THE VOLUME OF A SMALL GEODESIC BALL
OF A RIEMANNIAN MANIFOLD

Alfred Gray

1. INTRODUCTION

Let M be an analytic Riemannian manifold. For m € M, let Vi (r) denote the
volume of a geodesic ball centered at m with radius r. Then V,,(r) can be ex-
panded in a power series in r. In this note we compute the first five terms in this
expansion. Our computation shows, for example, that if the Ricci scalar curvature
of M is positive, then for small r, V,,(r) is less than the corresponding function
for Euclidean space. More generally if M is a C* Riemannian manifold, we can
compute the Taylor expansion of V., (r), although it may not converge.

In order to compute the Taylor expansion of V,,(r), it is necessary to discuss
general power series expansions of tensor fields in normal coordinates. In Section
2, we present a method for computing such expansions in modern notation. The co-
efficients of the power series expansions are polynomials in the covariant deriva-
tives of the tensor fields and the curvature tensor.

Normal coordinate power series expressed in terms of the curvature operator
occur implicitly in the classical literature of differential geometry, for example in
books and papers by E. Cartan [5], L. P. Eisenhart [7], T. Y. Thomas [15], O. Veblen
[16], and Veblen and Thomas [17]. Also, explicit formulas are given by A. Z. Petrov

[11].

I know of several uses for power series expansions in normal coordinates, and
probably there are many more. For example, such expansions have been used in the
theory of harmonic spaces (see [12], for example) and in determining the asymptotic

-t
expansion for 2ie i , where the X\; are the eigenvalues of the Laplacian of a com-
pact Riemannian manifold.

Recently, P. Gilkey [8] also used them to give an analytic proof of the index
theorem.

In Section 3, we use the results of Section 2 to compute the power series expan-
sion of V_,(r), and we derive several consequences of this expansion. Also, using
the method of [1], we compute Vm(r) explicitly for symmetric spaces of rank 1.

The coefficient of r»*% in the expansion of V,,(r) is especially interesting.
(Here n =dim M.) It is a quadratic invariant of O(n). In Section 4, we compare it
with other quadratic invariants arising from geometrical considerations. Notable
among these are the conformal and spectral quadratic invariants and the 4~dimen-
sional Gauss-Bonnet integrand. We discuss the linear independence among these
and the quadratic invariant derived from V,,(r) described above.
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330 ALFRED GRAY
2. POWER SERIES EXPANSIONS IN NORMAL COORDINATES

We assume that M is a C* Riemannian manifold of dimension n.with metric
tensor < s > Denote by ¥(M) the C® vector fields, and let V and R be the Rie-

mannian connection and curvature operator of M. Here V and R are given by the
formulas

27y Y, 2y =x{¥,z) +¥{x, 2) - 2{X, Y)
-{x,0y,21) - (¥, [% 2]) +{z, [X Y]),

(2) Ryy = V[x,v] - [Vx Vyl

(1)

for X, Y, Z € X(M). Note that R is a tensor field but V is not. We write
p -
vX...X - vX VX-
Let m € M, and let (x;, -+, x,) be a normal coordinate system defined in a

neighborhood U,, of m with x;(m) = --- = x(m) = 0. Denote by M, the tangent

space to M at m. In terms of the exponential map exp,: Uy, — ﬁm, any normal
coordinate system of the type above is given by the formulas

n
xj(expm E)l tjuj)) = tj,

where {ul, ey un} is an orthonormal basis of M.
We shall say that X € X(M) is a coordinate vector field at m if there exist
constants a;, ***, a, such that in a neighborhood of M we have the representation
n
X = E a,lai .
i=1 Xi

Coordinate vector fields will be denoted by X, Y, -+, and their corresponding inte-
gral curves by «, 8, **-. We normalize so that «(0) = g(0) = m. Thus a, B, --- are
geodesics starting at m, and a'(t) = Xy () wherever «(t) is defined.

