PAIRS OF MATRICES GENERATING DISCRETE
FREE GROUPS AND FREE PRODUCTS

Morris Newman

The purpose of this note is to prove that certain pairs of real 2 X 2 matrices of
determinant 1 generate discrete free groups, and to indicate extensions to pairs of
real linear fractional transformations generating discrete free products. The condi-
tions are formulated in terms of the signs of the elements of the matrices, and they
may be regarded as a generalization of the situation that exists in the classical
modular group T' and the Hecke groups (see [4], [5], [9], and [10]). Some work
along these lines has been done by various authors (see [1], [2], [3], [7], [8], and
[11]), but the conditions previously imposed were of a different type, and there is
very little intersection with the present work. In addition, it is worth noticing that
T'(2) and T, the only free normal 2-generator subgroups of I', are not covered by
the present discussion. Reasonably simple conditions for deciding when an arbitrary
pair of elements of SL(2, R) (where R denotes the real field) generates a free group
are probably not to be found, and partial answers of the type given here may be the
most that can be expected.

Let G = {A, B} denote the group generated by the elements A and B of
SL (2, R). Then each element W of G has the form

r S r S
(1) w=AlBl..AmB?",

where the exponents are different from 0 except possibly for r; and s, . If all the
exponents are different from 0, we say that W is of {ype (AB). A simple argument
shows that

(a) G is free and freely generated by A and B if and only if A and B are not of
finite period and no word of type (AB) with n > 0 represents the identity,

(b) G is discrete if and only if there is no convergent infinite sequence
Wi, W, - of distinct words W; of type (AB).

Our method will consist of deriving inequalities for the elements of the matrices
AT B® (rs #0). The inequalities carry over on multiplication, and they imply the
desired results.

THEOREM 1. Let A, B be elements of SL(2, R). Suppose that

-a b -a -8
) ()
-c d y O

wheve a,b,c,d, a, B, v, 6>0and t=d-a>2, 71=0-a>2. Then the group
G = {A, B} is a free discrete subgroup of SL(2, R) and is freely generated by
A, B.

Before embarking on the proof, we should make the following observation: Let
us regard A, B as elements of LF (2, R), and add the further restriction that
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a—1>1—a.
c Y

Then the isometric circles of A, A-1, B, B-1 are pairwise disjoint, and the result
(in this case) follows by the methods used in [2] and [4].

We now turn to the proof.

0 1
LEMMA 1. There is a conjugacy over GL(2, R) that takes A into ( )
-1t

and B into a matvix with the same sign pattern as B.

Proof. Since bc =1+ ad > 1, ¢ cannot vanish. Put

c -a
M=( )e GL(Z,R).
0 1
Then

. 0 1 L 1fec-n -Bc2 - ya2 - (a + d)ac
MAM-! = , MBM! == .
-1 t Y va + 6c

Since MBM~! and B obviously have the same sign pattern, the lemma follows.

0 1
Because of this lemma, we lose no generality in assuming that A =( ),
-1t

and this will be done in what follows.
As usual, we define sgn(x) by
1 (x>0),

sgn(x) = o
~1 (x<0).

Let X, Y be any elements of SL(2, R). We write X > Y to mean that every

element of X is nonnegative and exceeds or equals the absolute value of the corre-
sponding element of Y. Notice that if X; > Y, and X; > Y,, then X;X; > Y, Y,.

We now prove
LEMMA 2. Letr and s be nonzevo integevs. Then

Y 0
(2) sgn(rs) AT B° > Irsl( )
0 B

o -1
Furthermore,if a« =0, =1, y=1 (so that B = ( )) , then
1 T

(3) sgn(rs) ATB® > |rs|C(r, s),

wheve C(r, s) is one of the matrices
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Proof. Since A has trace t and determinant 1, A satisfies its characteristic
equation A2 =tA - I. Hence for each integer r, AT must be a linear combination of
A and I. In fact,

;Ar = tI‘A - tr-II’

where tg=0, t; =1, t.;; =tt,. - t._ ;. It is readily seen that

(4) ty = -t
and (because t > 2)
(5) t,>r (r>0).

Similarly, for each integer s,

B® = 71,B- 741,
where 7,=0, 7, =1, 7, ;=774 - T4_;, and where
(6) T.s = ~Tsg,

(7 Tg>8 (s> 0),

Direct computation now shows that

where

=t 1 Tsatat, ) Ts +7tr73’
brs =Bt | Tg+at, 75+t 7541,
=t T tat, gt yty TS,
d = Btr75+atr+l Ts T irt1 Tl

Observe that if rs > 0, then all the elements of AT B® are nonnegative, and that if
rs < 0, then all the elements of -AY BS are nonnegative. In fact, using (4), (5), (6),
and (7), we obtain the relations

Y a+1
ATBS > rs( ) (r>0,s>0),

a+y a+p+1

y a
-ATB® > -rs( ) (r>0, s<0),

a+y+1 a+8
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a+y a+B+1
-ATB® > -rs (r <0, s>0),

o B

a+y+1 a+p

AT B® >>rs( ) (r<o0,s<0),

a+1 B

from which both (2) and (3) follow. This completes the proof of the lemma.

We now turn to the proof of Theorem 1. If W is of type (AB), define h(W) as
the absolute value of the product of the exponents of W. We note first that neither A
nor B is of finite period. Let W, given by (1), be any word of type (AB), and put

g = sgn(r;sy)---sgn(r,sy).

Then Lemma 2 implies that

y® 0
(8) eEW > h(W)( ),
O g"
0 -1
and also that if B = ( ), then
1 T
9) eW > h(W)C(r;, s;)-C(rn, Sp).

0 -1
If B+ ( ) ,then B >1 or ¥ > 1, and (8) implies that W can never be the
1 T
0 -1
identity. If B = ( ), then (9) implies that W can never be the identity. Hence
1 T

we have proved the first part of the theorem; namely, the group G is free.

Now suppose that

r. S:
ri1 _Sjii iky lki

W;=a B A B i=1,2 3, )
is any infinite sequence of distinct elements of type (AB). Then certainly

s

1
(10) 27 {lrgl + s3]} » = as i,
j=1
which implies that either h(W;) — © as i — ©, or kj — © as i — «, or both. Put
£€; = sgn (I‘i]_ Sil) cee SEN (rikisiki) .
We see again that

ki
. Y 0
(11) siWi >> h(Wi)‘( k‘)’
0 pB°'
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0 -1
and also that if B = ( ), then
1 T

(12) Si Wi > h(Wl)'C(rll 3 Sii)"'C(riki, Slki)'

A little reflection shows that because of (10), (11), and (12), some of the elements of
€; W; become arbitrarily large as i — «. Hence no such sequence converges, and we
have proved the second part of the theorem; namely, the group G is discrete. This
completes the proof of Theorem 1.

Essentially the same method allows us to prove the following generalization of
Theorem 1 (we omit the proof):

THEOREM 2. Let A, B be elements of LF (2, R) and let p and q be integers
(p, 9 > 2). Suppose that

-a b -aa -8B
(D =)
-C d Y 6

where a, b, c,d, a,B,v,06>0, Putt=d-a, 7 =0- a. Then the group
G = {A, B} generated by A, B is discrete and equal to {A}* {B} (the free product
of the indicated cyclic groups) in each of the following four cases:

(13) t>2, v>2,

(14) t = 2cos%, T>2,

(15) t>2, 7= 2cos-g-,

(16) t=2cost, 7 =2cosX,
p q

The presentation of this paper was materially improved by the referee’s com-
ments, which we gratefully acknowledge.
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