# SEMIFREE DIFFERENTIABLE ACTIONS OF $S^1$ ON HOMOTOPY (4k + 3)-SPHERES

## Hsu-Tung Ku and Mei-Chin Ku

#### 1. INTRODUCTION

We shall call an action of  $S^1$  semifree if it is free outside the set F of fixed points. It is well-known that if  $S^1$  acts semifreely on a homotopy (4k+3)-sphere  $\Sigma^{4k+3}$  with fixed point set F of codimension 4, then the orbit space has a natural differentiable structure and is a homotopy (4k+2)-sphere. In this paper, we study the semifree differentiable actions of  $S^1$  on homotopy (4k+3)-spheres  $(k \ge 2)$ , the fixed point sets consisting of the homotopy (4k-1)-spheres. The only complete result in this direction is the following theorem of Montgomery and Yang [7, Theorem 3].

THEOREM. On any homotopy 7-sphere, there are infinitely many differentiably distinct, semifree, differentiable actions of the circle group  $S^1$ , each having  $S^3$  as the fixed point set.

The following five theorems are immediate consequences of the main theorem.

THEOREM 1. If there exists a semifree differentiable action of  $S^1$  on a homotopy (4k+3)-sphere  $\Sigma^{4k+3}$ , and if its fixed point set is a homotopy (4k-1)-sphere  $\Sigma^{4k-1}$  and its orbit space is a homotopy (4k+2)-sphere  $\Sigma^{4k+2}$ , then there exist infinitely many differentiably distinct, semifree, differentiable actions of  $S^1$  on  $\Sigma^{4k+3}$  with fixed point set  $\Sigma^{4k-1}$  and orbit space  $\Sigma^{4k+2}$ .

THEOREM 2. Every homotopy sphere  $\Sigma^{4k+3}$  in  $\operatorname{b} P_{4k+4}$  admits infinitely many differentiably distinct, semifree, differentiable actions of  $S^1$  with fixed point sets of codimension 4. For example, let  $\Sigma^{4k+3}_M$  and  $\Sigma^{4k-1}_M$  be the Milnor spheres of dimensions 4k+3 and 4k-1, respectively. Then, for each integer  $n \geq 1$ , the homotopy sphere  $n \Sigma^{4k+3}_M$  admits infinitely many differentiably distinct, semifree, differentiable actions of  $S^1$  with fixed point set  $n \Sigma^{4k-1}_M$ . (For the notation  $\operatorname{b} P_n$ , see [5, p. 510].)

THEOREM 3. There exist infinitely many differentiably distinct, semifree, differentiable actions of  $S^1$  on  $S^{4k+3}$  with fixed point set  $S^{4k-1}$  and orbit space  $S^{4k+2}$ .

THEOREM 4. (i) For each homotopy sphere  $\Sigma^7$  in  $4\theta_7$ , there exist infinitely many differentiably distinct, semifree, differentiable actions of  $S^1$  on  $S^{11}$  with fixed point set  $\Sigma^7$ .

- (ii) On each homotopy sphere  $\Sigma^{11}$  in  $2\theta_{11}$ , there are infinitely many differentiably distinct, semifree, differentiable actions of  $S^1$  with orbit space  $S^{10}$ .
- (iii) On each homotopy sphere in  $4\theta_{11}$ , there are infinitely many differentiably distinct, semifree, differentiable actions of  $S^1$  with fixed point set  $S^7$  and orbit space  $S^{10}$ .

Received May 22, 1968.

This work was supported by National Science Foundation Grant GP-7952X.

THEOREM 5. (i) For each homotopy sphere  $\Sigma^{11}$  in  $32\theta_{11}$ , there exist infinitely many differentiably distinct, semifree, differentiable actions of  $S^1$  on  $S^{15}$  with fixed point set  $\Sigma^{11}$ .