LEMMA 2.1. Let X and Y be coordinate vector fields, and let a be an inte-
gral curve of X. Then

(3) (V% xX)g) =0 for p=1,2, «;
(4) (Vi Y), = 0.

Proof. Since « is a geodesic, (VxX)y(t) = 0. From this, (3) follows by induc-
tion, because (v§’<__,xx)a(t) depends only on the values of Xy () and (VI;{'_.I.XX)O[ .

We always have the relation V;V - Vy, U =[U, V], for all U, V € %(M). Since X
and Y are coordinate vector fields, [X, Y] = 0. Hence VxY = VyX. Moreover,
from (3) we see that (VxY),, +(VyX),, = 0. Hence (4) follows.

LEMMA 2.2. For all p, we have the relations

P — — P
(Vyx...XX)m == (VX---XYXX)m’
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where X and Y are coordinate vector fields.

Proof. Since [X, Y] =0, equation (2) reduces to the formula

(5) RXY = _vaY +vaX'
Let

—(VX v x X o

where Y occurs in the kth place. From (5) it follows that
(6) Ap - Arr = (V24 Ryy VRS X))

The right-hand side of (6) can be expanded in terms of the covariant derivatives of R
at m. However, if 2 <k <p, each term contains a factor of the form (Vi...yxX)

By (3), each of these factors is zero. Hence A, =A; _; for 2 <k < p, and the
lemma is proved.

LEMMA 2.3. If X and Y ave coovdinate vector fields, then
2V xy X T - DV xyxX)m =0 (=12, ).
Proof. This follows from the linearization of (3), the fact that VxY =VyX, and
Lemma 2.2.
LEMMA 2.4. If X and Y are coordinate vector fields, then

-1 -1
(Vs D = - (B57) TR Ry =12, ).

Proof. By (5) and Lemma 2.3,

p+1

P
p _ 1 (VX-..XY)m

(v]};)(i'Z-XRXYX) (VX XY ) +(VX XYXX) = "(

In order to simplify the proof of the next theorems we introduce some simplified
notation. Fix a point m € M and a coordinate vector field X at m. Define D and Q
by

DY = Vx Y, QY = RxvX,
where Y is a coordinate vector field at m. Then
DPY = V8. Y and DP(QY = DPR)yyX.

Also, put D°Y =Y and D°(Q) = Q. We shall assume that all of these vector fields
are evaluated at m. In this notation, Lemma 2.4 can be restated as

DPY = - (p )Dp %(@Y).



332 ALFRED GRAY

LEMMA 2.5. DPY = - (u) DP-2(Q)Y

p+1
[p/2]-1
-1 i+l
+(Lp+1) 27 (-1)
izl 0<ky +-e- +ky <p-2i-2

p-k, - -k -2j-1 ko - e - Ky - 2i
wheretp(kl,--',k~)=( e R -(p T ]) and
k0=0.

Proof. One alternately applies Lemma 2.4 and the Leibniz rule

k
k _ k s -
pXQY) = 2 (S)D (QDE-2Y.

s=0

We omit the details.
The values of DPY for 1 < p £ 8 are the following:

ply =0, DY =-3QV, D’Y-=--1Dp@y, D'v- {-%DZ(Q%L%QZ }Y

DY - { £p%@Q +§D(Q)Q+§QD(Q)} Y

Doy = % ——D4(Q)+—D (Q)Q+ QD? (Q)+ D(Q? - = Q@ }Y,
D7Y={-§D5<Q)+§D3(Q)Q+ QD3 (Q) + DZ(Q)D(Q)+ D(Q) D?(Q)
3D( 2 1 1 .2

-7P@Q°-;WQQ-7QDQ (Y
pP8Y = { ——D(’(Q)+ D4(Q)Q+ QD*(Q) + -5 D3( )D(Q)+ S pQDQ

+ D2 (QP - %DZ(Q) @ -3 PQQ- -;— QD% (@

-2 p(QrQ - T DQQD(Q - 3 QDQ? +3 Q* }

Although these formulas are special cases of Lemma 2.5, it is easier to prove them
by using Lemma 2.4 directly.

