INVARIANT SUBSPACES FOR ANALYTICALLY
COMPACT OPERATORS

P. R. Chernoff and J. Feldman

Let T be a bounded operator on a Banach space, and let P be a nonzero poly-
nomial. The theorem of A. R. Bernstein and A. Robinson [2] says that if P(T) is
compact, then T has a nontrivial invariant subspace. An easy generalization is that
if f is analytic in a neighborhood of the spectrum o(T) and £(T) is compact, while £
is not identically zero, then T has a nontrivial invariant subspace. A related result
of W. B. Arveson and J. Feldman {1] says that if a nonzero compact operator C is
contained in the uniform closure (T) of the polynomials in T, and if in addition T
i§ quasi-nilpotent, then T has a nontrivial invariant subspace. (This was proved in
[1] for operators on Hilbert space; several authors ([3], [4], [5]) have extended it to
arbitrary normed spaces.) One might hope to generalize all these results by elimi-
nating the hypothesis of quasi-nilpotence in the last theorem. Although we have not
done so, we have produced another fragment of evidence in this direction, namely,
the following.

THEOREM. Let T be a bounded lineay opevator on a Banach space. Suppose that
some analytic expression in T is a nonzevo compact opevator C. Then T has a non-
trivial invariant subspace.

Before we go into the proof, we should, of course, say what we mean by “analytic
expression.” To begin with, if f is analytic in a neighborhood of ¢ (T), we call £(T)
a basic analytic expression in T. Also, if ag, a;, *** is a sequence of complex num-

bers such that 27 a.nTn converges in norm, we call this sum a basic analytic ex-
pression. By a (general) analytic expression we mean an element of the ring gener-
ated by the basic analytic expressions. A general analytic expression is thus an
operator of the form p(A;, ***, A), where p is a polynomial and A}, -, A, are
basic analytic expressions. (We could allow greater breadth to the concept of analy-
tic expression, as will become clear in the course of our argument, but for the sake
of simplicity we delimit it as indicated. We shall comment on this at the end of the

paper.)

Note that all the analytic expressions belong to the uniformly closed algebra
AB(T) generated by T together with the operators (A - T)-1 (A ¢ o(T)). The algebra
#B(T) is generally larger than (T), although it coincides with «(T) if o(T) hap-
pens to be a single point.

We shall need two lemmas. The first of these is a generalization of Abel’s theo-
rem to series in a Banach space.

LEMMA 1. Let Ay, Ay, A,, -+ be elements of a Banach space. Suppose that
the sevies 24 A, converges. Let 0 < 0 <u/2, and let Sy be the angular vegion

Sep = {z: |z2] <1, -0 <arg(1-2z)<8}.
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Then
[-e) [~e]
lim 27 A z" = 27 A,.
z—1 n=0 n=0

zZE€ Se

Proof. The proof mimicks the scalar case, but we give it for completeness. By

replacing Ay if necessary, we may assume that E::() A, = 0. Define
B, = Agt+tA; +--+A,, B_; =0.

If |z| <1, then

> o] [+0]
27 A z" = 2 (B, - By.1)z" = (l-z)(BO-I—Blz+B2z2+---)
n=0 n=0

(1-2)(Bg+Byz+--+Bz")+Ry(z),

where
IRu(z)| < [1-2|- sup [Bifl-(1-2)".

k>n

Now, if z € Sg, it is easy to see that |1 - z|/(1 - |z|) remains bounded as z — 1.
The lemma follows easily, since B,y — 0. ®

The next lemma establishes a boundedness property for the sum of a suitably
convergent power series.

o0
LEMMA 2. Let S(z) = Enzo a,z" be a power series convergent in an open disk

A. Assume that in addition the sevies converges on a nontrivial arc y C 0A. Then
there exist a point a € y and a numbey 6> 0 such that S(z) is bounded on the set
AN {z: |z-a| < 6}.

Proof. For notational convenience, we take A to have radius 1. If p € 94, de-
fine Ry to be the pie-shaped region

R, = {z: 0<|p-z| <1/2 and -7/3 <arg(l - z/p) <7/3}.

Then by Lemma 1, if p € v, then lim, _, ;5 ¢ R, S(z) exists. Consequently S(z) is

bounded in Ry, for each p € y. In other words

where
E, = {pe€ » |S(z)] < nforall z € Ry}.

