LENGTH DISTORTION OF CURVES
UNDER CONFORMAL MAPPINGS

Sigbert Jaenisch

1. INTRODUCTION

Let o denote the open upper half of the unit circle C: ]zl =1, let a* denote the
open real diameter of the unit disk K: |z| < 1, and let us consider a conformal map-
ping f of K onto a simply connected domain D in the finite plane. The image
B* = fa* of a* is a locally rectifiable curve with length |f*| <, and @ corre-
sponds to a “curve” 8 on the boundary of D to which we can assign a “length”

I8l <=

An unpublished but widely circulated conjecture by Piranian states that there
exists a finite constant A such that ||8*| < A-| B8], and that the best possible value
Ag of the constant is 7. Gehring and Hayman [1, Theorem 1] proved the first part of
the conjecture, and they showed that 7 < Ag < 74.

In Section 7, we disprove the second part of Piranian’s conjecture: by means of
an example, we show that Ay > 4.5. In Section 6, we reduce the upper estimate of
Ag to 17.5. Since the first part of the conjecture can not be extended to quasicon-
formal mappings, the proof for the upper estimate must involve conformality in an
essential way; indeed, we use the distortion ]dwl/ |dz‘ = |£'(z*)| under the mapping
w = f(z) at the points z* of a* in order to get the length | *|.

We shall consider all circular arcs @®* in K on which the harmonic measure of
a has the constant value w; the original problem is the special case w = 1/2. In
Sections 3 to 5, we give certain lower estimates for the length of 8; they depend on
the harmonic measure w of 8 at an interior point w* = f(z*) of D, and they are
either proportional to the distance of w* from B or proportional to the distortion
|£'(z*)| at the point z*.

In Section 2 we discuss “curves” on the boundary of an arbitrary simply con-
nected domain. Without this generality, we should repeatedly be forced to put
clumsy restrictions on the domains D and on the conformal mappings f to be ad-
mitted.

2. CURVES ON THE BOUNDARY

We consider a simply connected domain D in the extended complex plane, the
abstvact boundary 8D consisting of the prime ends 9¢, and the projections W = p%
into the plane. We define a semidistance p(9¢), ;) for prime ends as the infimum
of those constants r such that for each point of p%#; and of p%/, there is a point of
the other set within euclidean distance r.

If £ denotes a conformal mapping of K onto D, we shall use the same symbol £
for the mapping that carries the points of C onto the corresponding prime ends of D.
The induced cyclic orvdering of oD allows us to speak of infervals on the abstract
boundary. We regard an open interval 8 on aD as a generalized curve, because it
is the image fa under f of an interval o on the unit circle C.
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Since we have an ordering on C and a semidistance on 9D, the fofal variation

V(| @) is the supremum of all sums 20 p((zm), £(zm -1)) taken for ordering
monotone systems (zg, z}, ', 2,) on «. For a curve 8 on 9D we define the gen-
eralized length as

lgll = vit|a).

If there is a nondegenerate prime end 9/ in 8, then poD oscillates nearby and
thus accumulates infinite length for S.

For B to have finite length it is necessary but not sufficient that all its prime
ends degenerate to points; the mapping pf on « is then the continuous continuation
of the mapping f on K, and I]B ” is the customary length of the path of the point
pf(z) moving through the point set pfa.

3. LENGTH AND DISTANCE OF A CURVE ON THE BOUNDARY

In this section, we state modified versions of three known results, and we intro-
duce our first theorem.

LEMMA 1 (Fekete; Pommerenke [4, Satz 3]). Let y denote a curve in the finite
plane whose projection py is a compact point set. Let D denote the unbounded com-
ponent of its complement, and let f denote a conformal mapping of U: |z| > 1 onto
D with f() = . Then the length of v satisfies the inequality

7l > 4- [} 5

the constant 4 is best possible for the class of configurations.

(Fekete’s proof appeared in a rather inaccessible paper, and the author has not
been able to find an exact reference.)

LEMMA 2 (LSwner [2, Satz VIII]). Let z* denote a point in the exterior
U: |z[ > 1 of the unit cirvcle C, and let £ denote a conformal mapping of U with
f() = . Then the distance beltween point and boundary in the image satisfies the
inequality
dist (f(z*), IC) < |z*| - |£'(=)| ;

the inequality is best possible for the class of mappings.

