THE SECTION EXTENSION THEOREM AND
LOOP FIBRATIONS

Martin Fuchs

In the discussion of principal fibrations, one has to spend some time on parti-
tions of unity in the theory of principal fibrations. Thus most of this paper originates
from [2]. Because equivariant fibrations have recently attracted much interest, we
have tried to use their language as a vehicle. Loop fibrations provide an easy appli-
cation of this theory, and we can generalize and correct a result of [1].

Let Hp be a strictly associative H-space with strict unit element €. Except
where we state the contrary, all discussions in this paper are restricted to the cate-
gory G, of topological spaces, with an operation of Hy and with continuous maps
that are compatible with the operations involved. All operations are assumed to be
associative, with ¢ acting as the identity map.

If X is an object in €, the action of Hy on X is in general not a morphism in
Cg; in particular, the multiplication of Hp is an action on Hy but not a morphism in
€,. When we refer to Hy as object in €y, we refer to this action on Hy.

The unit interval I in this category is [0, 1], together with the trivial operation
h(x) =x for all h € Hy and x € [0, 1]. If X and Y are in G¢, the product of X and
Y is X XY, together with the diagonal action. Thus we can use haloing functions,
halos [2, Definition 2.1], and homotopies in € (haloing functions are obviously con-
stant on orbits).

Following a suggestion of D. Puppe, we consider the following reformulation of
the section extension property.

Let E b, B be a map onto B in €, ; then a cross-section s: B — E is a map

such that the diagram

1B\ﬁ

t
is commutative. I E' 2 B' is also a map onto B' in Gg, we consider the two dia-
grams

E ----2---> E' E----2__> FE

(1) pl lp' , (2) lp lp'
f o

B— > B B mmmmmee- > B!

We have two problems:
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a) Given f: B — B', to find 0: E — E' such that (1) commutes.
B) To find o: B— B' and o: E — E' such that (2) commutes.

To facilitate references to Dold’s paper, we call each of the pairs (o, f) and
(0, 0) a section S from B to p' or from p to p'.

Definition. A space p: E — B over B has the section extension property (SEP)

with respect to p': E — B if for every A C B and every section S from A to p' that

admits an extension to a halo V around A, there exists an extension S from B to p'’
(the inclusion map is of course to be 1nterpreted in the category G ) If S is of the
form (o, 0), we speak of ASEP (absolute section extension property) if 8= (o, f),
we speak of RSEP (relative section extension property). SEP refers to both, ASEP
and RSEP.

PROPOSITION. Let p: E — B and p': E' — B' be spaces over B and B', ve-
spectively.

a) If p': E' — B' is dominated by p": E" — B' (see [2]), and if p has SEP with
respect to p", then p has SEP with respect to p'.

B) If p: E — B is dominated by p": E" — B, and if p" has SEP with respect to
p', then so does p.

Proof (see Dold [2, Proposition 2.3]). @) I. The map p" dominates p'; that is,
there exist maps ¢ and ¥ such that the diagram

El —-——-—> E"

W

commutes, and we have a vertical homotopy 6 : Y¢ ~ 1. over B' (with 64 = V¢,
01 =1g1).

II. Let ACV C B, where V is a halo around A with respect to the haloing func- 1

tion 7: B— 1, and let S= (0, ) be a section from A to p' extendable to V, the ex-
tension being again called S. Then, in the case of ASEP, consider

0':EIV9—>E'—(E>E" (8=(0,0)) and ©¢'=0:V—>B'.
Then (o', 6') has an extension to B, say S', such that S' restr1cted to 7-1[1/2, 1]
is the same as (o', §') restricted to -1 [1/2 1]. We denote S' again by (o', @').
Define ¢ = 0' and
Yo' (y) if Tp(y) < 1/2,

o(y) =
6(c'(y), 27p(y) - 1) if 7p(y) > 1/2.

The relative case is proved similarly.

B) I. The map p" dominates p; that is, there exist maps ¢ and ¥ such that the
diagram
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¢
E -—__)‘_Tv——
N ﬁn
\
B

commutes, and we have a vertical homotopy 6:¥ ¢~ 1y over B (with 0 = ¥,
91 = 1E)‘

II. Let A, V, B, 7, and S satisfy the conditions in part &) of the proof. Then,
in the case of ASEP, consider the pair (S = (0, 0)) with

ETI

c:E'|[VLELE and 5 =06:V o B.

