THE BOUNDARY BEHAVIOUR OF TSUJI FUNCTIONS
W. K. Hayman

1. INTRODUCTION

Suppose that f(z) is meromorphic in |z| < 1. We denote by

|£(2)]

f¥(2) = — o
@) =73 |£(z) |2

the spherical derivative of f(z). If T is any rectifiable Jordan curve or arc in

|z| <1, then

(1.1) ur) = | )|z
r

is the length of the image of T', under the associated map of |z| < 1 onto the Rie-
mann sphere.

We denote the disk |z| < 1 by D, its circumference |z| =1 by C, and the
circles Izl =r by C,, for 0 <r <1. Also, for each nonnegative number £ we de-
note by T,(¢) the class of functions f(z) such that

; 27 .
(1.2) lim sup L{C,) = lim supS *(ret?)rao <4,

r—1 r—1 0

and we write T} = U T ().
£>0

The class T; was introduced by Tsuji [11], and it was further considered by
Collingwood and Piranian [3], who called the functions f € T Ts: gz Sfunctions. Let
S(0, @) denote the straight-line segment joining the two points e*” and
(1 - ei®cos a)elf | and let A(6, @) denote the length of the spherical image of
S(e, a) by f(z), so that

A8, @) = S *(z) |az] .
S(8, a)

If f(z) approaches a limit as z — el? along S(6, a), we denote the limit by w(6, a).
If in each open triangle in D having one vertex at ell and containing S(6, a) the
function f(z) assumes infinitely often all values on the sphere, with at most two ex-
ceptions, then S(6, «) is called a segment of Julia. If for a fixed 6 and all «
(-7/2 < a <nu/2) S(6, @) is a segment of Julia, then ei® is called a Julia point.
With this notation and terminology, we can state a theorem of Tsuji [11] as follows.

THEOREM A. If f € T, then, for each a in |a| <u/2, A(8, @) is an inte-
grable function of 6, and for almost all 6, A(0, a) is an integrable function of «.
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2 W. K. HAYMAN

Movreover, for almost all 6 the relation w(6, @) =w(6, B) holds whenever both
limits exist, and S(0, y) is a segment of Julia if A(0, y) = .

(We note that Bagemihl’s theorem on disjoint arc cluster sets for arbitrary func-
tions [2] strengthens immediately the first part of the second sentence in Theorem A:
the set of points et at which t has morve than one asymptotic value is at most
countable.)

Collingwood and Piranian [3] gave several illuminating examples showing that
Tsuji functions can in fact have segments of Julia. In particular, they constructed
a meromorphic function f(z) € T; for which each point of C is a Julia point, and a
meromorphic function g(z) € T, of bounded characteristic, for which each point of
E is a Julia point, where E is an arbitrarily prescribed set of measure 0 on C.
They also proved that the regular function

f(z) = exp(i +Z)2

is a Tsuji function and has each of the two segments S(0, ¥7/4) as a segment of
Julia. It should be said that the examples of Collingwood and Piranian also lead to
meromorphic Tsuji functions f(z) with arbitrarily large growth as measured by the
characteristic T(r, f).

Finally, Collingwood and Piranian stated three conjectures concerning regular
Tsuji functions. The first two of these are disproved elsewhere [6], through the con-
struction of a regular function f(z) € T 1 with infinitely many Julia points. The third
asserts that a regular novrmal Tsuji function has no segments of Julia.

In this paper we shall prove this conjecture, and rather more. Suppose that f(z)
is meromorphic in a simply connected domain A. Following Lehto and Virtanen
(see [8], [9]), we say, for 0 < K < «, that f(z) € N(K) in A if

lZI

where do, refers to the hyperbolic metric with respect to A. If £ € N(K) for some
K, we say that f(z) is normal in A. Since the hyperbolic metric decreases with ex-
panding domain 4, it follows that if f € N(K) in A, then f € N(K) in every subdomain
of A. This remark is frequently useful. We shall be concerned mainly with the case
where A is some subdomain of D. We say that a function f meromorphic in D be-
longs to N(K) at € on C if

*(z) < K——

*(z) < KA1 - |z]|?)

at all points z of D in some disk |z - £| <s&. If f € N(K) for some K, at {, we say
that f is normal at €. If £ € N(K) for every K, at {, we say f is subnormal at ¢,
and if f does not belong to N(K) for any K, at §‘ we say that f(z) is abrormal at C
We note that since (1 - |z | 2)-1 is the hyperbolic metric of D, a function f is normal
in D if and only if it is normal at every point £ of C. We also note that the set of
points of C at which f is normal is an open subset of C. Thus the set of points of C
where f is abnormal is closed. The points or arcs of C at which f is normal or
abnormal will be called normal or abnormal arvcs or points of C, if there is no
ambiguity about the function f.