A conformal mapping fy of U with fy(=) = «, fo(z*) = 0, and such that pfy maps
C into C, 1s an example for equality. The proof of the inequality is an application of
the maximum principle to the function ffg!(w)/w.

LEMMA 3 (Milloux Problem; Nevanlinna [3]). Let Dq denote a simply con-
nected domain lying outside of the unit civcle C in the finite plane. Let Q@ denote an
open intevval on the abstract boundary 0Dg whose projection pa lies on C. Then
the havmonic measure w of « at a point z* in Dg satisfies the inequality

TW 1
tanZTS |Z*| ;

the inequality is best possible for the class of configuvations.

We shall now use the lemmas to obtain our first result.
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THEOREM 1. Let B denote an open intevrval on the abstract boundary of a sim-
ply connected domain D in the finite plane, and let w denote the harvmonic measure
of B at a point w* in D. For the class of these configurations, theve exists a posi-
tive constant F(w) such that the length of B satisfies the inequality

18]l > F(w)-dist (w*, B).

The best possible value Fo(w) of the constant satisfies the condition

4-tan2 T2 < Fo(w) < 8-tan-! (tanz%) :

4

In the proof of the lower estimate for Fo(w) we may assume $ to be of finite
length. The unbounded component D of the complement of the closed set pB is a
sunpl connected domain containing D. Let us take a conformal mapping f of

> 1 onto D with f() = e, and put Dg = 1D, @ =£71B, and z* = £~ 1(w¥).
Smce the point set paD is equal to pB, we have the relations

dist (w*, 8) = dist(w*, D) = dist (f(z*), £C).
Combining this with the lemmas, we find that

I8l = |B] > 4-|f(=)| > 4- lZ{"| - dist (£(z%), £C) > 4-tan214‘3 - dist (w*, B).

The following example establishes the upper estimate for Fg(w).

Example 1. For a constant a with 0 <a <7, let D be the plane slit along the
real axis from -« to -1 and along the unit circle C from -1 to e'? and to e~ 2,
let B correspond to the inner edge of the slit on C without the endpoints, and let w*
be 0.

4. LENGTH ON THE BOUNDARY AND DISTORTION IN THE INTERIOR

THEOREM 2a. Lef a denote an open arc on the unit civcle C, and let w denote
the havmonic measure of @ at a point z* in the unit disk K. For the class of con-
formal mappings f of K into the finite plane, theve exists a positive constant
E(z*, w) such that the length of fa satisfies the inequality

[l e || > E(z*, w)- |£1(z*)] .

The best possible value Ey(z*, w) of the constant satisfies the condition
- |2*[?)-tan2 72 7 < Eolz¥, )<% (1- !Z*|2)-tan2%'

Our result gives a relation between the length of the interval on the boundary
after the mapping, and the disfortion ldwl / |dZ| = lf (z*)| under the mapping at the
intevior point z* of K. Since there is a conformal mapping fo of K onto K with
£5(0) = z* and £5(0) =1 - Iz*l , we see that Eg(z*, w) = (1 - |z*|2) Ep(0, w).

The upper estimate for E(0, w) is a consequence of the conformal mapping of
the configuration (K, o, 0) onto the configuration in the following example.
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Example 2. Let D be the plane slit along the real axis from -« to 0 and along
the imaginary axis from -i to i, let B correspond to the right edge of the vertical
slit without the endpoints, and let w* be positive.

To prove the lower estimate for Ey(0, w), we use Theorem 1 with D = fK,
B = fa, and w* = £(0), together with tne 1/4-Theorem of Koebe, and we get the in-
equalities

]

ltall = 8] > Folw)-dist(w*, B) > Fo(w)-dist(w*, aD)

- |£1(z*)] > tan2 1€ . |£(z*)] .

Fo(w) - dist (£(0), £C) > Folw) - 4

| =

5. LOCAL LENGTH DISTORTION ON THE BOUNDARY

We now formulate Piranian’s conjecture for a wider class of curves.

Genevalized Pivanian Problem. Let o denote an open arc on the unit circle C,
and let a* denote the circular arc in the unit disk K on which the harmonic meas-
ure of @ has the constant value w. For the class of conformal mappings f of K
into the finite plane, does there exist a finite constant A(w) such that the lengths of
fa* and fa satisfy the inequality

[te*|| < Aw)- [ta] 2

We use the notation D = fK, B =fao, and 8* = fa*. In the case HB | << we in-
tend to estimate

I8 = el = § Je@)] - laz*] .

a

Therefore we need an upper estimate for the distortion |f'(z*)| at the points z* of
a*. It seems natural to apply Theorem 2a: |f'(z*)| < ||8||/Eq(z*, w); but unfortu-
nately the integral of 1/(1 - |z* | 2) over a* is infinite. For the conjecture to be
true, it is necessary that |f '(z*)| be considerably smaller than Theorem 2a tells
us.