Moreover, each E, is a closed set. Indeed, if p ¢ Ep, then |S(z)| > n for some
7 € Rp; and if q is close enough to p, clearly z € Rq as well. Thus y\E, is open.
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Now the Baire category theorem is applicable, and we conclude that some Ej,
contains an interior point a. Choose 0 > 0 so that |p - a| < 0 implies p € E,.
Then it is clear that |S(z)] <n if z € A and |z-a| <5. =

COROLLARY 2.1. By induction, the vesult above extends to the case of any
finite numbev of power sevies Sy, **, S, converging on y C 0A.

Proof of the theorem. Suppose that o(C) # {O} Then the compact operator C
has some eigenvalue Ap # 0, and since T commutes with C, the eigenspace of C cor-
responding to Ay is a finite-dimensional subspace invariant under T.

Also, if o(T) is not connected, then it is the union A U B of disjoint, nonvoid,
closed sets. If y is a smooth curve that encloses A and excludes B, then the opera-
tor

E =L S (I - T) la
2wi .

is a projection that commutes with T, and 0 # E # I; therefore the range of E is a
nontrivial invariant subspace for T.

Finally, if o(T) reduces to a single point, say A}, then C is a uniform limit of
polynomials in the quasi-nilpotent operator T - x;I; therefore, by [1], T - A1I has a
nontrivial invariant subspace, which of course works for T as well.

Thus we may assume that o(T) is connected and has more than one point, while
o(C) = {0}. The remainder of our argument is devoted to showing that this case is,
in fact, vacuous.

Liet us assume that C is given by the expression
p(£1(T), £2(T), ===, £:4(T); S1(T), S2(T), -+, Su(T)),

where f;, ---, £, are analytic functions in a neighborhood U of ¢(T) and
S1(T), -+, S,(T) are norm-convergent series of the form

[~¢]
_ ]
S,(T) = 2 a; T,

j=0 -
Now, if A € o(T), then
N N N
D@L, o, £yM); 20 agghd, ey 20 and)| < [oEN(T), =5 2 agy T, )]
j=0 j=0

N -
< ooty (T), 5 23g ag; T, ) - C)] + |o(C)],
where the last inequality is valid because the spectral radius is subadditive on com-

muting operators. But |0(C)| = 0, while the spectral radius is never greater than
the norm; therefore we have the inequality

. N . ,
|p(E (A), == E? aiir, )| < [pEr(T), -5 200 ay; T, ) - €,
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and the right-hand member converges to 0 as N — «, That is,

N .
(1) lim p(f;(A), =5 229 a;M, ) = 0,
N — o
uniformly for X € o(T).

Let A be the open disk of radius |o(T)|. Suppose that ¢(T) N A # ¢. Then, be-
cause o(T) is connected, it must contain an accumulation point in A N U, where U
is the neighborhood on which f;, f,, .-« are defined. Moreover, the series

[+ 0]
S;0) = 2 agM (1<i<n)
j=0

converge on ¢ (T) and therefore define analytic functions in A. Therefore
&) = p(E;(0), ---; 81(), --+)
is analytic on A N U. But by (1), & vanishes on 0(T). Conclusion: & vanishes

identically, because ¢(T) has an accumulation point in A N U.

Furthermore, if 0 <r <1 and r is sufficiently close to 1, then

o(rT)=r-0o(T) C ANU.
Hence
p(f,(rT), +>+; S;(xrT), ---) = &(rT) = 0.

Now, as r — 1, f;(rT) — £;(T) in norm, and by Lemma 1 it is also true that
S;(rT) — S;(T). Consequently,

C = p(f,(T), =+; SY(T), =) = lim &(rT) = 0,

r— 17

which is contrary to the hypothesis.’

The only remaining possibility is that ¢(T) is an arc 7y on the boundary of A.
But Corollary 2.1 then tells us that there exists an open set V C A such that 3V N y
is a nontrivial arc y; and such that the functions Sj(A), -+, Sp(A) are bounded on V.
It follows that

() = p(f1 (1), -5 81 (1), -=+)

is a bounded analytic function on V, and by (1) it has radial boundary value 0 on 7;.
Hence, by a well-known fact about H”-functions, we deduce that & vanishes in V
and therefore in U N A. Then, as before, we have the contradiction C =0. =

Remark. From the argument above we see that we can broaden the concept of
“analytic expression” in T to include all operators of the form

C = lim &(zT),
z— 1

Z€Se
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where @ is an analytic function defined on an open set W that contains o(zT) for all
z € Sp sufficiently close to 1. Here ¢ can be any fixed positive angle.
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