- (ii) Each homotopy sphere in b P  $_{16}$  admits infinitely many differentiably distinct, semifree, differentiable actions of S  $^{1}$  with orbit space S  $^{14}$ .
- (iii) On each homotopy sphere in 32b P  $_{16} \approx Z_{254}$ , there are infinitely many differentiably distinct, semifree, differentiable actions of  $S^1$  with fixed point set  $S^{11}$  and orbit space  $S^{14}$ .
- (iv) On each homotopy 15-sphere, there are infinitely many differentiably distinct, semifree, differentiable actions of  $S^1$  whose fixed point sets are of codimension 4.

The proofs used in this paper depend heavily on the results of Montgomery and Yang [8] and of Levine [6], but they are more algebraic in character. Throughout the paper, we assume  $k \geq 2$ .

#### 2. PRELIMINARIES AND NOTATION

Definition 2.1. By a standard action of  $S^1$  on  $S^{4k+3}$  we mean the following. Let

$$S^{4k+3} = \{(z_1, \dots, z_{2k+2}) \in C^{2k+2} | \sum_{i=1}^{2k+2} |z_i|^2 = 1 \},$$

and let  $S^1$  act on  $S^{4k+3}$  on the last two coordinates via the linear action  $S^1 \subset U(2)$ . Under this action, the fixed point set is  $S^{4k-1} \times \{0\}$ , which we identify with  $S^{4k-1}$ . The orbit space is easily seen to be diffeomorphic to  $S^{4k+2}$ . The imbedding of  $S^{4k-1}$  onto the submanifold  $S^{4k-1} \times \{0\}$  of  $S^{4k+3}$  is called a *standard imbedding*.

PROPOSITION 2.2 (Montgomery and Yang [8, Proposition 4]). Let  $\Sigma^{n-1}$  and  $\Sigma^{n-4}$  be homotopy spheres of dimension n-1 and n-4 ( $n \geq 7$ ), and let f be an imbedding of  $\Sigma^{n-4}$  into  $\Sigma^{n-1}$ . Then there exists a semifree, differentiable action of the circle group  $S^1$  on a homotopy n-sphere  $\Sigma^n$  whose fixed point set is diffeomorphic to  $\Sigma^{n-4}$  and whose orbit space is diffeomorphic to  $\Sigma^{n-1}$ .

Definition 2.3. We shall denote the set of isotopy classes of knotted (4k - 1)-spheres in S<sup>4k+2</sup> by  $\theta^{4k+2,4k-1}$ ; it is an infinite abelian group of rank 1 [6]. We denote the equivalence class of (S<sup>4k+2</sup>,  $\Sigma^{4k-1}$ ) by [S<sup>4k+2</sup>,  $\Sigma^{4k-1}$ ]. Let (S<sup>1</sup>,  $\Sigma^{4k+3}$ , F) be a semifree, differentiable action of S<sup>1</sup> on a homotopy (4k + 3)-sphere  $\Sigma^{4k+3}$  that has fixed point set F  $\in$   $\theta_{4k-1}$ . The equivariant diffeomorphism class of (S<sup>1</sup>,  $\Sigma^{4k+3}$ , F) is denoted by {S<sup>1</sup>,  $\Sigma^{4k+3}$ , F}. Let  $\Sigma^{4k+3,4k-1}_*$  be the totality of diffeomorphism classes {S<sup>1</sup>,  $\Sigma^{4k+3}$ , F} modulo the subset

 $\{\{S^1, S^{4k+3}, S^{4k-1}\}|$  the imbedding of  $S^{4k-1}$  into  $S^{4k+3}$  is isotopic

to the standard imbedding  $\}$ .