Then (0', 0') has an extension to B (again, we write S' = (¢', ¢')) such that S'
restricted to 7-1[1/2, 1] is the same as the old (o', ') restricted to 7-1[1/2, 1].
Define ¢ = 0' and

o' ¢ (y) if 7p(y) <1/2,
o(y) =
o'(6(y, 27p(y) - 1)) if 7p(y) > 1/2.

The relative case works similarly.

PROPOSITION (see Proposition 2.6 in [2]). If p: E — B has the SEP with re-
spect to p', and if W C B is an open set such that W = p~ 10, 1] for some continuous
function p: B — [0, 1], then py: E| W — W has the SEP.

The proof, essentially an approximation process with haloing functions, is the
same as in [2].

SECTION EXTENSION THEOREM (see [2, Theorem 2.7]). Let p: E — B and
p': E' — B' be spaces over B and B', rvespectlively.

a) If there exists a numerable covering {VA}AEA of B such that p has the
ASEP over each V, , with vespect to p', then p has the ASEP with rvespect to p'.

B) Let f: B — B' be a map. If theve exists a numevable covering {Vy} rea of
B such that, for each » € A, p l p-1(Vy) has the RSEP with respect to p' restricted
to E' | £(V, ), then p has the RSEP with vespect to p'.

Again the proof is as in [2, Corollary 2.8].

COROLLARY 1. Suppose that p: E — B and p': E' — B' are spaces over B and
B', respectively, that A C B, and that Sp = (0 5, G ) is a section from A to p' wilh
an extension Sy = (0, 0v) to a halo V arvound A. If f: B — B' is an extension of
Oy: V — B' and if B - A has a numerable covering {VA}AGA such that E' ] fv, is
dominated by V) (fiberwise), then theve exists a section S from B lo p' extending
Sa-

If f =1, this is Corollary 2.8(a) of [2].

Definition. A fibration p: E — B in C( is a principal fibration if
p: EX Hg— E is fiber-preserving, that is, Hg acts trivially on B, and if moreover
ply, e) =y for all y € E (e denotes the neutral element of Hy).
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pr
Example. B X Hy— B is a principal fibration if Hy acts trivially on B and if
the action on Hg is the multiplication of Hg.

COROLLARY 2. Let p: E — B and p': E' — B' be principal fibvations such that
E' is contractible in ¥ (the category of topological spaces and continuous maps).
Suppose A C B and Sp =(0a, Ga) is a section from A to p' that has an extension
Sv =(ovy, 0v) to a halo V around A. If B - A has a numerable covering {VA}AeA
such that p | p-1V, is dominated by p) = pr): Vy X Hg — V), then theve exists a
section S from B to p' such that S| A =84.

The proof of Corollaries 1 and 2 is the same application of the section extension

theorem as in [2, Corollary 2.8(«)]. To see that V) X Hy A V) has the ASEP with
respect to p', let A CV C V), be a halo around A in V) with haloing function 7.

Let k: E' XI — E' be a contraction of E', and let Sy =(ocv, 0v) be a section from g
V to p'. (Assume k(y', 0) =yg, k(y', 1) =y.) Define ¢ and k£ by f

p' ok(o(b, €), 27(b) - 1) if 1/2< 7(b) <1,
G(b) = p'k(b) =
P'Yo if 0< 7(b)<1/2,

and let o(b, h) = ' (k(b), h), where p': E' X Hy — E' is the operation of Hy on E'.
Then S| A =8, if S=(0, ).

The following definitions enable us to formulate Corollary 2 in an equivariant
form.

Definition. An H-space in € is an associative H-space H with strict unit ele-
ment, together with an operation pz;: H X Hy — H such that the (right) multiplication :
u of H is a morphism in € and py(e, h) = € for all h € Hy (that is, the neutral
element of H is an orbit). }

Definition. An Hg-principal fibrvation with fiber H in € is a principal fibration ;
p: E — B with respect to H, together with operations py; and pg of Hp on H and I
E such that the operation of H on E and the multiplication of H are morphisms in |
€. We denote by P the subcategory of Go whose objects are Ho-principal fibra-
tions with fiber H and whose morphisms are maps compatible with the various
actions,

Now consider the H space H'=H X Hy with multiplication
pl=(u X pg)(lg X T X 1HO): (Hx Hg) x (HX Hy) — HXHg.

