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1. INTRODUCTION

We shall call an action of S! semifree if it is free outside the set F of fixed
points. It is well-known that if S1 acts semifreely on a homotopy (4k + 3)-sphere
»4k+3 with fixed point set F of codimension 4, then the orbit space has a natural
differentiable structure and is a homotopy (4k + 2)-sphere. In this paper, we study
the semifree differentiable actions of S! on homotopy (4k + 3)-spheres (k > 2), the
fixed point sets consisting of the homotopy (4k - 1)-spheres. The only complete re-
sult in] this direction is the following theorem of Montgomery and Yang [7, Theo-
rem 3j.

THEOREM. On any homotopy T-sphere, theve are infinitely many diffeventiably
distinct, semifree, differentiable actions of the circle group S!, each having S3 as
the fixed point set,

The following five theorems are immediate consequences of the main theorem.

THEOREM 1. If there exists a semifree diffeventiable action of S! on a ho-
motopy (4k + 3)-spheve 4kt3 and if its fixed point set is a homotopy (4k - 1)-
spheve 4<-1 and its ovbit space is a homotopy (4k + 2)-spheve T4Kt2 then there
exist infinitely many diffeventiably distinct, semifrvee, differventiable actzons of Sl on
T4AK+Y3 with fixed point set T4K-1 gnd orbit space TAk+2

THEOREM 2. Every homotopy spheve T4K+3 in b Py, 4 admits infinitely many
differentiably distinct, semifree, diffeventiable actions of S! with fixed point sets of
codimension 4. For example, let Z)4k+3 and E4k‘1 be the Milnov spheres of dimen-
sions 4k + 3 and 4k - 1, 'respectwely Then, fo*r each integey n > 1, the homotopy
Sphere n24k+3 admits mfzmtely many diffeventiably distinct, semzfree, differenti-
able] actions of S with fixed point set nzﬁ}f'l . (For the notation bP,, see [5, p.
510].)

THEOREM 3. There exist infinitely many differventiably distinct, semifree,

dzlgegentzable actions of S! on S%Kt3 with fixed point set S*K-1 and orbit space
S +

THEOREM 4. (i) For each homotopy spheve ="' in 40, there exist infinitely
many differentiably distinct, semifree, diffeventiable actions of S! on Sl1 with
fixed point set 7.

(ii) On each homotopy sphere =11 in 20,, there ave infinitely many dzﬁ‘er-
entiably distinct, semifree, differentiable actions of St with orbit space S19

(iii) On each homotopy spheve in 46, theve ave infinitely many diffeventiably
distinct, semzfvee differentiable actions of S with fixed point set S7 and orbit
space sio
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THEOREM 5. (i) For each homotopy sphere zll gn 32041, there exist infinitely
many diffeventiably distinct, semifree, diffeventiable actions of S! on S5 with fixed
point set =11,

(ii) Each homotopy sphere in b P ¢ admits infinitely many differentiably dis-
tinct, semifree, diffeventiable actions of Sl with orbit space S1%.

(iii) On each homotopy spheve in 32b P ¢ = Z 554, theve ave infinitely many dif-
ferentiably distinct, semifree, diffeventiable actions of S with fixed point set S11
and orbit space S14.

(iv) On each homotopy 15-spheve, theve ave infinitely many differentiably dis-
tinct, semifree, differentiable actions of S! whose fixed point sets ave of co-
dimension 4.

The proofs used in this paper depend heavily on the results of Montgomery and
Yang [8] and of Levine [6], but they are more algebraic in character. Throughout
the paper, we assume k > 2.

2. PRELIMINARIES AND NOTATION

Definition 2.1. By a standard action of S! on S#%*3 we mean the following. Let
SEH3 = {(zy, =, 2p4p) € CFF2| DEF2|24)% = 1},

and let S! act on S4k+3 on the last two coordinates via the linear action S1 c U(2).
Under this action, the fixed point set is S%4k-1 x {0}, which we identify with S¢k-1,
The orbit space is easily seen to be diffeomor Ehlc to S4k+2_  The imbedding of
S4k-1 onto the submanifold S4k-1x {0} of 8%k*3 is called a standard imbedding.

