ZEROS OF LIPSCHITZ FUNCTIONS
ANALYTIC IN THE UNIT DISC

B. A. Taylor and D. L. Williams

1. INTRODUCTION

Let D denote the open unit disc in the complex plane, and let D denote its
closure. Let Lip a be the class of functions f analytic in D and satisfying a
Lipschitz condition of order «,

(1.1) |f(z) - £(z")| < Cl|z - 2'|%.

L. Carleson [1] gave a necessary and sufficient condition for a closed set

E Cc 9D =D \ D to be the zero set of a function f € Lip a. If p(z, E) denotes the
Euclidean distance from z to E, then evidently (1.1) implies that

log |1(z)| < « log p(z, E) +log C,

and consequently

T
(1.2) S log p(ei® , E)do > -,
-

by a well-known theorem of F. Riesz. Conversely, Carleson showed that if (1.2)
holds, then there exists an outer function f such that f(eif) = 0 if and only if

eif ¢ E, and that for each integer m > 0 the function f can be constructed so that it
belongs to the class A™ of functions that are analytic in D and whose first m de-
rivatives are continuous in D. W. P. Novinger [3] and we extended this result inde-
pendently by showing that f can be constructed so that it belongs to the class

o0
A” = ﬂ m=1A™. Also, a result has recently been proved by Carleson and S. Jacobs
that implies the following: if f € A= A0, if f is an outer function, and if lf(eie)l
has 2m continuous derivatives as a function of ¢, then f € A™, This theorem yields
an easy proof of the extension of Carleson’s theorem discussed above.

In this paper, we solve the analogous problem for zero sets in D. In the follow-
ing, Z denotes a closed subset of D such that Z N D is countable. To each element

of Z N D we assign a multiplicity, and we let {z j}?:l be an enumeration of Z N D
with each element of Z N D appearing in the sequence a number of times equal to its
multiplicity. Also, p(z) (z € D) denotes the Euclidean distance from z to Z.

THEOREM. In ovder that for some a (0 < a < 1) theve exist a function
f € Lip a whose zevo set is Z (counting multiplicities), it is necessary that
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(1.3) 22 (1 - IZJ'I) <
j=1
and
1T -
(1.4) S log p(ei®)do > - .
-

On the othey hand, if (1.3) and (1.4) hold, then theve exists an f € A® whose
zevo set is Z (counting multiplicities).

Carleson [2] has established the regularity condition

T C1-z;?
5 log(z —.—g—l—z—']—l—-)dG < 4o
j:l Iel - Zjlz

-

under the weaker assumption that
N )
‘S‘ S |f'(re19)|2rdrd9 < oo .
0 -7
We wish to thank Professor Carleson for some helpful comments on Lemma 3.2.

2. PROOF OF THE THEOREM

The necessity of (1.3) is well-known, and the necessity of (1.4) follows from F.
Riesz’s theorem by the argument outlined in the introduction.

We shall now state several technical lemmas and use them to establish the
second part of the theorem. In Section 3, we shall prove the lemmas.

We suppose that the set Z and the distance function p satisfy conditions (1.3)
and (1.4). Without loss of generality, we may assume that lzj |>1/2 G=1,2, )
and p(z) < 1/2 for all z € D. Let B denote the Blaschke product

Lol

Bu)=II|21(f{;1).

j=1 J

LEMMA 2.1. If E=2 N aD and U = 3D \ E, then some infinitely diffeventiable
Junction h: U — R satisfies the conditions

(i) h(eif) >2 (e € V),
(i) [p(ei)]! - 2 <n(etf) < [p(e¥)]! +2 (¥ € 1),
(iii) for n=1, 2, -+, theve exist positive constants C, and p, such that

In®ei®)| < ¢ [pEi®] ™ ('? e v).

LEMMA 2.2. If g is a nonnegative, Lebesgue-integvable function on (-7, 7],
then some positive, infinitely differentiable function w(x) defined for x > 0 salisfies
the conditions
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(1) x lwEx) — +o as x — «,

T
w | wog(0)ds <+,
-
(iii) for n=0, 1, -+, theve exist constants C, such that
lo®ix)| < Cp(1+ |x]2) .