Note that DP(Q) and DPY are polynomials of degree p + 2 in X. By standard
procedures, they can be linearized. For example, in the previous notation the
formula for D2Y becomes
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v 1
(Vax ) = -3 BxyX)
We linearize this formula and obtain the relation

1 1
(Vi Vo T Vxw Y}, = - 3RyyX) - 3 Ry Wy,

COROLLARY 2.6. Suppose M is a symmelvic space. Then
DZFrH Y =20 fO’}’ p= 0: 17 2)

(-1)P

2p -
D™y = 2p +

>=r7Q° forp=1,2,

Assume now that M is an analytic Riemannian manifold. Let W be an analytic
covariant tensor field defined in a neighborhood of m. Assume that X;, ---, X are
coordinate vector fields that are orthonormal at m. Let (x, -*-, x,) denote the
corresponding normal coordinate system. We write

W(Xal y 7Ty Xar) = Wal cee Oyt

Then we have a power series expansion

[2e] n
- 1 e -
Vo a, = 22 . E_ k! (Xil X Wa, '"ar)(m)xil i
k=0 ip,**,ip=1
Here
P = 2 p!
EWo) a)m Vil e V!
vyt tVeg=p
(8) v, 20
r+l Ve
W) (VX s ooy Vi 5K ) (m),

where X is a coordinate vector field and (x;, -*-, X,,) is a normal coordinate sys-
tem. The coefficients in the power series are symmetric in Xil Xik; therefore,

we can determine these coefficients by linearizing the left-hand side of (8). On the
other hand, Lemma 5 can be used to compute the right-hand side of (8).

By this method, it is theoretically possible to write down a general expression
for the coefficients of the power series (7) in terms of covariant derivatives of W at
m and the curvature operator of M at m. However, such an expression would be
too cumbersome to be very useful. Instead, we compute the coefficients in (7) up to
the fourth order. It will be clear that our method can be used to compute any other
coefficient.

To simplify our notation, we now write

n
P _ P _ -
V. oox. = Vi... (Rx x. X X£> = Rijer  Ryj = 2 Rijik-

?
1 J J 1] k=1
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THEOREM 2.7. We have the expansion

(m)x; x;

Q) la.-150a+] Oy J

n n r
1 3
+t= L (VW -2 2 R v
ijk Voo i js VkWa .. n_ 150 o
6 1yj:k:]~ l r S:l a:l a l a ls a+l r
n r
1
_EZ’_\ ZE VIRJ()[akS Q0 15U,y 0 (m)xlixk
s=1 a=1
n n r
1 4 >
tor L Vijke W -2 2, 27 R., . W
jkt Vo a ia js "k a a sQ e
2417.]:1{:»&:1 r s=] a=1 aJ 1 a-1 a+l r
n r
-2 E 2 V:R. VoW
s=1 a=1 ! JaakS £ al aa-lsaa+1 ar
n r
3 >0 2
- = V.:R
5 s=1 a=1 1) kaaﬂs Ayl SOy 41Uy
n r
1
+§ 27 2 Ria _js Rks!’_tvvoz1 o, jta,. | oL
s,t=1 a=1
n r
2
+ = E E R:~ :-R m)x: X+
3 1ans kabﬁtwal"'aa-lsaaH"’O“b-ltabﬂ"'ar ( )X]_XJXkXQ

s,t=1 a,b=1

4+ e

Proof. The theorem follows from Lemma 2.5. For example, we compute the
cubic term in the expansion. For this it suffices to compute X? Wy ... (m) and to
r

linearize. We obtain the function

3
s W m
1 111 al...ar( )

3
XiWg g (m) =V

n r
3
+ 2L <V111Xaa, Xs>(m)wa1...aa_lsaa+l...ar(m)

s=1 a=1
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n r
2
+3 2 2 <viiXaa: Xg ) (m) viwoal---oza_1scua+1---ozr(m)
s=1 a=1
n r
3
=9 Viii Wal o szjl aZ:)l Rlaaisviwal Q, 80 q--0,
n r
1
_E E E viRiaaisWal---aa_lsaaﬂ---ar (m)

Next we consider special cases of Theorem 2.7. Frequently, W is parallel, and
then the expansion of Theorem 2.7 becomes considerably simpler.

