SOME APPLICATIONS OF A THEOREM OF W. M. SCHMIDT
Masahiko Fujiwara

1. INTRODUCTION

A module M in an algebraic number field K is called degenerate if M has a
submodule N such that for some a € K, aft is a full module in some subfield K'
of K, where K' is neither the field of rational numbers nor an imaginary quadratic
field. In [3, Satz 2], W. M. Schmidt obtained the following remarkable generalization
of Thue’s theorem:

Let K be an algebraic numbeyr field of degvee at least 3, and let oy, -*-, a, be
lineavly independent elements of K. If the module generated by o , --+, a,, over the
integers Z is nondegenevale, then the equation

N(a; x; + - +a,x,) = C,
wheve N denotes the norm from K fto the rational field Q and wheve C is a va-

tional number, has only finitely many solutions in integers Xy, ***, X, .

In the present paper, we shall make certain applications of Schmidt’s theorem.
Among other things, we shall generalize and improve certain theorems of Siegel and
of Nagell. Our results are as follows.

THEOREM 1. Let h be a positive integer, and let 0 be an algebraic number of
degree n > 2h. Let N be the norm from Q(6) to Q. Then for each rational number
C, the equation

N(XO + 9}{1 + oo+ 9hXh) =C

has only a finite number of integral solutions Xgs Xy s "7ty Xy -

Siegel [4] had proved a result of this type, with the stronger hypothesis that

n >112(s§‘r1 +s), where 2s = van +1- 1.

We note that the present hypothesis n > 2h is in a certain sense best possible. For
if n = 2h, let a be a real quadratic irrational with the property that 6 = /o is of
degree n. Then the equation N(x + xp, @) = N(x¢ + x}, 01) = C does have infinitely
many solutions x¢, X, for suitable values of C, and hence the equation

N(xqg+ 0x; + --- + 6B x;) = C has infinitely many solutions.

THEOREM 2. Let n be an integer greatey than 1 that is not divisible by
2,3, or 5. Let & be a primitive nth voot of unity, and let r, s, t be rational inte-
gevs with 0 <r <s <t<n. Let N be the norm from Q(£) to Q. Then, for each
vational constant C, the equation

Nt x+ 5y +£tz) = C
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has only finitely many solutions in integers X, y, z.

The case where n is a prime has been treated by Nagell [2]. The following
example shows that our conditions on n cannot all be omitted. Suppose n = 5a for
some a > 0, and let £ be a primitive nth root of unity. Then it is easily seen that

n = £+ iR = 211 VB e Q(VE).

The equation NQ (VE)/ Q(X~+ ny) = 1 has infinitely many solutions in integers x, y,
and hence the equation N(x + £2y + £423) = 1 has infinitely many solutions in inte-
gers X, y, z. '

THEOREM 3. Suppose m and n ave integers greatey than 1 such that
0 = "Vm is of degree n. Let 8= {il y oty ih} be a set of positive integers with
0<1i; <ip <+ <iy <n. Assume that for each positive divisor d of n, S does not
contain an avithmetic progression of common difference n/d and consisting of d
terms. Then the Diophantine equation

iy e 4 gih _
wheve N denotes the norm from Q(0) to Q and wheve C is a constant, has only
finitely many solutions.

2. PROOF OF THEOREM 1

Let K =Q(6), and let M be the module generated by 1, 6, --:, 82, By
Schmidt’s theorem, we have only to show that M is not degenerate. Assume M to
be degenerate. Then, by the definition, there exists a submodule R of M such that,
for some o € K and some subfield K' of K, a® is a full module in K'. Let
K' = Q(n) be of degree s > 2. Denoting by M Q the vector space generated by M
over Q, we see that there exist w,, -+, wg, wgy; in M2 such that

aw; =1, aw,=1, -, awg,=17°"t, awg, =17°

With each wj = ajg +aj; 0 + -+ +a;, 6, where the aj;j are rational numbers, we
associate a polynomial

f-(X) = aio + a11X + eee + aihXh.

1

Here we can assume that the f;(X) (i =1, ++, s) have no common factor except con-
stants; for if f(X) is a nonconstant common factor, we can choose a suitable rational

%ﬁl and the submodule

{mwl mws}
(0)” 7 H(0) §

of M play the same role as @ and N in the arguments above. Eliminating o from
the relations above, we obtain the equation

integer m such that

2 = i = s s
WS WL Wag for i=2, -, s.
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Since 2h < n,
(X)2 =1, 1(X)fﬁl(x) for i=2, 5

as polynomials in Q[X].

It follows that if f(X) is an irreducible factor of f1 1(X) in Q[X] then f(X)
divides f;(X). This implies that each irreducible factor of f;(X) is a common fac-
tor of all the f;(X) for i=1, :-,'s. On account of our choice of f;(X), f1(X) must
be a rational number; that is, w is rational and hence a is rational. This means
that MQ contains K'. This is absurd, because it implies that there exists an ele-
ment B in K' of the form

t

B=ag+a;0+-+a 6" with 1.<t<h, a, #0.
0 1 tY. >~ > “t

But there is an integer k with h <tk <2h <n, anduﬁk does not lie in MQ.