Denote the equivalence class of  $\{S^1, \Sigma^{4k+3}, F\}$  by  $[S^1, \Sigma^{4k+3}, F]$ . It is easy to verify that  $\Sigma_*^{4k+3,4k-1}$  is an abelian group under the connected sum operation

$$[\mathbf{S}^1, \ \Sigma_1^{4\mathbf{k}+3}, \ \mathbf{F}_1] + [\mathbf{S}^1, \ \Sigma_2^{4\mathbf{k}+3}, \ \mathbf{F}_2] = [\mathbf{S}^1, \ \Sigma_1^{4\mathbf{k}+3} \ \# \ \Sigma_2^{4\mathbf{k}+3}, \ \mathbf{F}_1 \ \# \ \mathbf{F}_2].$$

Furthermore, if there are two semifree, differentiable actions (S<sup>1</sup>,  $\Sigma_1^{4k+3}$ , F<sub>1</sub>) and (S<sup>1</sup>,  $\Sigma_2^{4k+3}$ , F<sub>2</sub>), then

$$(\Sigma_1^{4k+3} \# \Sigma_2^{4k+3})/S^1 = (\Sigma_1^{4k+3}/S^1) \# (\Sigma_2^{4k+3}/S^1).$$

Thus the subset  $\Sigma_{**}^{4k+3,4k-1}$  of  $\Sigma_{*}^{4k+3,4k-1}$  defined by

$$\Sigma_{**}^{4k+3,4k-1} = \{ [S^1, \Sigma^{4k+3}, F] \in \Sigma_{*}^{4k+3,4k-1} | \Sigma^{4k+3}/S^1 = S^{4k+2} \}$$

is a well defined subgroup of  $\,\Sigma_{*}^{4k+3,4k-1}\,.$ 

LEMMA 2.4. The groups  $\Sigma_{**}^{4k+3,4k-1}$  and  $\Sigma_{*}^{4k+3,4k-1}$  are infinite.

*Proof.* Define a homomorphism  $\phi: \Sigma_{**}^{4k+3,4k-1} \to \theta^{4k+2,4k-1}$  by

$$\phi[S^1, \Sigma^{4k+3}, F] = [\Sigma^{4k+3}/S^1, F].$$

By Proposition 2.2,  $\phi$  is onto. Since  $\theta^{4k+2,4k-1}$  is infinite,  $\Sigma_{**}^{4k+3,4k-1}$  is infinite. *Definition* 2.5. Define the homomorphisms

as follows:

$$\begin{split} \alpha \left[ \mathbf{S}^{1} \text{, } \Sigma^{4\mathbf{k}+3} \text{, } \Sigma^{4\mathbf{k}-1} \right] &= \Sigma^{4\mathbf{k}+3} \text{, } \beta \left[ \mathbf{S}^{1} \text{, } \Sigma^{4\mathbf{k}+3} \text{, } \Sigma^{4\mathbf{k}-1} \right] = \Sigma^{4\mathbf{k}-1} \text{,} \\ \gamma \left[ \mathbf{S}^{1} \text{, } \Sigma^{4\mathbf{k}+3} \text{, } \Sigma^{4\mathbf{k}-1} \right] &= \Sigma^{4\mathbf{k}+3} / \mathbf{S}^{1} \text{,} \\ \alpha^{*} &= \alpha \mid \Sigma^{4\mathbf{k}+3,4\mathbf{k}-1} \text{, } \text{ and } \beta^{*} &= \beta \mid \Sigma^{4\mathbf{k}+3,4\mathbf{k}-1} \text{.} \end{split}$$

LEMMA 2.6. (i)  $\operatorname{Im} \alpha \supset \operatorname{b} \operatorname{P}_{4k+4}$  and  $\operatorname{Im} \beta \supset \operatorname{b} \operatorname{P}_{4k}$ .

(ii) Im  $\alpha^* \supset (\text{ord } \theta_{4k+2}) b P_{4k+4}$  and Im  $\beta^* \supset (\text{ord } \theta_{4k+2}) b P_{4k}$ . In particular,

Im 
$$\alpha^{*11,7} \supset 2\theta_{11}$$
, Im  $\alpha^{*15,11} \supset 2b P_{16}$ ,  
Im  $\beta^{*11,7} \supset 2\theta_{7}$ , Im  $\beta^{*15,11} \supset 2\theta_{11}$ ,

where  $\alpha^{*4k+3,4k-1}$  means  $\alpha^{*}: \Sigma_{**}^{4k+3,4k-1} \to \theta_{4k+3}$ , and so forth.