The theory of normal functions was developed by Lehto and Virtanen [8], [9], who
proved the following proposition.
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THEOREM B. Suppose that £(z) is mevomovphic in D. Then ¢ is an abnovmal
boundavry point of D if and only if theve exists a sequence of points z., € D such that
z, — € and

(1.3) A - |2a]5)f*(z,) — .

<s},

then for each fixed ¢ the function f assumes in S(z,, €) at least one of any three
preassigned values in the closed plane, for all sufficiently lavge n.

Further, if {zn} satisfies (1.3), € > 0, and

Z - Zp

S(z,, €) = {z:

1-2z,2

Conversely, if f(z) satisfies this latter condition in S(z,, €) for every ¢, then
(1.3) holds as z — ¢ through a sequence {z,} such that the hyperbolic distance of
zr'1 from z_  tends to zero. We remark that from the theory of normal families (and
from Ahlfors’ theory of covering surfaces) various other properties of f(z) in the
regions S(z,, €) can be deduced. For instance, if {A,} (v =1, .-+, 5) is a set of
simply connected domains on the Riemann sphere whose closures are disjoint, then
for n > no(s), f(z) gives a schlicht map of a subdomain of S(z,, €) onto at least one
of the domains A, (see for example [5, p. 156]). Hence the area of the image of
S(z,, €) on the Riemann sphere remains above a positive absolute constant for large
n, and so the area of the image of the intersection of D with any neighbourhood of ¢
is infinite if { is abnormal. We also note that by Theorem B any abnormal point {
of C is necessarily a Picard-point (that is, f(z) assumes in each neighbourhood of ¢
all values in the closed plane, with at most two exceptions; the exceptional values are
called Picard values).

For most of our purposes, a hypothesis weaker than (1.2) will suffice. We shall
say that f(z) € T,(2) if £ is meromorphic in D and if there exists a sequence of
closed Jordan curves I' ) € D whose interiors D, expandto D as m — % and for
which

(1.4) lim sup L(T' ) < £,

m —

where L(T) is given by (1.1). We also write T, = Uﬂ>0 T,(¢). The classes T,
and T,(¢) are evidently invariant under a conformal map of |z| <1 onto itself,
while T, and T,(¢) are not [3, Theorem 4].

2. STATEMENT OF THE MAIN RESULTS

THEOREM 1. If f € Tx(¢), then { is continuous and subnormal at all normal
boundary points § of C. In particular, if f is novmal in D, then f is continuous on
the whole of C, in the metvic of the Riemann spheve. Furthev, the image of the noy-
mal points of C by f(z) lies on a path of length at most { on the Riemann spheve.

COROLLARY 1. Each normal mevomorphic function £(z) in T, (and
a fortiovi each noymal function in T ) is continuous on |z| = 1, and thevefore it
can have no segments of Julia.

This proves Conjecture 3 of Collingwood and Piranian [3] even for meromorphic
functions. We also prove the following two results.
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THEOREM 2. If { is normal in D, then the limit

L = lim L(C,)

r—1

exists as a finite ov infinite limit, If L is finite, then L is the length of the image
of C by the function 1(z), when £ is extended to C by continuity.

THEOREM 3. If f € T, and § denotes a point of C, then the following four
statements are equivalent:

(i) £ is normal at ¢;
(ii) £ omits at least thvee values, in some neighbourhood of € ;

(iii) the image by 1(z) of some neighbourhood of € in D has finite area in the
melvic of the Riemann spheve;

(iv) £ is continuous on an arvc of C containing ¢ .

