MONOTONIC SINGULAR FUNCTIONS OF HIGH SMOOTHNESS
Harold S. Shapiro

This paper is concerned with the construction of monotonic functions that are
singular (that is, have derivative zero almost everywhere) and possess good con-
tinuity properties as measured by the modulus of smoothness. We consider the
operator Aj: f(x) — f(x + h) - £(x), and we recall that the modulus of continuity of f
is the function

w(t) = sup sup IAhf(x)I;
x 0<h<t

more generally, the (rth-order) modulus of smoothness w,.(t) is defined when Ay is
replaced by the rth-difference operator Af . We shall refer to w, simply as the
modulus of smoothness.

Clearly, w(t) = O(t) implies f is absolutely continuous. It is known that any
bound on w that does not imply f € Lip 1 is compatible with the existence of an in-
creasing singular function whose modulus of continuity does not exceed w. This
seems implicit in a construction of F. Hausdorff (see {4, p. 30], also our paper [8]).
Added in proof. The result was proved by P. Hartman and R. Kershner, The siruc-
ture of monotone functions, Amer. J. Math. 59 (1937), 809-822 (see p. 818). We are
indebted to P, L. Duren for this reference.

On the other hand, it is remarkable that the (Zygmund) class Z of functions for
which wy(t) = O(t) contains increasing singular functions. This was first deduced in
[2] (it underlies a long-known counterexample in the theory of conformal mapping).
The first direct construction was given by G. Piranian [6]. Another construction, due
to J.-P. Kahane, is mentioned without detailed verification in [6]. Piranian also out-
lines a proof that there is a singular function with w,(t) = o(t). Our main result (see
Theorem 2) is the construction of an increasing singular function with
wy(t) = Ot Ilog t| -1/ 2), and this is essentially an unimprovable result (see the fol-
lowing paragraph). Our method is an adaptation of the basic idea (selective succes-
sive modifications) underlying Piranian’s construction. The main novelty in our con-
struction is the choice, as a “basic building block,” of a trigonometric polynomial
that vanishes very smoothly at the end points. Our choice has the two-fold advantage
over Piranian’s cubic polynomial that all of our successive approximations are twice
differentiable (this simplifies the estimation of w,(t)), and that for the proof of singu-
larity we are able to invoke a known theorem on the convergence of lacunary trigono-
metric series. This construction, together with the extension to higher-order moduli
of smoothness, is given in Section 1.

From the other side, M. Weiss and A. Zygmund [10] have shown that if
wa(t) = O(t |log t| ~©) for some ¢ > 1/2, then f is absolutely continuous and in fact
has a derivative of class LP for every p < «. Their proof is based on the theory of
trigonometric series. They showed that their theorem becomes false for c = 1/2, by
exhibiting a function f for which f' exists almost nowhere and

w,(t) = Ot |log t| "1/?).
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Thus, our construction shows the Weiss-Zygmund theorem to be essentially best
possible even for monotonic functions. F. John and L. Nirenberg [3] deduced afresh
the Weiss-Zygmund theorem in a sharper form, and they also generalized it to
higher dimensions, from a general theorem on “mean oscillation” of functions. Var-
ious refinements and extensions of the Weiss-Zygmund theorem were obtained by E.
Stein and Zygmund (see [9], where further references are given). In particular, it
follows from their work that if

1
{ 2 loa0Pat < =,
0

then f is absolutely continuous. (The author is indebted to L. Carleson for bringing

[9] to his attention, and for pointing out to him the very simple proof of this last

proposition; for the reader’s convenience we have included it in an appendix). It is

easy to adapt the construction in Theorem 2 so that it yields an increasing singular

function with modulus of smoothness O{w(t)), provided only that w is monotonic and
1

S 73 [w(t)]2dt = .

0

We call the reader’s attention to an analogous circle of problems concerning the

: . fx+t) - ()

functional relation ) - fx - t)

This arises in the study of the boundary behavior of quasi-conformal mappings (see
[5, pp. 85 ff.], and especially Carleson [1]).

1 + O(y(t)), where f is continuous and increasing.

In Section 2 we apply the reasoning of Section 1 to produce an example of “inter-
ference,” whereby an absolutely continuous and a purely singular function can com-
bine so that their sum is a function much smoother (as measured by the modulus of
continuity) than either component, This solves a problem that had been communi-
cated by the author to Kahane, who also obtained a solution. Kahane’s method is
more direct, and his result more general (see Section 2 for details). We wish here
also to thank J.-P. Kahane for kindly sending us, upon request, the detailed verifi-
cation of the example referred to above, outlined in [6].

Finally, in Section 3 we apply results of Section 1 to supplement the discussion
in [2].