(iii)  $\gamma$  is surjective.

*Proof.* Let us recall the explicit description of homotopy spheres in  $b P_{4k+4}$  given by Brieskorn and Hirzebruch [3], [4]:

$$\begin{split} \Sigma_{3,6n-1}^{4k+3} &= \big\{ (z_1\,,\,\cdots,\,z_{2k+3}) \in \, C^{2k+3} \big| \, \, z_1^3 + z_2^{6n-1} + z_3^2 + \cdots + z_{2k+3}^2 \, = \, 0 \,, \\ & \big| z_1 \big|^2 + \cdots + \big| z_{2k+3} \big|^2 \, = \, 1 \big\} \, \approx \, n \, \Sigma_M^{4k+3} \,. \end{split}$$

Consider the action of  $S^1$  on the last two variables of  $\Sigma_{3,6n-1}^{4k+3}$  via the representation  $S^1\subset U(2)$ , which gives  $\Sigma_{3,6n-1}^{4k-1}$  as a fixed point set and a homotopy (4k+2)-sphere as orbit space. Applying Proposition 2.2, we obtain (i). The action induces an action of  $S^1$  on the homotopy sphere (ord  $\theta_{4n+2}$ )  $\Sigma_{3,6n-1}^{4k+3}$  with fixed point set (ord  $\theta_{4n+2}$ )  $\Sigma_{3,6n-1}^{4k-1}$  and orbit space  $S^{4k+2}$ . This implies (ii), by Proposition 2.2. The particular cases follow from the fact (see [5]) that

$$\theta_7 = Z_{28}, \quad \theta_{10} = Z_6, \quad \theta_{11} = Z_{992}, \quad \theta_{14} = Z_2, \quad bP_{16} = Z_{8128}.$$

We turn to the proof of (iii). For each homotopy sphere  $\Sigma^{4k+2} \in \theta_{4k+2}$ , there exists a sequence of imbeddings

$$S^{4k-1} \rightarrow D^{4k} \rightarrow D^{4k+2} \rightarrow \Sigma^{4k+2}$$
.

Again we can apply Proposition 2.2 to the pair  $(\Sigma^{4k+2}, S^{4k-1})$  to get an element  $[S^1, \Sigma^{4k+3}, S^{4k-1}] \in \Sigma^{4k+3, 4k-1}_*$  such that

$$\gamma[S^1, \Sigma^{4k+3}, S^{4k-1}] = \Sigma^{4k+2}$$
.

*Problem:* Determine the groups Im  $\alpha$ , Im  $\alpha^*$ , Im  $\beta$ , and Im  $\beta^*$ .

### 3. THE MAIN THEOREM

LEMMA 3.1. The quotient groups  $\Sigma_*^{4k+3,4k-1}/\operatorname{Ker} \alpha \cap \operatorname{Ker} \beta$ ,  $\Sigma_*^{4k+3,4k-1}/\operatorname{Ker} \alpha \cap \operatorname{Ker} \gamma$ , and  $\Sigma_*^{4k+3,4k-1}/\operatorname{Ker} \beta \cap \operatorname{Ker} \gamma$  are finite; hence, the subgroups  $\operatorname{Ker} \alpha \cap \operatorname{Ker} \beta$ ,  $\operatorname{Ker} \alpha \cap \operatorname{Ker} \gamma$ , and  $\operatorname{Ker} \beta \cap \operatorname{Ker} \gamma$  are infinite.

