LENGTH DISTORTION OF CURVES UNDER CONFORMAL MAPPINGS

Sigbert Jaenisch

1. INTRODUCTION

Let α denote the open upper half of the unit circle C: |z| = 1, let α^* denote the open real diameter of the unit disk K: |z| < 1, and let us consider a conformal mapping f of K onto a simply connected domain D in the finite plane. The image $\beta^* = f\alpha^*$ of α^* is a locally rectifiable curve with length $\|\beta^*\| \leq \infty$, and α corresponds to a "curve" β on the boundary of D to which we can assign a "length" $\|\beta\| \leq \infty$.

An unpublished but widely circulated conjecture by Piranian states that there exists a *finite constant* A such that $\|\beta^*\| \leq A \cdot \|\beta\|$, and that the *best possible value* A_0 of the constant is π . Gehring and Hayman [1, Theorem 1] proved the first part of the conjecture, and they showed that $\pi \leq A_0 < 74$.

In Section 7, we disprove the second part of Piranian's conjecture: by means of an example, we show that $A_0 \geq 4.5$. In Section 6, we reduce the upper estimate of A_0 to 17.5. Since the first part of the conjecture can not be extended to quasiconformal mappings, the proof for the upper estimate must involve conformality in an essential way; indeed, we use the distortion $|dw|/|dz| = |f'(z^*)|$ under the mapping w = f(z) at the points z^* of α^* in order to get the length $\|\beta^*\|$.

We shall consider all circular arcs α^* in K on which the harmonic measure of α has the constant value ω ; the original problem is the special case $\omega = 1/2$. In Sections 3 to 5, we give certain lower estimates for the length of β ; they depend on the harmonic measure ω of β at an interior point $w^* = f(z^*)$ of D, and they are either proportional to the distance of w^* from β or proportional to the distortion $|f'(z^*)|$ at the point z^* .

In Section 2 we discuss "curves" on the boundary of an arbitrary simply connected domain. Without this generality, we should repeatedly be forced to put clumsy restrictions on the domains D and on the conformal mappings f to be admitted.

2. CURVES ON THE BOUNDARY

We consider a simply connected domain D in the extended complex plane, the abstract boundary ∂D consisting of the prime ends \mathscr{W} , and the projections $W = p\mathscr{W}$ into the plane. We define a semidistance $\rho(\mathscr{W}_1, \mathscr{W}_2)$ for prime ends as the infimum of those constants r such that for each point of $p\mathscr{W}_1$ and of $p\mathscr{W}_2$ there is a point of the other set within euclidean distance r.

If f denotes a conformal mapping of K onto D, we shall use the same symbol f for the mapping that carries the points of C onto the corresponding prime ends of D. The induced *cyclic ordering* of ∂D allows us to speak of *intervals* on the abstract boundary. We regard an open interval β on ∂D as a generalized *curve*, because it is the image $f\alpha$ under f of an interval α on the unit circle C.

Received February 7, 1966, and February 2, 1967.

Since we have an ordering on C and a semidistance on ∂D , the *total variation* $V(f \mid \alpha)$ is the supremum of all sums $\sum_{m} \rho(f(z_m), f(z_{m-1}))$ taken for ordering monotone systems (z_0, z_1, \cdots, z_n) on α . For a curve β on ∂D we define the generalized *length* as

$$\|\beta\| = V(f \mid \alpha).$$

If there is a nondegenerate prime end \mathcal{W}_0 in β , then p ∂D oscillates nearby and thus accumulates infinite length for β .

For β to have finite length it is necessary but not sufficient that all its prime ends degenerate to points; the mapping pf on α is then the continuous continuation of the mapping f on K, and $\|\beta\|$ is the customary length of the path of the point pf(z) moving through the point set pf α .

3. LENGTH AND DISTANCE OF A CURVE ON THE BOUNDARY

In this section, we state modified versions of three known results, and we introduce our first theorem.

LEMMA 1 (Fekete; Pommerenke [4, Satz 3]). Let γ denote a curve in the finite plane whose projection py is a compact point set. Let D denote the unbounded component of its complement, and let f denote a conformal mapping of U: |z| > 1 onto D with $f(\infty) = \infty$. Then the length of γ satisfies the inequality

$$\|\gamma\| \geq 4 \cdot |f'(\infty)|;$$

the constant 4 is best possible for the class of configurations.