1. SINGULAR FUNCTIONS WITH SMALL MODULUS OF SMOOTHNESS

The following theorem is in essence due to Piranian [6]. We have added slight
refinements to the formulation, which will be necessary for the discussion in Section
3. Actually, Theorem 1 is contained in Theorem 2 below; but because of its applica-
tions, it is desirable to give a direct proof, which can then be modified to give Theo-
rem 2, and which avoids the rather deep theorem on lacunary trigonometric series
needed for Theorem 2.

THEOREM 1. Let fo(x) be a twice diffeventiable, nondecreasing function on
[0, 27] such that |£)(x)| < 1. Then, for every € > 0, there exists a nondecveasing
singulay function £(x) on [0, 2] such that

(1) |£,(x) - #(x)] < ¢,

(2) |f(x + h) - 2f(x) + £(x - h)| < 5h  whenever 0 <x-h<x+h<2r.
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Proof. By an inductive process, we shall define a sequence {fn} of nondecreas-
ing functions that converges to the desired f. We shall use as our basic building
block the function

o(x) = sinx _ sin 2x
2 4

Note that g vanishes, together with its first two derivatives, at x = 0 and at x = 27,
and that

] <3, lewl <1, le@] <3

As we already remarked, the underlying idea in the following construction is due to
Piranian, to whose paper we refer for motivation.

Let us suppose that f,,_;(x) has either been given or constructed, for some
n > 1, and that it is nondecreasing and twice differentiable. To define f,(x), we first
divide [0, 27] into n! equal intervals of length 6, = 27/n!. For the ith of these, we
write m, ; = min f;_)(x). On the ith interval we now define

f.(x) =, (x)+ bm’r"l,i b, (x),
where

gn!x) .

m?* . = min (1, mn’i) and ¢, (x) = =T

n,i

(Here b is a positive number not exceeding 1, fixed throughout the discussion, and
to be chosen later in terms of &. If the reader is not interested in (1), he may simply
take b = 1).

Denoting £, - f,,_; by u,, we observe that u,(x) is twice differentiable on [O, 2]
and that it vanishes with its first two derivatives at all points j6, (j =0, 1, ---, n!).
For later purposes, it is essential to observe that for fixed n, j the sequence
{£;(j6,)} remains constant for i > n - 1, and that the same is true of {f}(j6,)} and
{t "(16 )}. Further,

(3) 0| < 2,

(4) | ut)] < St

Moreover, the maximum of |u)(x)| in the ith subinterval does not exceed my, j, SO
that f(x) > 0 on [0, 27] and f, is nondecreasing.

We now claim that with the choice b = min (—1-;1-, %) , the sequence {f (x)} con-
verges to a function f with the desired properties. Note first that because of (3),

n
{f (x)} converges uniformly on [0, 27}, since f,=fy+ 27;_; u;. Clearly, the limit
function f is continuous and nondecreasing.
Proof of (2). Denoting by Aﬁ the operator f — f(x + h) - 2f(x) + £(x - h), we ob-

serve that

n

2 2 2
|agt,] < |agfol + 20 |afuy].
i=1
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By the mean-value theorem, Aff, = h2£3(£) for some &; hence |aff,| < 4h.
Similarly, using (4), we see that

3bh%n!

lagu;| < h?max [uf@)] <=

From (3), we also have the inequality |Afu;| < 4b/n!. Thus

n
2 . (3,2 4
lAhnt < 4h+Db Z;l mm(ih m?,—ﬁl—'—)
m=

Letting n go to «, we find that

| ot o
h 3 4

1 —_ | o—
h < 4+Db EZlmm(zhm.,h !).

To estimate the sum on the right, let p be the unique positive integer for which
p! <4/h < (p+1)!. Then the sum does not exceed

3 4 1 3 4
— ! 4 — —_ —-. —_—— =
Zh m.+h 27 7 <2 bl 2p! + (p+ 1)! ((p 1)') 14,

Thus, (2) holds if b < 1/14.
Proof of (1). If in addition b < £/2, then (1) follows immediately from (3).
Proof that f is singular. Note first that, because of (4),

n-1

It ®)] < 1+ E il <(n-1)! for n>3 and b <1/14.

Hence, at the nth stage, we have in the ith subinterval of length 27/n! the estimates

(5) my,; <, 3(x) <my;+@-1)! 2n/n! < m, ;+ 7/n.