*Proof.* The groups  $\Sigma_*^{4k+3,4k-1}/\mathrm{Ker}\ \alpha$ ,  $\Sigma_*^{4k+3,4k-1}/\mathrm{Ker}\ \beta$ , and  $\Sigma_*^{4k+3,4k-1}/\mathrm{Ker}\ \gamma$  are finite because

$$\begin{split} \Sigma_*^{4k+3,4k-1}/\operatorname{Ker}\,\alpha \; \approx \; & \operatorname{Im}\,\alpha\,, \qquad \Sigma_*^{4k+3,4k-1}/\operatorname{Ker}\,\beta \; \approx \; & \operatorname{Im}\,\beta\,, \\ \Sigma_*^{4k+3,4k-1}/\operatorname{Ker}\,\gamma \; \approx \; & \operatorname{Im}\,\gamma\,, \end{split}$$

and because Im  $\alpha$ , Im  $\beta$ , and Im  $\gamma$  are finite [5]. Consider the exact sequence

$$0 \to \operatorname{Ker} \, \alpha / \operatorname{Ker} \, \alpha \, \cap \, \operatorname{Ker} \, \beta \to \Sigma_*^{4k+3,4k-1} / \operatorname{Ker} \, \alpha \, \cap \operatorname{Ker} \, \beta \to \Sigma_*^{4k+3,4k-1} / \operatorname{Ker} \, \alpha \to 0 \, .$$

By the second isomorphism theorem

$$\operatorname{Ker} \alpha / \operatorname{Ker} \alpha \cap \operatorname{Ker} \beta \approx (\operatorname{Ker} \alpha + \operatorname{Ker} \beta) / \operatorname{Ker} \beta$$
,

and the right-hand member is a subgroup of the finite group  $\Sigma_*^{4k+3,4k-1}/\text{Ker }\beta$ . Similar proofs apply to the other two cases. This completes the proof of the lemma.

LEMMA 3.2. The group  $\Sigma^{4k+3,4k-1}_*/\mathrm{Ker}\ \alpha\cap\mathrm{Ker}\ \beta\cap\mathrm{Ker}\ \gamma$  is finite. Hence the group  $\mathrm{Ker}\ \alpha\cap\mathrm{Ker}\ \beta\cap\mathrm{Ker}\ \gamma$  is infinite.

Proof. The sequence

$$0 \to \frac{\operatorname{Ker} \, \alpha \, \cap \operatorname{Ker} \, \beta}{\operatorname{Ker} \, \alpha \, \cap \operatorname{Ker} \, \beta \, \cap \operatorname{Ker} \, \gamma} \to \frac{\Sigma_*^{4k+3,4k-1}}{\operatorname{Ker} \, \alpha \, \cap \operatorname{Ker} \, \beta \, \cap \operatorname{Ker} \, \gamma} \to \frac{\Sigma_*^{4k+3,4k-1}}{\operatorname{Ker} \, \alpha \, \cap \operatorname{Ker} \, \beta} \to 0$$

is exact, and the group (Ker  $\alpha \cap \text{Ker } \beta$ )/(Ker  $\alpha \cap \text{Ker } \beta \cap \text{Ker } \gamma$ ) is isomorphic to a subgroup of the finite group  $\Sigma_{+}^{4k+3,4k-1}/\text{Ker } \gamma$ . Lemma 3.1 now gives the result.

MAIN THEOREM. Let the homotopy spheres  $\Sigma^{4k+3}$ ,  $\Sigma^{4k-1}$ , and  $\Sigma^{4k+2}$  belong to Im  $\alpha$ , Im  $\beta$ , and  $\theta_{4k+2}$ , respectively. Then

(i)  $\Sigma^{4k+3}$  admits infinitely many differentiably distinct, semifree, differentiable actions of  $S^1$  whose fixed point sets have codimension 4.