The function to be constructed for the proof of our theorem is the Blaschke
product B multiplied by the outer function F associated with the function

(2.1) ' #(e'f) = w(log h(e'?)),

where h is the function of Lemma 2.1 and w is the function of Lemma 2.2 when
g(0) = log h(e'?). That is, we define f = BF, where

_ 1 w ei9 +z i6
(2.2) G(z) = o 5 o Hetf)as
and
(2.3) F=e0,

We shall need estimates on the derivatives of G and of B.

LEMMA 2.3. If G is defined as above, then theve exist positive constants C,
and p_ (n=0, 1, --+) such that

16™(2)| < Culpz)] ™" (z D).
LEMMA 2.4. Theve exist positive constants C, such that
|B™(z)| < ¢ [p(z)] *™ (z2e€D;n=0,1, ).
Our final lemma concerns the distance function p.

LEMMA 2.5. If 23501 (1 - |z]) < and

m .
I= S log p(el?)do > -« ,
-7
then

T i
lim log p(re*’)dg =1.

r—1" Y-7

Proof of the sufficiency. Let B, G, and F be defined as above, and set f = BF.
By the Leibnitz formula, every derivative of f is a sum of terms of the form FH,
where H is a product of B and powers of its derivatives and powers of derivatives
of G. To show that f € A, it suffices to show that each FH is bounded in D.
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According to Lemmas 2.3 and 2.4, there exist constants C > 1 and p > 0 such
that |H(z)| < C[p(z)] P for z = rel? € D. Thus

log |H(rei?)| < -plog o(reif) +10g C ;
and therefore, by our assumption that p(rei®) < 1/2,
logt IH(reiB)] < -plog p(reif) + log C .
By Lemma 2.5, H has bounded characteristic; that is, it belongs to the class N.

Moreover, Lemma 2.5 and a well-known generalization of Lebesgue’s dominated-
convergence theorem (see [5, p. 89], for example) imply that

m : T :
lim S logt |H(rei?)| do = S log" |H(el?)| a6 .
w -

r—1- %=

Consequently, H has the factorization B; S; H;, where B; is a Blaschke product, S;
is a singular inner function, and H; is an outer function for the class N (see [4, p.
82]). Thus FH = B;S; FH], and FH is bounded in D if and only if |F(ei?)H,(el9)|
is essentially bounded. Now

| F(eif)H(elf)] = |Felf) H(el?)]| < C|Fe?)|[p(e!?)]P

Clp(ei?)]-P exp[- w(log h(ei?)] a.e.

Il

If we write w(x) = xe(x), where £(x) — +« as x — +, then

(2.4) | Fel) H (19| < Cln(eif) e toene N ity p o

It follows from (ii) of Lemma 2.1 that | F(e!?)H,(el?)| is essentially bounded.

We have demonstrated that f € A®. Since B is the Blachke factor of f, we con-
clude that {zj} is the zero set of f in D. On 9D it is clear from the definition of
F that f(z) # 0 for z € oD \ Z and that f vanishes on Z N 8D. In fact, (2.4) implies
that all the derivatives of f vanish on Z N 9D.

3. PROOFS OF THE LEMMAS
We shall prove the lemmas of Section 2 in the order in which they are stated.
For Lemma 2.1, we first note that in D the distance function p satisfies the
Lipschitz condition
lo(z + Az) - p(z)| < |az] .

Consequently, the function £(6) = p[(eie)]‘1 satisfies in each complementary interval
of 0D \ Z the weak Lipschitz condition

(8.1) |£(6 + a6) - £(8)] < 2|a6][£(6)]%,

whenever |A6| < (1/2)[f(6)]-!. Therefore, Lemma 2.1 is an immediate consequence
of the following lemma.
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LEMMA 3.1. Let f be a continuous, real-valued function defined on an open
intevval (a, b). Assume that f satisfies the weak Lipschitz condition (3.1) on (a, )
and that

(i) £(8) >2 (0 € (a, b)),
(ii) f(8) = +e as 6 —at andas 6 — b~ .