(Fekete's proof appeared in a rather inaccessible paper, and the author has not been able to find an exact reference.)

LEMMA 2 (Löwner [2, Satz VIII]). Let z^* denote a point in the exterior U: |z| > 1 of the unit circle C, and let f denote a conformal mapping of U with $f(\infty) = \infty$. Then the distance between point and boundary in the image satisfies the inequality

$$\operatorname{dist}(f(z^*), fC) \leq |z^*| \cdot |f'(\infty)|;$$

the inequality is best possible for the class of mappings.

A conformal mapping f_0 of U with $f_0(\infty) = \infty$, $f_0(z^*) = 0$, and such that pf_0 maps C into C, is an example for equality. The proof of the inequality is an application of the maximum principle to the function $ff_0^{-1}(w)/w$.

LEMMA 3 (Milloux Problem; Nevanlinna [3]). Let D_0 denote a simply connected domain lying outside of the unit circle C in the finite plane. Let α denote an open interval on the abstract boundary ∂D_0 whose projection $p\alpha$ lies on C. Then the harmonic measure ω of α at a point z^* in D_0 satisfies the inequality

$$\tan^2\frac{\pi\omega}{4}\leq\frac{1}{|z^*|}$$
;

the inequality is best possible for the class of configurations.

We shall now use the lemmas to obtain our first result.

THEOREM 1. Let β denote an open interval on the abstract boundary of a simply connected domain D in the finite plane, and let ω denote the harmonic measure of β at a point w^* in D. For the class of these configurations, there exists a positive constant $F(\omega)$ such that the length of β satisfies the inequality

$$\|\beta\| \geq F(\omega) \cdot dist(w^*, \beta)$$
.

The best possible value $F_0(\omega)$ of the constant satisfies the condition

$$4 \cdot \tan^2 \frac{\pi \omega}{4} \leq F_0(\omega) \leq 8 \cdot \tan^{-1} \left(\tan^2 \frac{\pi \omega}{4} \right)$$
.

In the proof of the lower estimate for $F_0(\omega)$ we may assume β to be of finite length. The unbounded component \widetilde{D} of the complement of the closed set $\overline{p\beta}$ is a simply connected domain containing D. Let us take a conformal mapping f of U: |z| > 1 onto \widetilde{D} with $f(\infty) = \infty$, and put $D_0 = f^{-1}D$, $\alpha = f^{-1}\beta$, and $z^* = f^{-1}(w^*)$. Since the point set $p \partial \widetilde{D}$ is equal to $\overline{p\beta}$, we have the relations

$$dist(w^*, \beta) = dist(w^*, \partial \widetilde{D}) = dist(f(z^*), fC)$$
.

Combining this with the lemmas, we find that

$$\|\beta\| = \|\overline{\beta}\| \ge 4 \cdot |f'(\infty)| \ge 4 \cdot \frac{1}{|z^*|} \cdot \operatorname{dist}(f(z^*), fC) \ge 4 \cdot \tan^2 \frac{\pi \omega}{4} \cdot \operatorname{dist}(w^*, \beta).$$

The following example establishes the upper estimate for $F_0(\omega)$.

Example 1. For a constant a with $0 < a < \pi$, let D be the plane slit along the real axis from $-\infty$ to -1 and along the unit circle C from -1 to e^{ia} and to e^{-ia} , let β correspond to the inner edge of the slit on C without the endpoints, and let w^* be 0.

4. LENGTH ON THE BOUNDARY AND DISTORTION IN THE INTERIOR

THEOREM 2a. Let α denote an open arc on the unit circle C, and let ω denote the harmonic measure of α at a point z^* in the unit disk K. For the class of conformal mappings f of K into the finite plane, there exists a positive constant $E(z^*, \omega)$ such that the length of $f\alpha$ satisfies the inequality

$$\|f\alpha\| > E(z^*, \omega) \cdot |f'(z^*)|$$
.

The best possible value $E_0(z^*, \omega)$ of the constant satisfies the condition

$$(1 - |z^*|^2) \cdot \tan^2 \frac{\pi \omega}{4} \le E_0(z^*, \omega) \le \frac{1}{2} \cdot (1 - |z^*|^2) \cdot \tan^2 \frac{\pi \omega}{2}$$
.