The range R({) of f(z) at ¢ is defined as the set of values that f(z) assumes at
least once (and therefore infinitely often) in every neighbourhood of . It follows
from Theorem 3(iv) that if f is normal at ¢, then R(f) reduces either to £(£) or to
the null set; and that otherwise, by (ii), the complement of R({) is empty or consists
of one or two points.

All these possibilities can occur. Thus Collingwood and Piranian showed [3,
Theorem 5] that

2
f(z) = exp(]i_l_Z) € T

and that f(z) has a segment of Julia ending at z = 1, so that the point z = 1 is abnor-
mal. Here the range clearly excludes the points w =0, . If

2
F(z) = £+7 = 1,
then F'(z) = £'(1 - £-2), so that
Fl -] -1 B
1+ |F|2 £ + |82+ 1|2 1+ |£]?°

where A is an absolute constant. Thus F(z) € T; ; moreover, F(z) is regular and
assumes every finite value infinitely often near z = 1, since F(z) = a whenever
f2+1 - af = 0, and since the roots of this equation in f are finite and different from
zero. A similar argument shows that if

G=F+1/F,

then G € T} and G assumes every value, including infinity, infinitely often near
z =1.

The function f(z) = z belongs to T (217) and assumes no value more than once,
so that its range is empty at every boundary point. Elsewhere [6, Theorem 2}, we
give an example of a normal function whose range consists of the point 0 at a se-
quence of boundary points, and it is not difficult to modify this example so that the
corresponding set of points is uncountable.
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The first of the following two theorems gives a simple condition under which £(z)
is necessarily normal. The second theorem shows that the first cannot be extended
to Tz .

THEOREM 4. If f € T,(2) with £ <, then f is normal in |z| <1. Thus, if
f € T,(0), then f is constant.

THEOREM 5. There exist nonconstant functions (z) in T,(0).

A nonconstant function f in T,(0) cannot have any normal boundary point ¢,
since f(eif) would have to be constant in a neighbourhood of &, by Theorem 1. Also,
if {I‘m} is an “expanding sequence of curves” in ]z] < 1 for which (1.4) holds
(with ¢ =0), and if 7y, is the image of T, on the Riemann sphere and wg is a limit
point of a sequence of points w,, on y,,, then for some increasing sequence {mp} ,
each circular neighbourhood N of w, contains all except finitely many of the y__ .

p
It follows from the argument principle that f(z) assumes inside I',, equally often all
values outside N. In particular, f(z) assumes in D infinitely often all values except
possibly wy. Thus f(z) in T,(0) can have no Picard value other than wy. Also, any
path T' tending to C meets I'y, for all sufficiently large m and so contains a se-
quence of points Zmp (zm € T' ) such that f(zmp) — wqo. Thus i(z) can have no

asymptotic value other than w . I}f the continua vy, have a second limit point w;,
then f(z) can have no Picard value and no asymptotic value. We shall provide two
examples showing that each of these situations can actually occur; first, a regular
function in T,(0) for which « is an asymptotic value at every point of C, and then a
meromorphic function in TZ(O) having no Picard value or asymptotic value. We shall
also show that Iversen’s Theorem holds for TZ(O), in the generalised sense that the
Picard value, if it exists, is necessarily asymptotic along a spiral path I'" tending to
C from D.

2.1. In order to state our next result, we need to introduce an extra hypothesis.
Suppose that f is meromorphic in Izl < 1, and let A be an open arc of C or the
whole of C. We say that f is lame on A if there exists a set E, dense on A, such
that each point { of E is the endpoint of an asymptotic path of f, that is, a Jordan
arc vy lying in D (except for the endpoint {) such that f approaches a finite or in-
finite limit (called asymptotic value) as z — £ along y. The condition that f is
tame has been discussed for regular functions by G. R. MacLane [10], who proved
the following theorem.

THEOREM C. If f is regular in D and

1
S (1 - r)T(r, dr <
0

(where T(r, f) is the Nevanlinna characteristic of £(z)), then f is tame on C. More
genevally, if A is an arc of C and

1
S (1 - r)logt |t(reif)| dr < «
0

Jor a set of points € = el 0 dense on A, then f is tame on A.