COROLLARY 2.8. In Theorem 2.7, assume that W is pavallel (in other words,
that all its covaviant devivatives vanish)., Then

n T
1
Wal"'ar a Wal“'ar(m) B E . .E_ Z_> (Rio‘ajs\NOII"'Ola-lscua+l"'O[r)(m)Xixj
i,j,s=1 a=1
n T

i jaakswa1°"aa-lsaa+l'“a )(m)XinXk

n n r
1 3 2
om0 -2 2 ViR
i,j,k, 0=1 O il ac1 M ka fs "o @y 150,40y
n r
1 > 2
+ = R: . R W
5 g tel a1 Qs Tkslt Tyl 0G40y
n I
2 >z
+3 Rig js B w m) X; X: X
3 ~ ~ 10, Js kabﬂt QO 18Q Oy tQy O ( ) i X3 XpXyg
s,t=1 a,b=1
a<b
n n r
1 2 3
= 2 -2 V3. R W
120 ijk*fa hs "y, 15 cee(¥
i’ij)‘Q;h:I \ 3 S:l a:l a l a 1 a+1 r
n iy
1 2
+ SEI El (§viRjaaksRﬂsh’c+§Riaajskaﬂsht) Wo oo, jto o,

n r
)
+3 D ? (ViRjy_1sRea,nt + Ria_js VicRea, nt)

s,t=1 a,b=1
a<b
W, . m) X; X;X; . Xp Xy, + o0 .
@, ysey eyt ea, () XXXk Xy
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We apply Corollary 1.8 to the metric tensor. We write gpq = <Xp, Xq> . Then
gpq(m) = bpq

COROLLARY 2.9. We have the expansion

n n
1 1
gpq = 6pq 5‘ E RipJq(m)X j 'g % viijkq(m)Xin Xy
j= =1

n
1 2 16

120 2 ~6VijRkpeq T3 Zi R Ripjs Rkq s (m) x; x5 % X g

,_} k 2 1 s=1

n n

1 3
*t90. . kEﬂ - ~VijkRgphq * 2 21 (ViR;pks Roghs T ViRjqks Riphs)
1,), K, ¢,1= s=

(M) X; XjXp X Xp +

As a second application of Corollary 1.8, we derive the power series expansion
of the volume element of M.

Assume that M is orientable. Then up to sign there is a umque n-form w such
that w(El, .-, E,) =41 for every orthonormal n-frame {El, . En}. Let

Xy, -+, X,, be coordinate vector fields that are orthonormal at the point m. Note
that Xl , **, X, need not be orthonormal at nearby points. We write
W) = O&Xp, o, X))

COROLLARY 2.10. We have the expansion

n

1 1
Wy, =1 "% E R, (m)xx "1 27 V. RJk(m)x Xk
i,j=1 i,j,k=1
n n
1 _3 1 _ 2
i:j,kwﬂ:]- a’b:l
n
1 2 3 5
i,j,k, £,h=1
n
2
-3 ?1 ViR jakbRoanp ( (M) XXX XXy
a,b=
n
1 5 A4 5
+m13kﬁzlr>1g : -7 VijkgRng + +3V§ jRkeRhg +5 ViRjkVeRng
n n
8 2 5 15
-7 a%il ViiRkatbBhagb = g RijRreRng - 73 %21 ViRjakb Vg Rhagb
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16
" 83 RiajbRkbﬂc Rhcga
a,b,c=1
n
2 23
+3 Ryj RiafbRhagb ¢ (M) X XX XpXp X, + 0o