- (ii) If  $\alpha^{-1}(\Sigma^{4k+3}) \cap \beta^{-1}(\Sigma^{4k-1}) \neq \emptyset$ , then there are infinitely many differentiably nonequivalent, semifree actions of  $S^1$  on  $\Sigma^{4k+3}$  with fixed point set  $\Sigma^{4k-1}$ .
- (iii) If  $\alpha^{-1}(\Sigma^{4k+3}) \cap \gamma^{-1}(\Sigma^{4k+2}) \neq \emptyset$ , then there exist infinitely many distinct, semifree, differentiable actions of  $S^1$  on  $\Sigma^{4k+3}$  with orbit space  $\Sigma^{4k+2}$ .
- (iv) If  $\beta^{-1}(\Sigma^{4k-1}) \cap \gamma^{-1}(\Sigma^{4k+2}) \neq \emptyset$ , then there exists at least one homotopy (4k+3)-sphere that admits infinitely many differentiably distinct, semifree actions of  $S^1$  whose fixed point set is  $\Sigma^{4k-1}$  and whose orbit space is  $\Sigma^{4k+2}$ .
- (v) If  $\alpha^{-1}(\Sigma^{4k+3}) \cap \beta^{-1}(\Sigma^{4k-1}) \cap \gamma^{-1}(\Sigma^{4k+2}) \neq \emptyset$ , then there are infinitely many differentiably distinct, differentiable actions of  $S^1$  on  $\Sigma^{4k+3}$  with fixed point set  $\Sigma^{4k-1}$  and orbit space  $\Sigma^{4k+2}$ .

*Proof.* (i) is clear. We give only the proof of (v), because the proofs of (ii) to (v) are exactly the same. Let

$$\psi \colon \Sigma^{4k+3,4k-1}_* \, \to \, \Sigma^{4k+3,4k-1}_* / \operatorname{Ker} \, \alpha \, \cap \, \operatorname{Ker} \, \beta \, \cap \operatorname{Ker} \, \gamma$$

be the natural map. Then, for each element

$$[S^1, \Sigma^{4k+3}, \Sigma^{4k-1}] \in \alpha^{-1}(\Sigma^{4k+3}) \cap \beta^{-1}(\Sigma^{4k-1}) \cap \gamma^{-1}(\Sigma^{4k+2}),$$

 $\psi^{-1}(\psi[\mathbf{S}^1\,,\,\Sigma^{4k+3}\,,\,\Sigma^{4k-1}])$  contains infinitely many elements, by Lemma 3.2, and clearly

$$\psi^{-1}(\psi[\mathtt{S}^1\,,\,\Sigma^{4\mathtt{k}+3}\,,\,\Sigma^{4\mathtt{k}-1}])\,\subset\,\alpha^{-1}(\Sigma^{4\mathtt{k}+3})\cap\beta^{-1}(\Sigma^{4\mathtt{k}-1})\cap\gamma^{-1}(\Sigma^{4\mathtt{k}+2})\,.$$

By definition, the set  $\alpha^{-1}(\Sigma^{4k+3}) \cap \beta^{-1}(\Sigma^{4k-1}) \cap \gamma^{-1}(\Sigma^{4k+2})$  contains all the elements  $[S^1, \Sigma^{4k+3}, \Sigma^{4k-1}]$  with fixed point set  $\Sigma^{4k-1}$  and orbit space  $\Sigma^{4k+2}$ . This completes the proof of the main theorem.

Theorem 1 is a restatement of part (v) of the Main Theorem. Theorem 2 follows from Lemma 2.6 and parts (i) and (ii) of the Main Theorem, and Theorem 3 can be deduced either from Lemma 3.2 or from part (v) of the Main Theorem.

*Proof of Theorem* 4. It is known that  $S^1$  can act semifreely on  $S^{11}$  in such a way that the set of fixed points is any prescribed homotopy sphere in  $4\theta_7$  and its orbit space is  $S^{10}$  [8]. This implies (i). Part (ii) follows from Lemma 2.6, because Im  $\alpha^{*11,7} \supset 2\theta_{11}$ . Since  $84\theta_{11} = 4\theta_{11}$ , we can deduce (iii) by using the Brieskorn-Hirzebruch description of homotopy spheres in  $\theta_{11}$ .