It also follows from Theorem A that if f € T, then f is tame on C. On the
other hand, our examples for Theorem 5 (see Section 7.1) show that f in T, need
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not have any asymptotic values and so need not be tame on any arc of C. A simple
example by MacLane shows that a normal meromorphic function also need have no
asymptotic values [10], though by Theorem C a normal vegular function is neces-
sarily tame on C, since such a function satisfies the condition

T(r, f) = O(log ) as r— 1.

1-r

If f is meromorphic and of bounded characteristic in |z| < 1, then f has radial
limits p.p. on C, so that again f is tame on C. We can now state a result that is
not only fundamental to the proof of Theorem 1, but has some independent interest.

THEOREM 6. Suppose that f(z) € T,({) and that f is tame on an arc
A=1{C=¢l0| 6, <0 <0,} of C. Then there exist asymptotic paths at each point
¢ =eil of A, In particular, given any continuous positive function e(x) (0 <x < 1),
we may choose such paths yi(60) and y,(6) to lie in the regions

D,(6) = {z=1e®"| 0<p<1, 1-elp)<r <1}

and
D,(8) = {Z=rei(9'¢)| 0<¢p<1, 1-¢(¢)<r <1},

respectively (except for the endpoint ¢).

The corresponding asymptotic values ¢1(0) and ¢,(0) ave continuous on the left
and on the vight, vespectively, and they ave uniquely deteymined by 6. If $(6) de-
notes the asympiotic value covresponding to the asymptotic paths at eie, for the
values 0 in 0 < 0 < 27 for which such a path exists, then all the values ¢(0) lie on
a path of length at most { in the metvic of the Riemann spheve. Finally, the set of
values § € C at which f has distinct asymptotic values w, and w} is countabdle,

and 22 d(w,, w;) < ¢, where d(w;y, w,) denotes the great-civcle distance from w,
to W, on the Riemann Spheve.

Theorem 6 sharpens in particular the second part of Theorem A, even in its
amended form. For if f € T;, then f is tame on C, and by Theorem 6 it has
asymptotic values along suitable paths at every point { of C. On the other hand,
Theorem 6 asserts nothing concerning the existence of rectifiable (let alone recti-
linear) asymptotic paths or about paths with rectifiable images. We shall consider
these problems for normal points of C in Theorems 8 to 10 in Section 6.

Theorem 3 gives five possibilities for the range of a function in T;; while four
of these may occur for a large number of &, there is a restriction in the fifth case.

THEOREM 7. Suppose that £ € Ty(L) and that { is tame on C. Then the set E
of points of C wheve the range of t has a complement consisting of exactly two
points is countable; moveover, if {ﬁn} is an enumevation of E and w,, wy ave the

exceptional values at €, , then
27 d(wy,, wi) < 4.

COROLLARY. Iffe T and f #a, b in D, wherve a #b, then f is normal except
at a finite number of points of C. Thus at most a finite numbey of points of C can be
endpoints of segments of Julia.
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This result proves a special case of Collingwood and Piranian’s first conjecture,
which was that for a regular function f € T at most a finite number of points of C
are endpoints of segments of Julia. While the full conjecture is false (as we pointed
out earlier) the conjecture is correct with the additional assumption that f omits
some value besides « in D. This condition is in fact satisfied by the example

2

_ 1+2z
f(z) = exp(1 - z)
of Collingwood and Piranian. It would be interesting to know whether the condition
that f is tame on C can be omitted in Theorem 7.

Theorem 7 also suggests the question whether with the hypotheses of that theo-
rem there can be infinitely many segments of Julia at one of the points ¢, . If not,
we should have a proof of the second conjecture of Collingwood and Piranian (namely,
that a holomorphic function in T; cannot have more than a finite number of segments
of Julia), under the stronger hypothesis that f omits two distinct values instead of
only one.

The remainder of our paper now proceeds as follows. In the next two sections
we prove Theorems 6 and 1, respectively. In Sections 5 and 6, we investigate local
properties of functions in T, at the normal arcs of C, and we prove Theorems 2 and
3. Finally, in Section 7 we prove in turn our remaining global results, namely Theo-
rems 4, 5, and 7.

3. PROOF OF THEOREM 6

We now begin the proof of Theorem 6, which is fundamental to our further re-
sults. Suppose that f is meromorphic in D, and let E be a set of points of C that
are endpoints of asymptotic paths. A finite system of paths y;, v3, **, ¥Yn=7) is
called an ordered system of asymptotic paths on E if it satisfies the following four
conditions.