a,b=1

COROLLARY 2.11. We have the formula

n n .
2 1 1
wl.,=1-3 Z R;j(m)x;x; - & 'E Vi Ryi{m) x; x5 Xy
i,j:l i,J,k;-"l
n n
1 6 2 4 4
+35 2 -2 ViR t3RyRke- 15 L RiajbRuatp ( (m)X;X;Xicxg
i,j,k,0=1 2,b=1
n n
1 4 _3 , 20 4
+ 130 23 -3 VigkRen T3 ViRjRen -3 21 V;RjakbRypanb
i,j,k,,h=1 2,b=1

. (m)xixjxkx£xh+ see

Remark. In [2] and [13], the power series expansion of Corollary 2.11 is derived
by a different method. Note that w%_”n = det(gi;). In[2] and [13], the authors first

expand g;; in normal coordinates, and then they compute det (gi;) by multiplying the
various power series. The two methods yield the same results.

3. POWER SERIES EXPANSIONS FOR VOLUME FUNCTIONS

Let M be an analytic Riemannian manifold, and let r > 0 be small enough so
that exp,, is defined on a ball of radius r in the tangent space M,,. We put

S_(r) = volume of {exp_ (x| x| =r},

V_ (r) = volume of {expm(x)] Ix| <r}.
Here we mean the (n - 1)-dimensional volume for S_,(r) and the n-dimensional

volume for Vm(r). Also, we write

n

n
TR) = LRy, |R|?= Z Rizjkﬂ’
i=1 i,j,k,p.zl

n n
”P(R)HZ = 2 R? AR = Laplacianof R = 27 Vizi T(R) .

ij»
i,j=1 i=1

THEOREM 3.1. Write o_ =2r(%) r(z) - Then
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S () = a r*"! {1 - %rz +§m(1;‘+—2—)(‘3 IR(|% + 8| p(®)]|?

+57(R)? - 18AR)r? +0(r6)} :

a rt
V) = 220 N1 s R IRIE 6 o)
+57(R)2 - 18AR)r* + O(r®) }

r
Proof. That V ,(r) = S S,,(t)dt is clear. Thus it suffices to compute S_ (r).
First we note that
(9) S = | *(),
expm(Sn'l {r))

where w is the volume element of M, S™~1(r) is the sphere of radius r in M, _
and i: exp, (8"~ 1(x)) = M is the 1nclus1on Now consider the mapping

j: 5771(1) — exp,, (5" H(r))
defined by j(u) = exp,, (ru). Using j to change variables in (9), we obtain the equa-
tion
= -1
(10) Sml(r) = j r*tw,  (exp, (ru))du
sn-l(1)

Let {Xl, L xn} be a normal coordinate system at m, and write x;=a;r for
i=1, .-+, n. Using Corollary 2.10, we can expand w;  ,(ru) in a power series in r,
where the coefficients are homogeneous polynomials in the a; . Thus

o0
Yp
w1...n(exp, (ru)) = 27 f)_

p:
where
n n
1 1
Yo = 1, vy =0, Y2 T -3 21 Rijaiaj’ Y3 T "9 Z ViRjeas a5y,
i:jzl i’j’k:l
n n
3.2 1 2
Yy = 27 -5 VijRkg T3 RijRkg - 5 2 RiajbRkagb( aidjaxag,
ik, 4=1 a.b=l

We have simplified the notation by assuming that all the coefficients are evalu-
ated at m. From (10), we obtain the formula
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-P
= —1 1__.
(11) s (r) = rn sz o rpdu.
p=0 P* Jgn-11)

The computation of the integrals of the 7 ; is the well-known moment problem.
First note that

5 ypdu =0 for odd indices p.