We try to explain this situation in a second way. Let f; be the conformal map-
ping of (K, @, z*) onto the following configuration.

Example 3. Let Dy be the parallel strip 0 <x <1, let ap be the line x =1, and
put z§ = w +in.

For the conformal mapping f= ff()'l of Dy onto D, the assertion of Theorem 2a
has the following equivalent formulation

oo | > Eolzh, )- |§(25)] ,
with
270

« sin 7w - tan 1

EO(ZE‘;’ w) _>_

EREN)

The translational invariance of the configuration causes the constant to be independ-
ent of z} in the sense that E(z§, w) = Eg(w, w). Now let us try to estimate
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too
lg ]l = NEga*] = § |F +in)] -an.

-00

The reformulated Theorem 2a gives for IF " + in)] the upper estimate

" B ﬂ /Eg(w, w), which is a constant and therefore useless for the integration along
the infinite line. Instead of this, we should show that |f'(w + in)| goes to 0 rapidly
as n — towo.

Since the infinite line @ is mapped onto a curve B of finite length, the parts a
of @p lying near « must have very small length distortion u?a ||/ | o |[ What re-
mains to be done is a comparison of the distortion If'(zg)l at an interior point z{
with the local length distortion on a nearby part a of the boundary. It turns out that
the result we need is merely another conformally equivalent version of Theorem 2a.

THEOREM 2b. Let D denote the parallel strip 0 <x < 1, let oy denote the
line x =1 on its boundary, and let o denote the open intevval on oy between the
points 1+ i(n - k) and 1+ i(y+ k). The harmonic measure of a at the point
z* = x* +in in Dy has the value

*
w =g-tan'1 (tanhl-k-tanﬂ-}i-) )
T 2 2

For the class of conformal mappings f of Dg into the finite plane, there exists a
positive constant B(x*, k) such that the length of fa satisfies the inequality

It > B(x*, k)- |£'(z*)] .
The best possible value Bo(x*, k) of the constant satisfies the conditions

Bo(x*, k) < V2.k
and

2 Tw

T < Byx*, k) < % . sin 7x* - tan 5

2| sin 7x* - tan2 T2
T 4

The assertion By(x*, k) < 2k/V2 means that for each choice of the point z* and
of the length 2k of the corresponding interval @ on the line x = 1, there exists such
a mapping f with the distortion |f'(z*)| at z* being at least V2 times as large as
the local length distortion || fa II / |] o II on the boundary. This follows from the con-
formal mapping onto the configuration of Example 2.

To prove the remaining assertions, we consider the conformal mapping £, of the
unit disk K onto Dg with f3(0) = z*. Explicit calculations show that
|£5(0)| = (2/m) - sin 7x* and that an arc of length 27w is mapped onto @. We apply
Theorem 2a to the mapping ff; and get the inequalities

27 < Eol0, 0) < 5

1
tan 2 > E
and

lfa] > Eq(0, w) % . sin 7x* - |£'(z%)] .
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6. LENGTH OF A LEVEL CURVE OF HARMONIC MEASURE

Omitting the conformal mapping f of the configuration (K, o, ¢*) mentioned in
the Generalized Piranian Problem, we give our main result in a conformally in-
variant formulation.

THEOREM 3. Let 3 denote an open intevval on the abstract boundary of a sim-
ply connected domain D in the finite plane, and let B* denote the level curve in D
on which the harmonic measure of B has the constant value w. For the class of

these configurations, theve exists a finite constant A(w) such that the lengths of B*
and B satisfy the inequality

l6*] < Aw)- 8] -

The best possible value Ay(w) of the constant satisfies the conditions

AO (w) >1
and

1 6
202 = Bo@) <755

for w = 1 we have the strongey itnequalities
2 b

456 < Ag(3) < 17.45.