PROPOSITION 2.2 (Montgomery and Yang [8, Proposition 4]). Let =01 and
zn-4 pe homotopy spheves of dimension n-1 and n - 4 (n>"1), and let £ be an im-
bedding of -4 into =7-1, Then there exists a semifree, differentiable action of
the civcle group S on a homotopy n-spherve Z™ whose fixed point set is diffeo-
movphic to ZP-% and whose orbit space is diffeomorphic to =n-1

Definition 2.3. We shall denote the set of isotopy classes of knotted (4k - 1)-
spheres in S4k+2 py 64k+2,4k-1 . jt is an infinite abelian group of rank 1 [6]. We
denote the equivalence class of (S4kt2 z4k-1) py [g4kt2 F4k-1] fet
(81, =4k+3 F) pe a semifree, differentiable action of S! on a homotopy (4k + 3)-
sphere 24k+3 that has fixed point set F € 04x.]. The equivariant diffeomorphism
class of (S1, 24kt3  F) is denoted by {S!, Z4kt3 F}. Let zfkt3,4k-1 pe the
totality of d1ffeomorph1sm classes {S!, E4k+3 F} modulo the *subset

{{s!, s#k*3 g4k-11| the imbedding of S4k-! into S#*3 is isotopic
to the standard imbedding }.

Denote the equivalence class of {S!, =4kt3 F} py [sl, 24k+3  F]. It is easy to
verify that Z#k+3,4k-1 ig an abelian group under the connected sum operation

[s1, z§+3 F 1+[s!, =553, F,] = [, 2{kt3 4 24k43 F) # F,].

Furthermore, if there are two semifree, differentiable actions (S!, Efk+3 , F1) and
(sl, Z4k+3  F,), then
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4k+3 4k+3 1 4k+3 4k+3
(1503 4 2358t = =P8t # (255 sh).

Thus the subset ZikT3:4k-1 of nakt3.dk-1" gefined by

4k+3,4k-1 _ 1 4k+3 4k+3,4k-1 4k+3
= = {[s", = , Fle =, | = /

4k+2
- !

st =g

is a well defined subgroup of Tjk+3.4k-1,

LEMMA 2.4. The groups Zpst?# -1 gng p2t3.4k-1 gpe infinite.

Proof. Define a homomorphism ¢: Zixt3,4k-1 g Hk+2,4k-1 (g

¢[Sl, Z4k+3, F] — [Z4k+3/Sl , F]

By Proposition 2.2, ¢ is onto. Since 6*t2:4k-1 g infinite, Zkt3.4k-1 g jpfinite.
Definition 2.5. Define the homomorphisms

a: z$k+3,4k-l . Zik+3’4k_l

- O4x43, B
*, v4k+3,4k-1
ar: E**

4k+3,4k-1
— O4x-1, 2 — O4k+2,

%, w4k+3,4k-1
— OG443, and BT I = 04

as follows:

Q[Sl, E4k+3 4k-1 4k+3

’ 1=z 4ct3  pdic-l]  pdk-l

1
, B[s, =
SISt 43 z:4k‘1] _ Z41<+3/Sl ’

* _ 4k+3,4k-1
ot = o D2 ,

and = B| pfkt3,4k-1

LEMMA 2.6. (i) Ima D bPyyyq and Im 8D bPy.
(i) Im o™ D (ord 6 43.42)b Pyrq and Im B* O (ord 04342)b Pay . In particular,

Im o*!7 5 207, Im a*1s: 1l 5 2b Py,
*
Im g7 526, 1ttt o260,
where o341 4 oans a*. Eiﬁf”"lk"l — 04143, and so forth.