Furthermore,
1 n n -1
S 7odu = volume (sn-1(1)) = 21"(—) I‘(—) .
Sn—l(l) 2 2
Next,
n
S v2du = - 2 Rija;a;du
s L) i,j=1Ys""1(1)

-1

n
D [, atesdr(E) w(3)

because a% + e +ai = 1. To compute y,, we note that

-1
[, o= gy (1) r(3)

and
‘ -1
2,24 - 2 (l)n (2) L
Sn-l aiajdu n(n+2)r ) r 5 fori#]j.
sn-1(1)
3 1 2 5
. 2
Write Ayjg = - £ VijRig +5 RijRig - 35 27 RiajpRiagn- Then

n
1 1
a"r'; ‘S‘n_l '}/4dV - E hleﬁ‘S‘ aiajakaﬁdu

sn-1(y) n ik, 0=
3 < 1
T an+2) El Miti T +2) z (g5 + Ay + 2ig50)
n
- ?f(n—1+_2—)" 27 (g5 + Majig + i)
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6 -2 1 2.2
i =5 VijRij +3 RiiRjj+ 3 Ry

2 2
" 15 2 1 (Ri2ibRjaib T Riajb T RiajpRiain)

1

~ 15n(n +2) {-3[|r]? +8|p®)|?* +57(R) - 18AR} .

The formula for S_ (r) now follows from (11).

Note that for Euclidean space R",

Therefore we have the following consequence of Theorem 3.1.

COROLLARY 3.2. Suppose M is an analytic Riemannian manifold with positive
Ricci scalar curvature 7(R) at m. Then, for sufficiently small r > 0,

onr?

(12) Si(r) < apr?l gnd  V (r) < ~

If 7(R) is negative, then for sufficiently small yr > 0,

n
a.r

n

S (r) > ‘:Jznrn'l and vV (r) >

Remavrk. Bishop [3] has proved that if M has nonnegative Ricci curvature
everywhere, then (12) holds for all r less than or equal to the distance between m
and its cut locus. Both the hypotheses and conclusion of Bishop’s theorem are
stronger than those of Corollary 3.2. (See also [4, p. 256].)

COROLLARY 3.3. Suppose the Ricci curvature p(R) vanishes at m. Then

2.4
Smlr) = anrn'l {1 - —1'2”01:‘;|(In—_1;_—2)+0(1‘6)% s
anr® IRj%c*
Vin(r) = —— { i 120(n+2)(n+4)+o(r6)

Thus for manifolds with zero Ricci curvature, S, (r) < @ rn-1; for small r,
the number ”R”2 measures how much S,,(r) is actually less than a, r?-!,

Examples. If M is a symmetric space of rank 1, we may compute the functions
S(r) and V_ (r) explicitly. We shall now write these down for the sphere, complex
projective space, quaternionic projective space, and the Cayley plane. We can find
the corresponding formulas for the noncompact duals of these spaces by substituting
sinh for sin and cosh for cos.

1. The spheve S™(1/V\) (with constant curvature \):
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-1 -L(n—l)

S(r) = ZF(%)HI‘(%) A 2 sin® ! (Var).

2. Complex projective space cp" (with constant holomorphic sectional curva-
ture 4\):

S (r) = ————zi-—-—l sin’®~1 (VXr) cos(Var),
m-11r 2
V() = sin®® (Vr) .
n!la?

3. Quaternionic projective space QP™ (with maximum sectional curvature 41):

2n
S,(r) = T ; sin3 (2VAr) sin?n-4 (Vr),
4(2n - )12
2n
V() = il sin® (var) {2n cos?(Var)+1}.
(2n + 1) 1a%"

4. The Cayley plane Cay p2 (with maximum sectional curvature 4\):

a8

T SO | .. 8
Su(r) = 11561572 sin’ (2Vr) sin® (Var),

8
VvV, (r) = %—}—E sin!® (Var) {120 cos® (vir) + 36 cos* (VAr) + 8 cos? (Var) + 1} .

These formulas may be computed by the method of [1].