Our result gives a relation between the length of the interval on the boundary after the mapping, and the *distortion* $\left| dw \right| / \left| dz \right| = \left| f'(z^*) \right|$ under the mapping *at the interior point* z^* of K. Since there is a conformal mapping f_0 of K onto K with $f_0(0) = z^*$ and $f'_0(0) = 1 - \left| z^* \right|^2$, we see that $E_0(z^*, \omega) = (1 - \left| z^* \right|^2) \cdot E_0(0, \omega)$.

The upper estimate for $E_0(0, \omega)$ is a consequence of the conformal mapping of the configuration $(K, \alpha, 0)$ onto the configuration in the following example.

Example 2. Let D be the plane slit along the real axis from $-\infty$ to 0 and along the imaginary axis from -i to i, let β correspond to the right edge of the vertical slit without the endpoints, and let w^* be positive.

To prove the lower estimate for $E_0(0, \omega)$, we use Theorem 1 with D = fK, $\beta = f\alpha$, and $w^* = f(0)$, together with the 1/4-Theorem of Koebe, and we get the inequalities

$$\begin{split} \|\mathbf{f}\alpha\| &= \|\beta\| \geq \mathbf{F}_0(\omega) \cdot \operatorname{dist}(\mathbf{w}^*, \, \beta) \geq \mathbf{F}_0(\omega) \cdot \operatorname{dist}(\mathbf{w}^*, \, \partial \mathbf{D}) \\ &= \mathbf{F}_0(\omega) \cdot \operatorname{dist}(\mathbf{f}(0), \, \mathbf{f}\mathbf{C}) \geq \mathbf{F}_0(\omega) \cdot \frac{1}{4} \cdot |\mathbf{f}'(\mathbf{z}^*)| \geq \tan^2 \frac{\pi \omega}{4} \cdot |\mathbf{f}'(\mathbf{z}^*)| \; . \end{split}$$

5. LOCAL LENGTH DISTORTION ON THE BOUNDARY

We now formulate Piranian's conjecture for a wider class of curves.

Generalized Piranian Problem. Let α denote an open arc on the unit circle C, and let α^* denote the circular arc in the unit disk K on which the harmonic measure of α has the constant value ω . For the class of conformal mappings f of K into the finite plane, does there exist a finite constant $A(\omega)$ such that the lengths of $f\alpha^*$ and $f\alpha$ satisfy the inequality

$$\|f\alpha^*\| \leq A(\omega) \cdot \|f\alpha\|$$
?

We use the notation D=fK, $\beta=f\alpha$, and $\beta^*=f\alpha^*$. In the case $\|\beta\|<\infty$ we intend to estimate

$$\|\beta^*\| = \|f\alpha^*\| = \int_{\alpha^*} |f'(z^*)| \cdot |dz^*|$$
.

Therefore we need an upper estimate for the distortion $|f'(z^*)|$ at the points z^* of α^* . It seems natural to apply Theorem 2a: $|f'(z^*)| \leq \|\beta\|/E_0(z^*, \omega)$; but unfortunately the integral of $1/(1-|z^*|^2)$ over α^* is infinite. For the conjecture to be true, it is necessary that $|f'(z^*)|$ be considerably smaller than Theorem 2a tells us.

We try to explain this situation in a second way. Let f_0 be the conformal mapping of (K, α, z^*) onto the following configuration.

Example 3. Let D_0 be the parallel strip 0 < x < 1, let α_0 be the line x = 1, and put $z_0^* = \omega + i\eta$.