Let now t be any point such that f'(t) exists. We claim that

(6) lim f(t) = £'(t).

n—s«o

Indeed, following Piranian’s argument, we observe that f'(t) is the limit of the dif-
ference quotients of f(x) formed with respect to a sequence of successively smaller
intervals (of the basic subdivisions) containing t. That is, writing 6, = 27/n! and
i6, <t < (i+1)6,, we know that for large n the derivative f'(t) is approximated
arbitrarily closely by

f((i+1)5) - £(36,) £, (G +1)s,) - £,_,(5,)
5 = 5, ’

n
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and that is equal to f]_,(x,) for some x_ in the interval (i6,, (i+ 1)6,). Since, by
! 1 7
(5), |t} 1(x,) - 1, ()] < -, we see that (6) holds.
[>o}
Finally, let E denote the set on which f'(x) > 0. Let us write E = Uk:o E,,

where

E, = {XI f'(x) > 1}, E, = gxlkil<f'(x)s-i-} k=12 ).

To show that E has measure zero, it is enough to show that each E, has measure
zero. If x € Eji, then from some n onward f;.j(x) > 1/(k + 1), and thus, for n
large enough, (5) implies that f;_;(y) > 1/(k + 1) throughout the basic subinterval of
the nth subdivision [call it I, (x)] containing x. Therefore, from the way in which
f,, was defined, we have for y € I, (x) and all n > n, the formula

(7) f.y) = 1,1(y) + Cy ¢, (y),

where C, is a constant not less than b/(k + 1). Differentiating (7) at the point y = x,
we find that

£ (x) -1, () = Cyop(x),
and since lim f|(x) exists, we deduce that

(8) lim ¢ (x) =0 forall xe E.

n-— oo

Since ¢, (x) = %(cos n! x - cos 2n!x), it follows from (8) that

(9) lim (cos n!x - cos 2n!x)%dx = 0.
n— o Ek

By a simple application of the Riemann-Lebesgue lemma, the left side of (9) equals
the measure of E,, which therefore vanishes, and Theorem 1 is proved.

Remark 1. Since every polynomial is the difference of two increasing polynomi-
als, we deduce from Theorem 1 that the singular functions belonging to the Zygmund
class Z are dense in C[0, 27].

Remark 2. We can modify the preceding construction so that it yields a function
f of class Z, satisfying (1), and with £'(x) = 0 on an open set of measure 27. (Ka-
hane’s construction also gave such a function.) The idea is to define f,(x) as before
on subintervals where min fr'l_l(x) > 1, but on each other subinterval replace
f,_1(x) by a function that is constant on the middle third of the subinterval. It is
possible to carry this out in such a way that f,(x) is twice differentiable and the new
functions up = f, - f,_1 have the essential properties of the previously defined u,.
However, the details are complicated, and we shall not present them.

Remavrk 3. The following variant of the proof of Theorem 1 is perhaps some-
what simpler. Fix a positive number «, and at the nth stage define f, to be
fh-1+a¢, if my, ;> o, and otherwise f, = f,_1. Then we deduce that the limit
function f satisfies the inequality f'(x) < @ a.e. Thus, if f(27) - £(0) > 27, f has a
nonvanishing singular part f;. The absolutely continuous part has a derivative
bounded a.e. by «, and therefore, if @ is small enough, f; satisfies the require-
ments of the theorem.



270 HAROLD S. SHAPIRO

THEOREM 2. Under the hypotheses of Theorem 1, there exists a nondecreasing
singular function f that satisfies (1) and such that, for all h < 1/2,

(10) |£(x + h) - 2£(x) + £(x - h)| < Ch |log h|~1/2,

wheve C is a constant independent of x and h.

Proof. The proof is similar to that of Theorem 1, in the variant suggested in
Remark 3. Let {b,} be a decreasing sequence of positive numbers such that
b, — 0 and

(11) 2ipt ==,

We successively subdivide the base interval as before, but now, in the ith interval of
the nth subdivision, we define

fn-l(x) if mn,i S bn’
f,(x) =
fo1(x) +b,op(x) i my >y,

Just as before, we obtain a nondecreasing limit function f(x), and (1) holds if
b; < &/3. We now verify that f has the two crucial properties.

a) Proof that f is singulav. Let x be a point where f'(x) exists and is positive.
As before, f;(x) — f'(x). Now, from some ny, onwards, b, is less than the minimum
of £!_1(y) on the interval In(x) of the nth subdivision containing x, and thus
fn(Y) = f,-1(y) + bp ¢n(y) on In(x), hence

£1(x) = £},_1(X) + b, pp(x).