Then some veal-valued, infinitely diffeventiable function h defined on (a, b) satisfies
the conditions

(i) h(6) >2 (6 € (a, b)),
(ii') £(68) - 2 < h(6) < £(8) +2 (6 € (a, b)),

(iii') for n=1, 2, -+, theve exist positive constants Cy, independent of f, a,
and b, such that |h(®}0)| < c,[f(8)]3".

Proof. Let 6g = (a + b)/2. Define sequences {uj} and {Vj} inductively by
ug = vg = 8g and

(3.2) 41 uy - [f(uj)]-3’

(3.3) Vi = vy +[Ev)] 3,

The weak Lipschitz condition (3.1) together with (ii) implies that u; € (a, b) and
vje (a, b) (j=1,2, ). Clearly, {u;} is decreasing and {v;} is increasing. We
also note that u; — a as j — o; for if uj; — u > a, then, by taking limits in (3.2), we
deduce that u ="u - [f(u)]-3, which is a contradiction to the continuity of f on (a, b).
Similarly, vj — b as j — eo.

Construct h as follows. Choose a real-valued, nondecreasing, infinitely differ-
entiable function X defined on R with 0 < x{x) <1, x(x) =0 for x <0, and x(x) =1
for x > 1. For v; < 6 <vjy1, define

9 - .
n(6) = £(v;) + [£(v5+1) - £(v;)]x (;H—YJV)
j j

and for uj4; < 6 < uj, define

uj -0
h(6) = (u;) + [f(uj1) - £(u;)]x (m) :

Since all the derivatives of x vanish at x = 0 and x = 1, the function h is infinitely
differentiable on (a, b). That (i') is satisfied is clear from (i) and the monotonicity
of x. To see that (ii') holds, note first that for u;;; < 6 <uj,

|6 - ;] < |ujer - wy] = [fuy]?,
so that, by (3.1) and (i),
|£(6) - £(u;)| < 2[f(u;)] 3[£(u;)]? < 1.
Similar inequalities hold with v; replacing uj. Since 0 < x(x) £ 1, the inequality

i(;lili') follows. The proof of (iii') is now easy. For example, when uj+1 < 6 Luj,
en
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-0
|n)(0)| = |f(ujyy) - £uy)] (x(n)(_u.]—)

uj - uj+l [ug - wjaa|

< Culf@))|?® = Culty)/H )P [#6)1*™ < Cn2™[1(6)]°",

where C, = max {x (™)(x): - < x <+w}. This completes the proof of Lemma 3.1.
Lemma 2.2 is a statement about integrable functions; we omit the proof.

Proof of Lemma 2.3. The proof is essentially the same as for a corresponding
estimate given by Carleson in [1]. If z € D and p(z) < 8(1 - |z|), then the estimate
for

n T io .
16"™a)| = E'—S ——— #(eif)de

T . (e19 _ Z)n+

follows easily. If z € D and p(z) > 8(1 - |z|), consider the arc
{et?: a<6<p} = {ew: lew -z < —;-p(z)} c oD\ Z.
Note that because of the Lipschitz condition on p,

(3.4) peif) > Sp(z) (@< 0<B).

N =

The lemma will be proved if we obtain the desired estimate for

n! eif ;
J.(z) = — \ —————¢(eif)do
n T N (819 - Z)n+1 ’

since the estimate for G{®)(z) - J,(z) is clear.

To estimate J,(z), integrate by parts n times, obtaining the formula

n-1 - .
= - 2 (n-k-1)! -qbk(elﬁ) ) .¢k(e1a) :l
Jn(z) oo (i)k+1 T (elﬂ _ Z)n_k (el - Z)n—k

(3.5)

B .i6
1 e neoi
+(i)n1r Sa ell - 3z ¢ (e19)d9 ’

where ¢9 = ¢ and

. 3 d _ .
¢*(ef) = e71? g-g-qbk "elf) (k=1,2,,n).