(i) v, lies in |z| <1 except for one endpoint £, on E.

(ii) The paths y,,, v,,; have no common points in ry < Izl < 1, for some
rg <1.

(iii) ¥ r is near enough to 1 so that all the paths y, meet the circle C,., and if
Z, = re'® 7 denotes the last point of y,, on C, (so that the arc of v, from

z, to §, lies in r < |z| < 1, except for its endpoints), then
a; <o, <--<a =a +27.

(iv) £(z) approaches a limit w,, as z — {,, along v,, .

The value w,, is called the asymptotic value associated with vy, . For any two
complex numbers w; and wy (one of them may be infinite), we define d(w;, wz) to
be the minimum length of curves joining the points associated with w; , w, on the
Riemann sphere. We define the spherical boundary variation of f on E as

n-1

VE(f) = Sup Z>1 d(wy b Wv+1) ’
V=
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where the w, are the asymptotic values associated with an ordered system of
asymptotic paths on E, and where the supremum is taken over all such systems.

LEMMA 1. Iffe T,(2) and E is a set of points of C that ave endpoints of
asymptotic paths of f, then vg(f) <4.

Lemma 1 becomes intuitively clear if we consider an expanding sequence {I‘m}
of rectifiable Jordan curves that satisfy condition (1.4), together with ordered sets
on E that are associated with asymptotic values whose variation is nearly vg(f) (see
Figure 1). The details of the proof are as follows.

Figure 1.

Let {7,,} (v =1, --, n) be an ordered system of asymptotic paths on E, and
let {w,} denote the set of associated asymptotic values. Since f € T,(2), there
exists a Jordan curve I' lying in the annulus r; < !zl <1 such that

S *(z) |dz| < L +¢.
r

We may assume that r, is so near 1 that the paths y,, satisfy the conditions (i) to
(iv), and so that if z, is a point of y,, in this annulus and f(z,) = w},, then

d(w,,, wy) < &/n.

We choose for z, a point of intersection of I' with y,, . Such a point must exist,
since by hypothesis I' separates |z| = rg-from ]ZI = 1; and in view of (iv), the
arcs z,z,,, of I" are disjoint except for endpoints, for v =1, *, n - 1. We also
suppose z, = z; . Thus

n-1

n-1 Zy 41
{ F@lel= Z [ folel > 2 awy, )
r v=1l "%y v=1

n-1

> 2 (d(WV’WVH)' 2e/n).
V=1
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Hence

n-1
2 dlwy, , wyy) < S *(z) |dz| +2¢ < 2+ 3¢.
v=1
Here ¢ can be chosen as small as we please, and so Lemma 1 follows.

LEMMA 2. Undev the hypotheses of Lemma 1, the set of points of E that are
endpoints of two paths with distinct asymptotic values is finite ov countable, If this

set is a sequence {Cn} = {elgn}, and if w,, wy, ave distinct asymptotic values at
$n, then

Ed(wn, wh) < 2.

The first part of Lemma 2 follows immediately from Bagemihl’s theorem on
disjoint arc cluster sets [2]. However, our hypotheses permit an extremely simple

proof: Let {;, .-, {§y be N points of E such that distinct asymptotic values w
and w;, exist at C (1 < n < N). Using the sequence {I',,} as in the proof of Lem-
ma 1, together with appropriate pairs of asymptotic paths terminating at £;, -+, {1,

we see that the inequality d(w,, w;) > £/VN can not hold for more than vN indices
n. Therefore pairs of distinct asymptotic values can occur at only countably many
points on C. The proof of the second part of the lemma is similar.

LEMMA 3. Suppose that, under the hypotheses of Lemma 2, the sequence {60}
convevges monotonically to some value 6. Then {w,} and {w,} converge to a
common limit w, which depends only on 6 and on whether {0, } is increasing or
decreasing.

The proof follows the same pattern as in the preceeding lemmas.

The following lemma establishes the existence of the paths y;(6) (i=1, 2) in
Theorem 6.

