = (eTi/Pz, e72'i/Pz,). Then
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the orbit space S3/<T2> is L(p, q"), and L(p, q') = L(p, q). Recall that L(p, q")
and L(p, q) are homeomorphic if and only if q'q = £1 or q' = +q (mod p). Hence
q'q=+1or q'=+q (mod p).

Conversely, consider a lens space L(2p, q'), where q'q = +1 or q' = +q
(mod p). Since q'q = +1 or q' = +q (mod p), there exists a homeomorphism k of
L(p, q) onto L(p, q'). Notice that some free involution h on L(p, q') is a covering

transformation of L(2p, q'). Define a free involution h on L(p, q) by h = k-1hk.
Then the orbit space L(p, q)/< H} is homeomorphic to L(2p, q'). Notice that two
free involutions on L(p, q) are equivalent if and only if their orbit spaces are home-
omorphic. Therefore, the result follows from Proposition 3.4.

Finally, we remark that for each pair p, q there exists a sense-preserving free
involution on L(p, q).
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