3. PROOF OF THEOREM 2

LEMMA. Suppose n, &, r, s, t are as in Theorem 2. Then £T, £°, t* are
linearly independent over each vreal quadvatic field.

Proof of the lemma. We may divide each of £%, £5, £¥ by £%, and hence it will
suffice to prove the lemma for r = 0. We have to show the linear independence of
1, £8, ét over each real quadratic field K'. Suppose

g.c.d.(s,t) =a and s =s'a, t=t'a, n'=n/(n,a).

Put 7 = £*. Then £5=9°", £*=7t . The number 7 is a primitive root of unity of
order n',and 0 <s'<t'<n'. Note that n' is not divisible by 2, 3, or 5. We have
to show that 1, ns', nt' are linearly independent over K'. Since (s', t') =1, we
change the notation back to £, n, s, t, and see that it will suffice to show the linear
independence of 1, £5, £t if 0 <s <t<n and (s,t) = 1.

We shall do this by induction on t. The least possible value for t is 2; then,
s = 1. In this case we have to show the linear independence of 1, &, £2 over K'. If
these three elements were linearly dependent over K', £ would have degree at most
2 over K', hence degree at most 4 over the rationals. On the other hand, since £ is
a primitive nth root of unity, the degree of £ is ¢(n) > 6 since 2, 3, and 5 do not
divide n.

Suppose now that we have proved our assertion for values of t less than h,
where h > 3, and we wish to prove it for t = h. Suppose we had a relation

(1) a+b& +cth =0,

where a, b, ¢ € K' are not all zero, and where 0 <s <h <n, (s, h) =1. The auto-
morphism of Q(£) that maps & into £-1 may be extended to an automorphism of
K'(£). If we apply this automorphism to (1), we obtain the equation

(2) a' +b' S +ce P =0,

where a', b', ¢' € K' are the images of a, b, c. Multiplying (2) by £P and combining
(1) and (2) we obtain the relation



318 MASAHIKO FUJIWARA
(3) ce' -aa' - a'béS +b'cElS = 0.

Clearly, 0 <s <h and 0 <h - s <h. If we had the relation s =h - s, it would im-
ply that h = 2s and (h, s) = s, whence s =1, h = 2, a contradiction. Thus s and

h - s are distinct positive numbers less than h, with (s, h - s) =1, Since K' is
real and n is odd, £5 and £P do not lie in K', so that in (1) b # 0 and ¢ # 0, which
implies that b'c # 0. Thus (3) is a relation of linear dependence of 1, £, gh-s .
Since both s and h - s are less than h, our inductive assumption gives the desired
contradiction.

The proof of Theorem 2 is now accomplished as follows. By Schmidt’s theo-
rem, we have to show that the module M generated by £T, £5, & over Z is non-
degenerate. Otherwise there would be a submodule % of M, such that either
rank % =3 and % is proportional to a full module in a cubic field K' C K = Q(£), or
rank # =2 and N is proportional to a full module in a real quadratic field K' C K.

In the first case, M itself is proportional to a full module in K', and the ‘quo-
tient &7 /&S = £¥-S lies in K'. Thus £¥~°% would be a root of unity of degree
3 = deg K'. But since there is no integer q whose Euler quotient function equals
¢(q) = 3, there is no root of unity of degree 3. In the second case, suppose

no=a £ +a,E5+as8  and  p o= b £ b, E% + by 8t
were a basis of . Then /u € K', say 11 = ' with k' € K'. Thus
(a; - blx')£r+(a2 - by K')ES + (a3 - b3 K')Et =0,

and the lemma implies that a; = b; k', so that k' is rational and 1 = k', and u
cannot be a basis of %.

4. PROOF OF THEOREM 3

Suppose the conditions of Theorem 3 are satisfied and ¢ is the module gener-

ated over Z by o'l .- ’ 0'h. We must show that 9 is nondegenerate. Without
loss of generality, we may assume that 8 is real.

Let K' be a subfield of K = Q(8) of degree d, say. Then d | n. We see that
NK/K.(G) = gen/d, where £ is a root of unity, and since £ € K and K is real, we
conclude that £ =+1. Thus 62/d ¢ K', and since on/d g of degree d, it follows
that K' = Q(Gn/ d), We must show that M contains no submodule that is proportional
to a full K'-module.

Otherwise, there would exist a y # 0 such that

i, pon/d, ye2e/d) L gld-1)n/d)

h i :
all lie in M. Suppose pt = 2731 bikf)lk, and suppose b; # 0, say. Then poin/d)

(i=0,1, :--,d - 1) is a unique linear combination with rational ;:oefficients of
ig+i(n/d)
1, 0, -+, 6°°}, and if ig+i(%) < n, the coefficient of 6 & is by # 0, while

ig+(i-d d
if ig+1 (%) > n, then the coefficient of 9’8 (i-d){n/d) is by # 0. Thus all the
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igtj(n/d)

elements 6'8 where j satisfies the condition

0 gigﬂ(n/d) <n

lie in M, and the corresponding exponents iy + j(n/d) form an arithmetic progres-
sion in S with common difference n/d and consisting of d elements. This contra-
dicts our hypothesis on S.
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