4. QUADRATIC INVARIANTS OF CURVATURE OPERATORS

If V is an n-dimensional vector space with metric < , > , let A2(V) denote the
space of 2-vectors. Then A2(V) has an induced metric. We denote by #(V) the
space of symmetric linear operators on A2(V) that satisfy the first Bianchi identity.
Then dim #(V) = % n (n? - 1).

In this section, we consider the space #,(V) of quadratic polynomials on R(V)
that are invariant under the action of O(n). In [1], it is shown that dim #,(V) = 3.
In fact, a basis of #,(V) consists of the quadratic polynomials ||R| 2, |p(R)| 2, and
7(R)? described in [2].

Another basis that arises naturally in the case dim V =4 is described in [6] and
[9]. Let G, , denote the submanifold of the unit sphere in A%(V) consisting of de-
composable vectors; then G; , is the Grassmann manifold of 2-planes in 4-space.
The sectional curvature of a curvature tensor R € (V) is the differentiable func-
tion K: Gz , — IR defined by K(¢) = (K¢, £). We also define K*: G, ,— IR by

KL (&) = <R*§, *§> , where #*: A2(V) — A2(V) is the star operator. Then the
polynomials



342 ALFRED GRAY

2
S K% dv, S KK* dv, {S KdV}
G2,2

G2,2 G2.2

2

also form a basis of 37’2(V). In fact, we have the following proposition.

PROPOSITION 4.1. Lef dim V = 4, and write L =vol(Gy ;). Then

2
T(R)? = 1%4 {S Kdv } ,
L Gz .2
2 18 2 36 2
lo®) | = I S (K° - KK)dv +—2{§ KdV} ,
Gy.2 L Gy .2

2
IR|]? = 31.:3 S (4K %+ KK*) dv -—92 {S KdV} .
Gz,2 L Gz,2

Hence S K’ dv, S KK AV, and % S
G

2
KdV} form a basis of P,(V).
Gz,2 G2,2

2,2

We now define four somewhat more complicated polynomials in Q’Z(V). Each of
them arises from geometric structure on a manifold.

Definitions. 1. The volumal quadratic polynomial is
V,(R) = -3||R|]* +8]p(®R)|* +57(R)* + 18AR.

2. The conformal quadratic polynomial is

7(R)%.

Co®) =[R2 - 25 [o®? + Gy =s)

3. The spectral quadratic polynomial is

S2(R) = ggﬁ 2|Rr|? - 2|lp®)|? + 57(R)? + 12AR}.
4. The 4-dimensional Gauss-Bonnet integvand is

X(®) = {|R[* - 4[lo®]* +7(R)*}.

The volumal quadratic form arises in Theorem 3.1. We now explain the role of
the other polynomials.

PROPOSITION 4.2. Under a conformal change of metric < , > — e20 < , >
on a Riemannian manifold M, the conformal polynomial C,(R) is tvansformed into

e 10 C,(R). Hence S C,(R)dM is a conformal invaviant. Fuvthermove,
M

C,(R) =tr (W2), wheve W is the Weyl conformal tensor. Finally, C,(R) is the only

quadratic polynomial on the space of curvature opevators with the properity of being
invariant under O(n) and being transformed by a scalar undev a conformal change
of metric on M.
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This may be proved by some lengthy calculations (see [14]).

PROPOSITION 4.3. Let M and M' be two compact Riemannian manifolds

whose Laplacians have the same eigenvalues., Denote by R and R' the curvature
opevators of M. Then

XM S,(R)dM = 5M' S,(R")dM ' .

For this, see [1], [2], [10]. Note that S AR dM = 0.
M

PROPOSITION 4.4. Let M be a 4-dimensional compact Riemannian manifold.

Then

X (M) = SM X(R) dM,

wheve x (M) denotes the Eulev chavactevistic of M.

10.

11.
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