For the conformal mapping ${\bf f}={\bf ff_0^{-1}}$ of ${\bf D_0}$ onto D, the assertion of Theorem 2a has the following equivalent formulation

$$\|\widetilde{f}\alpha_0\| \geq \widetilde{E}_0(z_0^*, \omega) \cdot |\widetilde{f}'(z_0^*)|,$$

with

$$\widetilde{E}_0(z_0^*,\,\omega) \geq \frac{2}{\pi} \cdot \sin\,\pi\omega\,\cdot \tan^2\frac{\pi\omega}{4}\;.$$

The translational invariance of the configuration causes the constant to be independent of z_0^* in the sense that $\widetilde{E}_0(z_0^*, \omega) = \widetilde{E}_0(\omega, \omega)$. Now let us try to estimate

$$\left\|\beta^*\right\| \;=\; \left\|\widetilde{\mathbf{f}}\mathbf{f}_0\,\alpha^*\right\| \;=\; \int_{-\infty}^{+\infty} \; \left|\widetilde{\mathbf{f}}'(\omega\,+\,\mathrm{i}\,\eta)\right| \cdot \mathrm{d}\eta\;.$$

The reformulated Theorem 2a gives for $|\tilde{\mathbf{f}}'(\omega+i\eta)|$ the upper estimate $\|\beta\|/\tilde{\mathbf{E}}_0(\omega,\omega)$, which is a constant and therefore useless for the integration along the infinite line. Instead of this, we should show that $|\tilde{\mathbf{f}}'(\omega+i\eta)|$ goes to 0 rapidly as $\eta \to \pm \infty$.

Since the infinite line α_0 is mapped onto a curve β of finite length, the parts $\widetilde{\alpha}$ of α_0 lying near ∞ must have very small length distortion $\|\widetilde{f}\alpha\|/\|\widetilde{\alpha}\|$. What remains to be done is a comparison of the distortion $|\widetilde{f}(z_0^*)|$ at an interior point z_0^* with the local length distortion on a nearby part $\widetilde{\alpha}$ of the boundary. It turns out that the result we need is merely another conformally equivalent version of Theorem 2a.

THEOREM 2b. Let D_0 denote the parallel strip 0 < x < 1, let α_0 denote the line x = 1 on its boundary, and let α denote the open interval on α_0 between the points $1 + i(\eta - k)$ and $1 + i(\eta + k)$. The harmonic measure of α at the point $z^* = x^* + i\eta$ in D_0 has the value

$$\omega = \frac{2}{\pi} \cdot \tan^{-1} \left(\tanh \frac{\pi k}{2} \cdot \tan \frac{\pi x^*}{2} \right).$$

For the class of conformal mappings f of D_0 into the finite plane, there exists a positive constant $B(x^*, k)$ such that the length of $f\alpha$ satisfies the inequality

$$\|f\alpha\| > B(x^*, k) \cdot |f'(z^*)|$$
.

The best possible value $B_0(x^*, k)$ of the constant satisfies the conditions

$$B_0(x^*, k) \leq \sqrt{2} \cdot k$$

and

$$\frac{2}{\pi} \cdot \sin \pi x^* \cdot \tan^2 \frac{\pi \omega}{4} \le B_0(x^*, k) \le \frac{1}{\pi} \cdot \sin \pi x^* \cdot \tan^2 \frac{\pi \omega}{2}$$

The assertion $B_0(x^*, k) \leq 2k/\sqrt{2}$ means that for each choice of the point z^* and of the length 2k of the corresponding interval α on the line x=1, there exists such a mapping f with the distortion $|f'(z^*)|$ at z^* being at least $\sqrt{2}$ times as large as the local length distortion $||f\alpha||/||\alpha||$ on the boundary. This follows from the conformal mapping onto the configuration of Example 2.

To prove the remaining assertions, we consider the conformal mapping f_0 of the unit disk K onto D_0 with $f_0(0) = z^*$. Explicit calculations show that $|f_0'(0)| = (2/\pi) \cdot \sin \pi x^*$ and that an arc of length $2\pi\omega$ is mapped onto α . We apply Theorem 2a to the mapping f_0 and get the inequalities

$$\tan^2 \frac{\pi \omega}{4} \leq E_0(0, \omega) \leq \frac{1}{2} \cdot \tan^2 \frac{\pi \omega}{2}$$

and

$$\|f\alpha\| \ge E_0(0, \omega) \cdot \frac{2}{\pi} \cdot \sin \pi x^* \cdot |f'(z^*)|.$$

6. LENGTH OF A LEVEL CURVE OF HARMONIC MEASURE

Omitting the conformal mapping f of the configuration (K, α , α^*) mentioned in the Generalized Piranian Problem, we give our main result in a conformally invariant formulation.