(iii) y is surjective.

Proof. Let us recall the explicit description of homotopy spheres in b P 4144
given by Brieskorn and Hirzebruch [3], [4]:

4k+3
2992 ) = ey, -

2k+3| 6n 1 2
3,6n-1

2
, Zo43) € C 1"’ 2 tzzteeetz5, .5 =0,

|21|2+"'+ |Z2k+3|2 =1} = nzﬁ}f”_

Consider the action of S' on the last two variables of Z§5/3_; via the representation
sl c U(2), which gives Egkgnl | as a fixed point set and a homotopy (4k + 2)-sphere
as orbit space. Applying Proposition 2.2, we obtain (i). The action induces an action
of S! on the homotopy sphere (ord 94n+2) Z3k6r‘:’ 1 with fixed point set

(ord 94n+2)23 Koa_1 and orbit space S**2 . This implies (ii), by Proposition 2.2.
The particular cases follow from the fact (see [5]) that
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07 =228, O10=726, Y911=72992, 014=7Zp, DbPyg=Zgjpg.
We turn to the proof of (iii). For each homotopy sphere Z4k*2 ¢ g, ., there

exists a sequence of imbeddings

gik-1 _, pik _, pik+2 _, 54ki2

Again we can apply Proposition 2.2 to the pair (Z4k+2 g4k-1) to get an element
E s
[st, z#kt3 gtk-1] ¢ pdkt3,4k-1 gych that

ylsl, s4k+3 gik-1] o pdkiz

Problem: Determine the groups Im @, Im o*, Im 8, and Im B8*.

3. THE MAIN THEOREM

LEMMA 3.1. The quotient groups T3x+3:4k-1/Ker o n Ker B,
Zik+3’4k'l/ Ker a N Ker vy, and Efk+3’4k‘1/Ker B N Ker y are finite; hence, the
subgroups Ker a N Ker B, Ker a N Ker vy, and Ker 8 N Ker y are infinite.

Proof. The groups ka+3’4k'l/Ker o, ka+3'4k'1/ Ker B, and
2 #k+3,4k-1/Ker y are finite because

Efk+3’4k‘l/Ker a =~ Ima, E$k+3’4k'l/Ker B ~ Im§,

4k+3,4k-1
*

z /Kery ~ Im vy,

and because Im @, Im 8, and Im ¥ are finite [5]. Consider the exact sequence
0 - Ker ¢/Ker a@ N Ker 8 — ka+3'4k'1/Ker a NKer g — Efk+3:4k'1/Ker a—0.
By the second isomorphism theorem

Ker a/Ker @ NKer B ~ (Ker o + Ker g8)/Ker 3,

and the right-hand member is a subgroup of the finite group Zk+3,4k-1/Ker g.
Similar proofs apply to the other two cases. This completes the proof of the lemma.

LEMMA 3.2. The group Tixt3:4k-1/Ker o N Ker g N Ker y is finite. Hence
the group Ker a N Ker B8 N Ker y is infinite.

Proof. The sequence
4k+3,4k-1
Ker a N Ker Zy Z

4k+3,4k-1
0 — — — * — 0
Ker a N Ker 8 N Ker y Ker a N Ker g8 N Ker y Ker a NKer 8

is exact, and the group (Ker @ N Ker B8)/(Ker a N Ker 8 N Ker y) is isomorphic to
a subgroup of the finite group ka”‘ ’41“1/ Ker y. Lemma 3.1 now gives the result.