LEMMA 4. Suppose that f € T,(0) and that {v,} is a sequence of asymptotic
paths (with endpoints §,_) such that eithev every finite system {'yn} 1 or every fi-

nite system {yn}N is an ovdered system. Let {w_} denote the covresponding se-
quence of asymptotic values, and let

limw, =w, lim §n=C=ei9

Then theve exists an asymptotic path v with endpoint § and with the asymptotic
value w. In the notation of Theorem 6, the path y may be assumed to lie in D;(6)
or in D,(8) (depending on the ovientation of the system {y,}), if €, # ¢ for each
n. If the image of each path vy, has finite sphevical lengith, then v can be chosen
so that its image has finite sphevrical length.

Proof. To be definite, suppose that the sets {y,}} form ordered systems. For

each n, let y, denote an asymptotic path that lies in D,(¢), except for its endpoint
on C. Choosing a subsequence of {'yn}, if necessary, we may assume that the image
of v, under f lies within a spherical distance less than 22 from the point w. (In
case the path y, has a rectifiable image, we may also suppose that the image has
spherical length less than 272.)

Since f € T,(), there exists an expanding sequence {I"_} of Jordan curves
tending to C and satisfying (1.4). For each m for which some arc of T',,, joins the
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paths y, and yn4+1, let L, denote the minimum of the spherical lengths of the
images under f of such connecting arcs of I',,,. Clearly, if we write

Ln = lim inf LL

m — oo

mn?

then En 1 Ly, < L. Therefore we can piece together appropriate arcs of the curves
', and the paths Yn SO that the path y thus obtained has the desired properties
(see Figure 2).

Figure 2.

To complete the proof of Theorem 6, let f € T,(2), and let G denote any family
of asymptotic paths that constitutes the union of an increasing sequence of finite sys-
tems of asymptotic paths. The ordered systems induce an order in G, and the
asymptotic values associated with the paths in G define a function w on the space
G. By Lemmas 1, 2, and 3, the total variation (in the spherical metric) of the func-
tion w on G does not exceed £. If a sequence {'yn} of asymptotic paths in G is
monotonic in terms of the order in G, then Lemma 4 permits us to adjoin to G an
asymptotic path v that intersects the paths vy, in their natural order. This con-
cludes the proof of Theorem 6.

4. PROOF OF THEOREM 1

In order to prove Theorem 1, we need a key result of Lehto and Virtanen [9]. It
is best expressed in a conformally invariant form, as follows.

LEMMA 5. Suppose that f(z) € N(K) in a Jordan domain D of the closed plane,
and that 1(z) is continuous on an avc y of the boundary of D. For 0 <a <1, let
Tq(y) be the domain consisting of all points of D wheve the havmonic measure of vy
with respect to D is at least a. Then, for each 1 > 0, theve exists € > 0, depend-
ing only on o, 1, and X, such that if for some point a z‘n the closed plane

d(f(z), a) <e on vy,
then

d(f(z), a)<n in Ty(y).

From this, we shall deduce the following proposition.
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LEMMA 6. If f(z) € T,(2) and the boundary points € = ei‘? are normal for
01 < 6 < 6, wheve 61 < 02, then £(z) has radial limits at ei for a set of values
0 that is dense in the intevval [01, 02).

It is clearly sufficient to show that f has a radial limit at eif for some 6 in
[0,, 62]. Let {I‘m} be an expanding sequence of Jordan curves that tend to C and
satisfy (1.4). We choose 7 =7/4 and @ = 1/2, in Lemma 5. Suppose that f € N(K)
in the sector 0 < |z| <1, 6] <argz < 63, and let ¢ = £(K) be the corresponding
value of ¢ in Lemma 5. Let q be an integer such that (¢ + 1)/q < &/2, and define

¢p = 01 +2v(02-07)/a (v =0,1,,q).