The proof of the lower estimate will be given in Section 7. To prove the upper
estimate for Ag(wg), we use a conformal mapping f of the configuration (Dy, @) in
Example 3 onto (D, B). Let us take the notation of Theorem 2b, and put x* =wg. At
each point zj = w, + in on the line at: x'= wg, the harmonic measure of the corre-
sponding interval a has the value w, and the harmonic measure of o has the value
wo. The variation of f on a( is a measure p,. Using Theorem 2b and Fubini’s
theorem, we get the relations

00

Bo(wg, k) - [8*] = Bolwy, k)~ [1e*] = S By(wg, k) |f'(wg + in)| - dn

+00 +oo Atk +oo  y+k
<§ peba=§ T aa= {0 anan,
-00 -0 -k ~0 y-

= SM 2%-du, = 2k- lteoll = 2 |8 -

-0

Therefore A,(w,) < 2k/By(w,, k) for each k > 0. For the fairly good choices

k=+3 for 0<w0§%
and
k = V3-sinmw, foré—<w0<1,

laborious calculations lead to the upper estimates stated above.
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The ratio of the interior distortion [f (wo + 177)[ and the local length distortion
|| fa || / " o ]I on the boundary can be large only for a set of values 7 that is small
compared with @, but the application of Theorem 2b replaces this ratio with the
upper estimate 2V 3/By(wg, V3) = O(wo ) for all 5. This explains why our method
yields only Ay(w,) = Olwg3) as wy — 0 instead of the expected magnitude O(wg52).

7. EXAMPLES AND CONJECTURES

We look for configurations (D, 8, f*) with large values of the ratio |g*|/| 8]
in Theorem 3. The following is a modified form of the example used by Gehring and
Hayman [1, p. 354].

Example 4. Let D be the plane slit along the real axis from -« to 1, and let B
correspond to both edges of the slit from -1 to 1 without the endpoints at -1.

In the case w = 1/2, one finds that B* is the unit circle w1thout the point -1, and
thus |g*| /18] = 7. The conformal mapping w = z + (z2 - 1)1/2 leads to the follow-
ing example.

Example 5. Let D be the exterior of the unit circle C slit along the real axis
from -« to -1, and let 8 correspond to C without the point -1.

A simple calculation gives the lower estimate of Theorem 3: ||8*| > | 8]/ (2w?2).
We omit a detailed discussion of this example, because it is merely a limiting case
of the following.

Example 6. For a constant a with 0 <a <, let D be the plane slit along the
real axis from -« to 1 and along the unit circle C from 1 to e*2 and to e~'2, and
let B correspond to the outer edge of the slit on C without the endpoints (see the
picture).

....-.‘—‘

)
o)
*

We have performed the following numerical computations on the ZUSE 23 Elek-
tronische Rechenanlage at the University of Giessen in Germany. A certain sequence
of linear, square, and square-root mappings leads from the unit disk K, half-circle
a, and dzameter a* to the configuration of Example 6. Using N = 21 sultably spaced
pomts of o™, we obtained points of 8* and hence an approximation L(a) for ”B*”
Arc length was computed with a formula based on circular three-point-approxima-
tion, which has relative error O(N-%) for the curves under consideration. With nine
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choices of a, we arrived at a value a9 not more than 0.001 distant from a value
where L(a)/a has a local maximum. Now, using N = 201 points of g* for

ag = 2.21658 -+ (~ 127°) we found that |*| > 20.22447 and thus

Ao(1/2) > ||8*]|/(2a9) > 4.562-+-. This completes the proof of Theorem 3.

It seems that the extremal configuration with ||*| = Ag(w)- ||8] should have
the following properties:

(i) If we move along B, then the taingent turns away from D.
(ii) The complement of D is enclosed by B.

If (i) is not satisfied, we pull a part of 8 inward and thus make B shorter, make D
smaller, and push f* away from the old 8. If (ii) is not satisfied, we push a part of
oD not belonging to 8 outward, and thus make D larger and pull 8* away from B.
Since B* moves away from B, we expect S* to become longer; this would mean an
increase of the ratio ||8*]/|8].

We conjecture the extremal configuration for Theorem 3 to be qualitatively like
Example 6; B8 will consist of a symmetrical pair of analytic arcs, starting with right
angles at the endpoint of the half-line slit, with tangent turning toward the half-line,
and curvature increasing. We estimate that Ay(1/2) is near 5 and less than 27; in
general, the extremal vatio |p*|/||B| = Ag(w) will be O(w-2) as w — 0.
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