Since this holds from some n onward, and lim £} (x) exists, we deduce that the
series

0
(12) an(cos n!x - cos 2n!x)

1

converges at each point x where f'(x) > 0. However, it is known from the theory of
lacunary series (see [11, p. 203]) that if (11) holds, (12) cannot converge on a set of
positive measure. Therefore f'(x) =0 a.e.

b) Verification of (10). Once again, u, = f,, - f,.1 is twice differentiable, and
now it satisfies the conditions

b
Iun(x)l <n—1!1’ lur';(x)l < b,n!.

Therefore, since IAZfOI < n?,

4

o0
2 . 3
|A%f|/h < h+ anl bnmm(—ihn!,m .

To complete the proof, we now choose b, = %[n log(n + 2)]-1/2, and we must verify
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that the right side in the last inequality is O(|log h|~1/2). Clearly,

P )
4 3 4 bn
(13) 5 by mln(zhn',ﬁ—'-) < 3h Z) by +y D 3,
n=1 =1 n=p+l
where p is determined by the condition
(14) pl <3<+,

The second sum in the right hand member of (13) is bounded by

4bp+ 1 % 1 8bp+ 1

n! <h(p+1)'

< 8bp+]. s
n=ptl

and the first sum is bounded'by

p-1
2b
3h 3h 3 1
5 (bl 27 nl+plb )<——2 (2b1(p—1)!+p!bp) <-§(—p +bp);

n=1

hence the left side of (13) is O((p log p)~ l/‘2) and this, in view of (14), is
O(|1og h|- 1/2) Thisg completes the proof.

Remark., The analogues of Theorem 2 for higher-order moduli of smoothness
are also true. The only difference in the proofs is that in place of g(x) we take trig-
onometric polynomials that vanish together with sufficiently many derivatives at 0
and at 27. The estimates on A}];f are fully analogous, the only change being that we
now use the inequality

|apu, ] < A min{(@!)*"'n*, 1/n1}

to find once again that |ATf| < Ch|log h|™/2,

2. INTERFERENCE PHENOMENA

Consider the following question: if a function of bounded variation has a certain
smoothness, is this “inherited” by its absolutely continuous and smgular parts sepa-
rately, or is an “interference” possible whereby the oscillations ‘of the two compo-
nents cancel each other? The method of Section 1 enables us to show that such in-
terference is indeed possible.

THEOREM 3. There exists a function of bounded variation that belongs to the
class Lip a for every o <1, but whose singular and absolutely continuous parts
belong to no Lipschilz class.

We note that the construction in the proof of Theorem 2 can be applied to an
arbitrary increasing function fo having a continuous second derivative on the open
interval (0, 27); the process gives a convergent sequence {f } and the limit func-
tion f is once again increasing and singular. The proof of singularity still works,
since f((x) is bounded on (g, 27 - €) for each fixed ¢ > 0, so that, as before, the
variation of f] _;(x) tends to zero in the basic intervals of the nth subdivision that
lie in (g, 27 - €). We can therefore make the following assertion.
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THEOREM 4. Let £y be any increasing function with a continuous second de-
rivative on the open intevval (0, 2w). Then there exists a function u, continuous on
[0, 2n], such that

(i) Iu(x+h)—21_1(x)+u(x_h)l < Khlloghl-llz

(0<h<1/2,
0<x-h<x+h<27)),

(ii) £ =1y +u is incveasing and singular.

Now we can give the proof of Theorem 3. Suppose f; is continuous and increas-
ing on [0, 27] and twice differentiable in (0, 27), and suppose it belongs to no Lip-
schitz class (for instance, take fy(x) = llog b /8| -1, Applying Theorem 4 to this fg,
we obtain a function u with the desired properties. Indeed, u belongs to Z, and
hence to Lip @ for every a@ <1, and u=1 - {5, where f is singular; therefore -fg,
which belongs to no Lipschitz class, is the absolutely continuous part of u.

Remark 1. As we stated in the introduction, J.-P. Kahane has proved a theorem
stronger than Theorem 3, namely: suppose that p(t) is increasing, that
lim, _, 4 p(t)/t = =, and that q is any continuous increasing function with q(0) = 0;
then there exists a function of bounded variation with modulus of continuity O(p(t))
such that the modulus of continuity of its absolutely continuous part is not O(q(t))
(private communication).

Remark 2. Of course, if an increasing function has a certain modulus of con-
tinuity, this is inherited by its absolutely continuous part. On the other hand, the
corresponding question for the modulus of smoothness is not yet settled.

Remark 3. Similar interference phenomena can also occur with respect to the
(Jordan) representation of a function as the difference of its positive and negative
variations. Thus, Theorem 3 remains true if we replace “singular and absolutely
continuous parts” with “positive and negative variations” (this was noted also by
Kahane) and the proof is much easier than that of Theorem 3. We can construct an
example by taking a function whose graph consists of triangular peaks of suitable
shape and distribution.