We say that H' operates on E if the diagram

1XA 1XTx1
EXxHXHy ———> EXHXxHyxHg ———> EXHoxH X Hp
luE(uleo) luEXuH
E < H ExXH

is commutative (u: E X H — E denotes the principal action of H on E).

The associativity of ur and u can be expressed as associative actions of !
Hx gy, and € X Hy. Associative action of all of H' on E is more than just the asso-
ciative actions p and pyx . Using H' instead of H and H,, one can describe
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Hyp -principal fibrations with fiber H as special fibrations in the category €' of
spaces and maps with H-space H'. We leave it to the reader to verify that our re-
sults still hold.

Application. Let Y be a path-connected topological space, and let Q(Y, yo) de-
note the space of Moore loops in Y based at ygo (see [3, p. 284]). Since this H-
space fulfills the requirements of the H-space Hg, we can apply our results in C€g
to the category Cny. Let X be a topological space in €y with a numerable
covering of contractible sets ll. We say that p: E — B has the weak covering ho-
motopy property (WCHP) if for all X in € and all maps h: XXI — B and
ko: XX {0} — E such that p okg=h | X x {0}, there exists a map k: X XI — E
such that p ok =h and k| X X {0} is vertically homotopic to k,. We call
p: E — X a loop fibration if

1) p has the weak covering homotopy property with respect to Cqv,
2) p is a principal fibration in Gy (note that ©(Y() acts trivially on X).

Remark, Condition 1) is actually not needed, since Theorem 6.4 of [2] does hold
in this case.

In particular, if U € U, then p~lU ~ UX Q(Y, yo); that is, p‘lU is fiber-homotopy

equivalent to U X Q(Y, yg) in €qvy. Consider the loop fibration E(Y, yo)pl Y con-
sisting of the Moore paths in Y based at yo (see [3, p. 284]). Since E(Y, yo) is
contractible in the category ¥ of ordinary topological spaces, Corollary 2 to the
section extension theorem applies to any loop fibration over X. Thus, if p: E - X
is a loop fibration, there exists in Gy a fibermap (or cross-section) (f, f) from p
to py. Let ps: Ef — X be the loop fibration induced by (t, £) from pvy, and let

(f, 1%) be the canonical fiber map from p to ps. If U € 11, then there exists a fiber
homotopy equivalence

a: UxQ(Y, yg) — p-lUu  and By pflU — UXQY,

since U is contractible in X and both fibrations p and p; have the WCHP in Cgqvy.
Consider the maps

~

uxey % p-lu L p;'U B uxay,

and let q = B; o f| p~lU o a; since q(x, w) = (%, (pr, o q(e)) © w), q is a fiber-
homotopy equivalence in © gy [the homotopy inverse of q is

(x, w) = (x, (pr, o q(e))~! o w)].

Thus fl p~lU is a fiber-homotopy equivalence, and we can apply Theorem 3.3 of [2].
(Note that we can make the fibration q: R — E in Theorem 3.3 into a fibration in

C v, by using the obvious actions. Then our section extension theorem applies as
well: all we need is Lemma 3.4 of [2], as it is stated there for topological spaces.)

PROPOSITION. (£, 1): E — E; is a fiber-homotopy equivalence.

Theorem 1 of [3] implies that if f, g X —Y are homotopic, then E¢ and Eg are
fiber-homotopy equivalent. We obtain the converse by reapplying Corollary 2 to the
usual map
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Ef X i F’GOk E(Y, YO)
X X1 > Y
f,g

where k: E¢x {1} — E, X {1} is a fiber-homotopy equivalence, and where F and
G are the canonical maps from E; and E; into E(Y, yo).

THEOREM. Let X be a space in € gy with a numerable covering of contractible
sets and with QY acting trivially on X. The fiber-homotopy equivalence classes of
loop fibvation over X ave in one-to-one covvespondence to the homotopy classes of
maps from X into Y.

This theorem corrects Theorem 8.2 in [1]. It obviously extends to equivariant
loop fibrations. Comparison with Theorems 1 and 2 of [3] shows that in the case of
fibrations over X induced from E(Y, yg), fiber-homotopy equivalence in oy im-
plies equivalence (by loop fiber maps) in the sense of [3, p. 285].
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