We shall estimate J,(z) by the sum of the absolute values of the terms of (3.5).
First, it is easy to verify from the bounds given in Lemmas 2.1 and 2.2 that

(3.6) lo(mXeif)| < D [p(el®)] "™ (elf € V),

for some positive constants D,, and m, (n=0, 1, 2, ---). Now, since
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pleif) 2% p(z), plei®) 2-;— p(z), and

leiOé

C o] = |-y =%p(z),

it is clear that each term of the sum on the right side of (3.5) satisfies an inequality
of the desired form. Therefore, it remains only to estimate the integral in (3.5).

In this integral, let z = reit  and write
97(el?) = ¢(et) +¢(0).

By the mean-value theorem, [e(8)| <M, |6 - t|, where

- A nif
Mn—max{ld(9 (et?)]: Ol<9<ﬁ}
Thus, the integral does not exceed
(n)(eit eld "tl (n)(nit
|{n)(et)| S 9 +Mp S Idt_<_const.(|¢n(e1)|+|B-cv|Mn),
o -2

and therefore it satisfies the desired inequality, by virtue of (3.4) and (3.6).

Proof of Lemma 2.4. These estimates are very easy. A direct computation
shows that

| 3y
B'(z) = - B(z) E T3 z)(]zJ -z)’

o0
since |B(z)| <1, 27521 (1 - |z;]) <<, and |1- z;z| > |2; - z| for z € D, the
estimate for B' is clear. The higher derivatives are handled similarly.

It remains to prove Lemma 2.5. Actually, we shall prove a slightly stronger
result, namely Lemma 3.2 below. Let n(r) denote the number of elements of {z;}

in {z: |z] <r}. We claim that n(r) = O((1 - r)-1). To see this, recall that the

convergence of Ej:l (1- lzjl) is equivalent to the convergence of Ejzl log lzJ- | -1
Write this last sum as the integral M = Sl log t~!dn(t). Since n(0) = 0, we have for
every r < 1 the estimate
r r
M > SO log t~ldn(t) = n(r) log r-! +SO t~In(t)at .

M
logr-1~ 1-

LEMMA 3.2. Let Z, {zj}, p, and n(r) be defined as above. If

Thus n(r) <

r,asr—+1'
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(i) log n(r) = O (log ) as r — 17

1-r

and

71 .
1= { 10gpi%a0 > -,
-

1" -
then lim S log p(re‘e)d() = I,
-7

r—17

Proof. Tt will suffice to consider the interval 3/4 <r < 1. Let
S, = { 8 € (-m 7l p(reie) < %p(ew)},
and let SL = (-7, ]\ S,.. If X.(6) is the characteristic function of S, then

x (0)1og p(ret?) > log p(el?) - 1og4 (0 € (-7, 7]).
Further,
lim X ,(6)log p(re'%) = log p(e'®) (6 € (-7, 7]).

r—1-

Consequently, by (ii) and the dominated-convergence theorem,

lim S log p(reig)de =1.
r—1- S;.

To prove the lemma, it thus suffices to show that
lim S log p(reig)dG =0.

r—1- Sl‘

In fact, since log p(rei?) < 0 for 6 € 8., it suffices to prove that

(3.7) lim inf S log p(reif)de >0.
S

r—1-
r

To prove (3.7), we first note that p(eig) <2(1-r) forall 6 € S.. For if this is
not the case, then

p(rei®) > p(ei®) - (1-1) > 2 ple?)
which contradicts the assumption that 6 € S,.. In particular,
i0 1 .if 1
(3.8) p(ret?) < Zp(e ) < -2-(1 -r) (6¢€8,).

Hence, for each 6 € S, the disc

D.(0) = {WGD: W-reie| <-;—(1-r)}
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contains at least one point of Z. Let

= U{z ND.(8): 6 € S},
and let Z* be the set of points obtained by the radial projection of Z,. onto the circle

{z: | I = r} Let pf(relg) denote the distance measured along the cn'cle of radius
r from reif to Z . Then it is easy to see that

(3.9) p:(reie) < Vaprel?) (6 e S,) -
Now let N(r) denote the number of points in Z¥. Since

Z¥ C {z: |z 5%(1+1‘)},

it follows from (i) that

(3.10) log N(r) = O (1og 1 f r) (r—17).