MAIN THEOREM. Let the homotopy spheres =+3  sak-1 = gpq 546+2 polong

to Im o, Im B, and 6 g+2, vespectively. Then

(i) =43 gamits infinitely many diffeventiably distinct, semifree, differentiable
actions of S! whose fixed point sets have codimension 4.
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(ii) If a-1(z4kt3) 0 g-1(24k-1) = B, then there arve infinitely many diffeventi-
ably nonequivalent, semifree actions of S' on ZY3 with fixed point set T4<-1,

(ii) If a~1(z4k+3) N -1(24k+2) 2 B then theve exist infinitely many distinct,
semifree, differentiable actions of S on ZAt3 with ovbit space Z4K+2

(iv) If g-1(z4k-1) N o-1(24kt2) 2 & then there exists at least one homotopy
(4k + 3)-sphere that admits infinitely many differentiably distinct, semifree actions
of S whose fixed point set is 4<-1 and whose orbit space is T2

(v) If a-1(z4kt3) np-1(z4k-1) N -1(24kt2) = @ then theve ave infinitely many
diffeventiably distinct, diffeventiable actions of S! on Z4Kt3 with fixed point set
2451 and orbit space T2

Proof. (i) is clear. We give only the proof of (v), because the proofs of (ii) to (v)
are exactly the same. Let

Y Z$k+3-4k'l — Eik+3’4k‘l/Ker a N Ker g N Ker y
be the natural map. Then, for each element

Y-l(y[sl, z4k+3  54k-11) contains infinitely many elements, by Lemma 3.2, and
clearly

v lws!, s4F3 pak-1)y ¢ o Lp43) 0 grlpk-l) 0oLzt

By definition, the set a-1(Z4k+3) N g-1(34k-1) N -1(z4k+2) contains all the ele-
ments [S1, =4k+3  »4k-1] with fixed point set Z4%-1 and orbit space T4kt2  This
completes the proof of the main theorem.

Theorem 1 is a restatement of part (v) of the Main Theorem. Theorem 2 follows
from Lemma 2.6 and parts (i) and (ii) of the Main Theorem, and Theorem 3 can be
deduced either from Lemma 3.2 or from part (v) of the Main Theorem.

Proof of Theorem 4. It is known that S! can act semifreely on S!! in such a
way that the set of fixed points is any prescribed homotopy sphere in 467 and its
orbit space is S10 [8]. This implies (i). Part (ii) follows from Lemma 2.6, because
Im @*11.7520,;. Since 846 ;; =46, we can deduce (iii) by using the Brieskorn-
Hirzebruch description of homotopy spheres in 617.

Proof of Theorem 5. By using again the Brieskorn-Hirzebruch equations, we see
that S! can act semifreely on S1° with fixed point set in 326 ;; and with orbit space
S14 . This proves (i). To prove (ii) and (iv), it suffices to show that the homomor-
phism

a: 2>~ 65

is surjective. This will imply that S! can act on 26 15 = b Py with orbit space in
26 14. By [1] and [2], there exists a homotopy sphere Z1° ¢ bP;, such that

1% ¢ Im @. Thus Im @ > {=!> bP,,}. Hence, Im @ = 6., because

815/bP1¢ =Z, [5]. Finally, S! can act semifreely on 992b P1¢ = 32b P14 with fixed
point set in 9926 ;; and orbit space in 9926 4. This completes the proof of (iii).

COROLLARY 3.3. Im 1511 = 9,5 and Im o*1>115bP .
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Problems. Determine all possible homotopy spheres T 4kt3 , ¥ 4k-1 , and z 4kt2

that satisfy one of the conditions
a'1(24k+3) N B—l(z4k—l) " ®,

a-l(z4k+3) N B—I(E4k—1) N '}/-1(24k+2) + ¢’

Notice that if Z4-1 ¢ b P,y , then 41 x D3 ~ §¥k-1 x D3 [9]. Thus =4k-!
can be imbedded in S*k*2 . Therefore Im g* O b P4y (see [8]).

Part (iv) of the Main Theorem implies the following.

THEOREM 3.4. Corresponding to each homotopy sphere »4k-1 ip p P4y, there
exists al least one homotopy (4k + 3)-spheve that admits infinitely many diffeventi-
ably distinct, semifree actions of S! whose fixed point set is =4k-1 and whose orbit
space is S4k+2
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