*Proof of Theorem* 5. By using again the Brieskorn-Hirzebruch equations, we see that  $S^1$  can act semifreely on  $S^{15}$  with fixed point set in  $32\theta_{11}$  and with orbit space  $S^{14}$ . This proves (i). To prove (ii) and (iv), it suffices to show that the homomorphism

$$\alpha: \Sigma_*^{15,11} \rightarrow \theta_{15}$$

is surjective. This will imply that  $S^1$  can act on  $2\theta_{15} = b\,P_{16}$  with orbit space in  $2\,\theta_{\,14}$ . By [1] and [2], there exists a homotopy sphere  $\Sigma^{15} \not\in b\,P_{16}$  such that  $\Sigma^{15} \in \text{Im } \alpha$ . Thus  $\text{Im } \alpha \supset \{\Sigma^{15}, b\,P_{16}\}$ . Hence,  $\text{Im } \alpha = \theta_{15}$ , because  $\theta_{\,15}/b\,P_{16} = Z_2$  [5]. Finally,  $S^1$  can act semifreely on 992b  $P_{16} = 32b\,P_{16}$  with fixed point set in 992 $\theta_{\,11}$  and orbit space in 992 $\theta_{\,14}$ . This completes the proof of (iii).

COROLLARY 3.3. Im  $\alpha^{15,11} = \theta_{15}$  and Im  $\alpha^{*15,11} \supset b P_{16}$ .

*Problems.* Determine all possible homotopy spheres  $\Sigma^{4k+3}$ ,  $\Sigma^{4k-1}$ , and  $\Sigma^{4k+2}$  that satisfy one of the conditions

$$\alpha^{-1}(\Sigma^{4k+3}) \cap \beta^{-1}(\Sigma^{4k-1}) \neq \emptyset,$$
  

$$\alpha^{-1}(\Sigma^{4k+3}) \cap \beta^{-1}(\Sigma^{4k-1}) \cap \gamma^{-1}(\Sigma^{4k+2}) \neq \emptyset,$$
  
...

Notice that if  $\Sigma^{4k-1} \in b P_{4k}$ , then  $\Sigma^{4k-1} \times D^3 \approx S^{4k-1} \times D^3$  [9]. Thus  $\Sigma^{4k-1}$  can be imbedded in  $S^{4k+2}$ . Therefore Im  $\beta^* \supset b P_{4k}$  (see [8]).

Part (iv) of the Main Theorem implies the following.

THEOREM 3.4. Corresponding to each homotopy sphere  $\Sigma^{4k-1}$  in  $b P_{4k}$ , there exists at least one homotopy (4k+3)-sphere that admits infinitely many differentiably distinct, semifree actions of  $S^1$  whose fixed point set is  $\Sigma^{4k-1}$  and whose orbit space is  $S^{4k+2}$ .

#### REFERENCES

- 1. G. E. Bredon, A  $\Pi_*$ -module structure for  $\Theta_*$  and applications to transformation groups. Ann. of Math. (2) 86 (1967), 434-448.
- 2. ——, Exotic actions on spheres. Proceedings of the Conference on Transformation Groups, Springer-Verlag, 1968 (to appear).
- 3. E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten. Invent. Math. 2 (1966/67), 1-14.
- 4. F. Hirzebruch, Singularities and exotic spheres. Séminaire Bourbaki, 1966/67, No. 314.
- 5. M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres, I. Ann. of Math. (2) 77 (1963), 504-537.
- 6. J. Levine, A classification of differentiable knots. Ann. of Math. (2) 82 (1965), 15-50.
- 7. D. Montgomery and C. T. Yang, Differentiable actions on homotopy seven spheres I. Trans. Amer. Math. Soc. 122 (1966), 480-498.
- 8. ——, Differentiable transformation groups on homotopy spheres. Michigan Math. J. 14 (1967), 33-46.
- 9. S. Smale, On the structure of manifolds. Amer. J. Math. 84 (1962), 387-399.

The Institute for Advanced Study Princeton, New Jersey 08540 and University of Massachusetts Amherst, Massachusetts 01002