THEOREM 3. Let β denote an open interval on the abstract boundary of a simply connected domain D in the finite plane, and let β^* denote the level curve in D on which the harmonic measure of β has the constant value ω . For the class of these configurations, there exists a finite constant $A(\omega)$ such that the lengths of β^* and β satisfy the inequality

$$\|\beta^*\| < A(\omega) \cdot \|\beta\|$$
.

The best possible value $A_0(\omega)$ of the constant satisfies the conditions

$$A_0(\omega) > 1$$

and

$$\frac{1}{2\omega^2} \leq A_0(\omega) \leq \frac{6}{\omega^3};$$

for $\omega = \frac{1}{2}$, we have the stronger inequalities

$$4.56 \leq A_0\left(\frac{1}{2}\right) \leq 17.45$$
 .

The proof of the lower estimate will be given in Section 7. To prove the upper estimate for $A_0(\omega_0)$, we use a conformal mapping f of the configuration $(D_0$, $\alpha_0)$ in Example 3 onto (D,β) . Let us take the notation of Theorem 2b, and put $x^*=\omega_0$. At each point $z_0^*=\omega_0+i\eta$ on the line α_0^* : $x=\omega_0$, the harmonic measure of the corresponding interval α has the value ω , and the harmonic measure of α_0 has the value ω_0 . The variation of f on α_0 is a measure μ_y . Using Theorem 2b and Fubini's theorem, we get the relations

$$\begin{split} \mathbf{B}_{0}(\boldsymbol{\omega}_{0},\,\mathbf{k}) \cdot \left\| \boldsymbol{\beta}^{*} \right\| &= \mathbf{B}_{0}(\boldsymbol{\omega}_{0},\,\mathbf{k}) \cdot \left\| \mathbf{f} \boldsymbol{\alpha}^{*} \right\| = \int_{-\infty}^{+\infty} \mathbf{B}_{0}(\boldsymbol{\omega}_{0},\,\mathbf{k}) \cdot \left| \mathbf{f}'(\boldsymbol{\omega}_{0} + \mathbf{i}\boldsymbol{\eta}) \right| \cdot \mathrm{d}\boldsymbol{\eta} \\ &\leq \int_{-\infty}^{+\infty} \left\| \mathbf{f} \boldsymbol{\alpha} \right\| \cdot \mathrm{d}\boldsymbol{\eta} = \int_{-\infty}^{+\infty} \int_{\boldsymbol{\eta} - \mathbf{k}}^{\boldsymbol{\eta} + \mathbf{k}} \mathrm{d}\boldsymbol{\mu}_{\mathbf{y}} \cdot \mathrm{d}\boldsymbol{\eta} = \int_{-\infty}^{+\infty} \int_{\mathbf{y} - \mathbf{k}}^{\mathbf{y} + \mathbf{k}} \mathrm{d}\boldsymbol{\eta} \cdot \mathrm{d}\boldsymbol{\mu}_{\mathbf{y}} \\ &= \int_{-\infty}^{+\infty} 2\mathbf{k} \cdot \mathrm{d}\boldsymbol{\mu}_{\mathbf{y}} = 2\mathbf{k} \cdot \left\| \mathbf{f} \boldsymbol{\alpha}_{0} \right\| = 2\mathbf{k} \cdot \left\| \boldsymbol{\beta} \right\| \,. \end{split}$$

Therefore $A_0(\omega_0) \le 2k/B_0(\omega_0$, k) for each k>0. For the fairly good choices

$$k = \sqrt{3} \qquad \text{for } 0 < \omega_0 \le \frac{1}{2}$$

and

$$k = \sqrt{3} \cdot \sin \pi \omega_0$$
 for $\frac{1}{2} < \omega_0 < 1$,

laborious calculations lead to the upper estimates stated above.

The ratio of the interior distortion $|f'(\omega_0 + i\eta)|$ and the local length distortion $||f\alpha||/||\alpha||$ on the boundary can be large only for a set of values η that is small compared with α_0 , but the application of Theorem 2b replaces this ratio with the upper estimate $2\sqrt{3}/B_0(\omega_0, \sqrt{3}) = O(\omega_0^{-3})$ for all η . This explains why our method yields only $A_0(\omega_0) = O(\omega_0^{-3})$ as $\omega_0 \to 0$ instead of the expected magnitude $O(\omega_0^{-2})$.