Next we introduce the set
= {6 € (-7, 1] pllret?) < (V2/4)p(e'”) < (1/V2)(1 - D)} .
By (3.9), S,. C S}, and therefore
S log p:(rew)de < S log pr(relg)de < m(S,)log V2 + S log p(rew)de ,
st Se Sr
where m denotes linear Lebesgue measure. Since
S, € {6 € (-7 7k plei?) < 2(1 - 1)},

it is clear from (ii) that m(S,.) — 0 as r — 1. Thus, to prove (3.7) it suffices to
prove that

(3.11) lim inf S log pX(reif)do > 0.

r—1- S*

For later reference, we show that

(3.12) m(s% = o(1) ((log r)'1 (r —17) .

To this end, we observe that
St c {0 e (-7 7) plelf) < 2(1 - 1)};

from (ii), it follows that m(S’:.) — 0 as r — 1°. Therefore

o(1) = S . log p(et9)do < m(S¥) log 2(1 - 1) ,
S

r
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which implies (3.12).
We shall now prove that

m(S7)
2N(r) -

(3.13) S log p*(ret?)do > m(s?) log - (1 +1og 2)m(S¥) .

S*
This will suffice to prove (3.11), and hence the lemma, since by (3.10) and (3.12),

lim [m(S%) log m(8%) + m(8¥) log 2N(r))~! - (1 +log 2)m(SH)] =

r—1"

To prove (3.13), it is necessary to consider the geometry of S* and Z*. Let
r exp(ify), .-+, r exp(i6yy(r)) be the points of 7%, ordered so that

- < 0y < e < One) ST

The open set S is clearly a finite union of open intervals, say (aj, by)
(k =1, ---, m,). To estimate the integral in (3.13), it is necessary to obtain a bound
on m, . We shall show that m, < 2N(r) by showing that each interval [aj, byx] must
contain at least one 0; . Suppose this is not the case, and choose i so that

8;_1 <ayp <byp < 6; (trivial modifications may be necessary near +7). Since

ay € 0S¥, either p(eiak) = 2(1 - 1) or pr(re k) = (w/—/4)p(elak) In the first case,

it is easy to see that p¥(re X)>1-r. But pXrelf) < (1/v2)(1 - r) for all
0 € Sff , and therefore the continuity of p¥ implies that if 6 is sufficiently near ay,
then no point reif belongs to Sf. This contradicts the assumption that ay € 9Sy.

Thus p(eiak) < 2(1 - r). Similarly, p(eibk) < 2(1 - r). Consequently,
pXre®X) = (VZ/4)ple™ and  pire™H) = (VZ/4)p(e'™) .

Choose the one of ay, by that lies nearer to an endpoint of [6;_;, 6;]. To be spe-
cific, assume this point is a; , so that

pirei®) = r(0 - 0

when 6 is near a,. On the other hand, V2 p(eif)/4 is a Lipschitz function with con-
stant at most v'2/4. Thus, since r > 3/4 > v 2/4, we have the inequality

pXreif) > V2p(reif)/a

when @ is 1n (ak, k) and near ay. This contradicts the assumption that
(ay, by C S

Now, for each interval (aj, by) of S8¥, let p and q denote the integers for
which

Op <ap < Opy1 < o < b1 < bk < Oqg.

Let u(x) = x log x, for x > 0. A direct computation shows that
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by
log p:(rew)de
ak
q-1
> u(6pe1 - ax) + 22 u(6; - 6;.1) +ulby - 84.1) - (1 +1og 2) (by - az) .
i=p+

Therefore, a lower bound for

S log p:(rew)de + (1 + log 2) m(S;")
S*
r

is given by a sum of the form Ei u(e;), where the £; are positive numbers such that

2185 = m(Sy); moreover, there are at most 2N(r) terms in the sum. It is well known

that under these constraints the minimum value for such a sum occurs when all the
€; are equal. Thus

S* log p¥(reif)do + (1 + log 2) m(s¥) > 2N(r) u(m(S}/2N(x)) ,

Sy

which is precisely the desired inequality (3.13).
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