An alternate example with a simple analytic representation was kindly furnished
by the referee. Consider the function

-1/x
f(x) = xe =

= og w7 sin e!/* (0 <x <1/2e),
og X

with £(0) =0, For x#0,

M= 1/x
> 3 [(x + 1)1og x - 2x]sin el/x _ COS €

'(x) = Lse .
(=) x (log x) x (log x)?‘

and we note at once that f'(x) = O(1/x (log x)%). Moreover, if & is small enough, then
in the interval (0, 6) the inequality

|f'(x)] > 1/2x(log x)2

holds on an open set of measure greater than 6 /4. Therefore f is of bounded vari-

X X
ation, but the functions 5 £'(t)" dt and S £'(t)” dt have the order of magnitude
0 0

1/ ]log xl, so that they satisfy no Lipschitz condition, at x = 0.
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To show that f € Lip @ for each @ (0 < a@ < 1), let & be fixed, and let 6 denote
any positive number small enough so that 61-0¢ < 1/2e, For 0 <x< 51—a’ the
definition of f gives the estimate

|fx+ 6) - £(x)| < |fx+0)] + |£(x)] < C; 61 exp(-1/(26)'"%) = O(5%).
For 61® < x < 1/2e - &, the bound on f' gives the estimate
|f(x + 8) - £(x)] < 6C/6' "% = 0O(5%).

This completes the proof.

3. A COUNTEREXAMPLE IN CONFORMAL MAPPING

For the background of this section, see [2] and [7]. A pseudo-circle is the image
of ]zl =1 under a conformal mapping w = F(z) of its interior such that F'(z) is
bounded and |F'(el?)| = C almost everywhere, for some positive number C (the
designation “pseudo-circle” is explained in [7]). Pseudo-circles were first con-
structed by Keldys and Lavrentiev to demonstrate that the Smirnov condition for do-
mains with rectifiable boundaries is not vacuous. In [2], the existence of pseudo-
circles (other than circles) was shown to follow from the existence of an increasing
singular function of class Z. However, the KeldyS-Lavrentiev construction had
another noteworthy feature, not discussed in [2]: it showed that for every £ > 0,
there exists a pseudo-circle of perimeter 27 (that is, with C =1) contained in a
circle of radius €. Theorem 1 enables us to supplement the discussion in [2] so as
to obtain this feature also. Indeed, consider the function

2T , 4 it

- doft),

F'(z) = expS

o z-e

where p is an increasing singular function on [0, 27], and write P = p(27) - p(0).
Then

) 2w 2

1-r 1-r 1
log | F'(ret? =—S dpt) <-——P < -5(1-1)P.
g | F'(e™)] o 1-2rcos(0 -t)+r? plt) T+r b S 3 )

Therefore

1
< 5 e-U-TIP/24r < 9/p,
X ,

| F(elf) - ¥(0)| =

! i0
S F'(re*”)dr
0

and it is therefore sufficient (in view of [2]) to construct an increasing singular
function p such that p(27) - p(0) is sufficiently large, while

|o(t +h) - 2p(t) + p(t - h)| < Ah,

where A is a preassigned constant. But from Theorem 1, we see that if our initial
function is fg(x) = Bx and if we choose € = 1, the constructed singular function f(x)
satisfies the condition f(27) - £(0) > B - 2, and this implies the desired result. (We
should note that for the purpose of constructing univalent functions the singular func-
tion p(t) must remain in class Z when extended for t > 27 by the definition
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p(27 + x) - p(x) = p(27) - p(0). It is easy to verify that with the choice of the initial
function fy(x) = Bx, this follows automatically from our construction.)

Using the full strength of Theorem 1, one could perhaps deduce the existence of
pseudo-circles that approximate an arbitrary smooth Jordan curve.

APPENDIX 5

THEOREM (Stein and Zygmund, [9]). Suppose f is continuous and of period 2,
and

|f(x +1t) - 2f(x) + f(x - t)| < w(t),

1
wheve S t3[wt)? dt < . Then f is absolutely continuous and f' € L2,
0

w -
Proof. Let f have the Fourier expansion Z;_oo c,e™* . The hypotheses imply
that .

Sl SZW |£(x + t) - 26(x) + £(x - t)?

> dxdt < e,
0 "0

and the integral is seen to equal
* 1
16 2 lcnIZS t-3sin® Xat.
-0 0

1 nt n? n/2 3 4 2
Since 5 t™3sin® Fdt = - S u~3 sin® u du > Bn® for n > 1, we deduce the con-
0 0

vergence of 27 n? Icnl 2 , which is equivalent to the stated result.
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