7. EXAMPLES AND CONJECTURES

We look for configurations (D, β , β *) with large values of the ratio $\|\beta^*\|/\|\beta\|$ in Theorem 3. The following is a modified form of the example used by Gehring and Hayman [1, p. 354].

Example 4. Let D be the plane slit along the real axis from $-\infty$ to 1, and let β correspond to both edges of the slit from -1 to 1 without the endpoints at -1.

In the case $\omega=1/2$, one finds that β^* is the unit circle without the point -1, and thus $\|\beta^*\|/\|\beta\|=\pi$. The conformal mapping $w=z+(z^2-1)^{1/2}$ leads to the following example.

Example 5. Let D be the exterior of the unit circle C slit along the real axis from $-\infty$ to -1, and let β correspond to C without the point -1.

A simple calculation gives the lower estimate of Theorem 3: $\|\beta^*\| \ge \|\beta\|/(2\omega^2)$. We omit a detailed discussion of this example, because it is merely a limiting case of the following.

Example 6. For a constant a with $0 < a < \pi$, let D be the plane slit along the real axis from $-\infty$ to 1 and along the unit circle C from 1 to e^{ia} and to e^{-ia} , and let β correspond to the outer edge of the slit on C without the endpoints (see the picture).

We have performed the following numerical computations on the *ZUSE* 23 *Elektronische Rechenanlage* at the University of Giessen in Germany. A certain sequence of linear, square, and square-root mappings leads from the unit disk K, half-circle α , and diameter α^* to the configuration of Example 6. Using N = 21 suitably spaced points of α^* , we obtained points of β^* and hence an approximation L(a) for $\|\beta^*\|$. Arc length was computed with a formula based on circular three-point-approximation, which has relative error O(N⁻⁴) for the curves under consideration. With nine

choices of a, we arrived at a value a_9 not more than 0.001 distant from a value where L(a)/a has a local maximum. Now, using N = 201 points of β^* for $a_9 = 2.21658 \cdots (\approx 127^\circ)$ we found that $\|\beta^*\| \geq 20.22447$ and thus $A_0(1/2) \geq \|\beta^*\|/(2a_9) \geq 4.562 \cdots$. This completes the proof of Theorem 3.

It seems that the *extremal configuration* with $\|\beta^*\| = A_0(\omega) \cdot \|\beta\|$ should have the following properties:

- (i) If we move along β , then the tangent turns away from D.
- (ii) The complement of \overline{D} is enclosed by $\overline{\beta}$.

If (i) is not satisfied, we pull a part of β inward and thus make β shorter, make D smaller, and push β^* away from the old β . If (ii) is not satisfied, we push a part of ∂D not belonging to β outward, and thus make D larger and pull β^* away from β . Since β^* moves away from β , we expect β^* to become longer; this would mean an increase of the ratio $\|\beta^*\|/\|\beta\|$.

We conjecture the extremal configuration for Theorem 3 to be qualitatively like Example 6; β will consist of a symmetrical pair of analytic arcs, starting with right angles at the endpoint of the half-line slit, with tangent turning toward the half-line, and curvature increasing. We estimate that $A_0(1/2)$ is near 5 and less than 2π ; in general, the *extremal ratio* $\|\beta^*\|/\|\beta\| = A_0(\omega)$ will be $O(\omega^{-2})$ as $\omega \to 0$.

REFERENCES

- 1. F. W. Gehring and W. K. Hayman, An inequality in the theory of conformal mapping. J. Math. Pures Appl. (9) 41 (1962), 353-361.
- 2. K. Löwner, Über Extremumsätze bei der konformen Abbildung des Äusseren des Einheitskreises. Math. Z. 3 (1919), 65-77.
- 3. R. Nevanlinna, Über eine Minimumaufgabe in der Theorie der konformen Abbildungen. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1933, 103-115.
- 4. C. Pommerenke, Über die Kapazität ebener Kontinuen. Math. Ann. 139 (1959/60), 64-75.

The University of Michigan Ann Arbor, Michigan 48104 Justus-Liebig-Universität

Giessen, Germany