For sufficiently large m, f maps I',, onto a curve of spherical length at most

£ + 1. Hence, for at least one v, there is an arc 'y, of I', that joins the radii
arg z = ¢,, and arg z = ¢4 in the sector ¢, < arg z < ¢, , and whose image
has spherical length less than £/2. We choose v so that this is true for infinitely
many m. We suppose that T'y, joins z,, =1, eleV and z;, = r}nelgv’fl and lies
(except for endpoints) in the sector ¢,, <argz < ¢,,; . Let A be the Jordan do-
main bounded by T'}, and the straight-line segments z,0 and 0zp,. By choosing a

subsequence, if necessary, we can suppose that {f(zm)} converges to a, say, so that
d(f(z,,), a) <&/2 on I'

for some large m. Since the spherical length of the image of T'j, is at most £/2,
we deduce that

d(f(z), a) < d(f(z), £(z,) +d(f(z,,), a) < €
on I',,. Thus, by Lemma 1,
(4.1) d(f(z), a) < 7/2,

in the domain T, ,,(T'},) defined as in Lemma 5 with respect to the domain A, .

On letting m — , we see that (4.1) still holds in the domain Tj/(y) defined
similarly with respect to the sector 6, <argz <#8,,,, |z| < 1, where v is the
arc z=el (8, <6< 6,.,). Infact, every point of T;/2(y) lies in Ty /2T
for all sufficiently large m, since the harmonic measure of a fixed arc increases
with expanding domain. This implies that

lf(z)—a <1

1+3i(z)

in T, /2(7/), so that by Fatou’s Theorem f(z) possesses radial limits (and in fact
angular limits) p.p. on y. This proves Lemma 6.

To complete the proof of Theorem 1, we need another result, which Lehto and
Virtanen [9] deduce from Lemma 5.

LEMMA 7. Suppose that £(z) is novmal in a domain A and that £(z) — ajas z
approaches a boundary point £ of A along paths Yj in A (G=1,2). Thena;=aj,
and (z) — a| uniformly as z — § between v, and vy,.

We can now complete the proof of Theorem 1. Suppose that € = eig0 is a normal
boundary point for £(z) € T»(2). Then it follows from Lemmma 6 that f(z) has radial
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limits at a dense set of points eif in an interval (6, 6,) containing 6, . Hence,
by Theorem 6, f(z) has an asymptotic value ¢,(6,) as z — 9190 along some path

v1(0 ) of that theorem and an asymptotic value ¢,(6() as z — elgO along y,(8).
In view of Lemma 7, it follows that ¢(6 ) = ¢,(84) = ¢(6,), say, and that

(4.2) f(z) — #(60)
uniformly as z — e*%0 outside the domains D;(6,) and D,(6,).

This implies that (4.2) holds as z — ¢t% in any manner from |z| < 1. For

suppose contrary to this that {zn} is a sequence such that lznl <1, z, — 6190’ and
f(z,,) 7 #(0g). Then we choose the function £(¢) of Theorem 6 so that z, lies out-
side Dl(G) and DZ(G) for each n, and so we obtain a contradiction. In fact, if

¢’n = Iarg Zn - 00' s

it is merely necessary to choose the function £(¢) so that €(¢,) <1 - Iznl for each
n. This proves that f(z) is continuous at the normal boundary points on |z| = 1.

Also, it follows from Theorem 6 that the boundary values ¢(6) at these points lie
on a path of length at most ¢ on the Riemann sphere.

It remains to show that if £ is normal, then
- Izlz)f*(z) - 0
as z — € in any manner from D, so that f is subnormal at {. We may suppose
without loss in generality that f({) = 0, since this may be achieved by a rotation of
the Riemann sphere in the w-plane, where w = £(z). Then

(4.3) lt(z)| < €

if |z| <1 and |z - ¢| < 5, say. Suppose now that |zg - €| < 6/2. Then (4.3) cer-
tainly holds in the circle

|zo - z| <1 - Izol)/Z.

Hence, by Cauchy’s inequality,

' £ 2
*(z,) < |f'(z)| < ATz <4e/(1 - |z4|?).
Since this is true for all z, sufficiently near { in lzol < 1, we deduce that ¢ is
subnormal. This completes the proof of Theorem 1.
5. BEHAVIOUR AT THE NORMAL BOUNDARY POINTS:
PRELIMINARY RESULTS

Suppose that f € T, . We proceed to investigate more closely the behaviour of f
at the points of C where f is normal.
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LEMMA 8. Suppose that f(z) is vegular in D and vemains (in the plane metric)
continuous on C. Suppose fuvther that the function £(ei9) (0 < 6 < 21) has finite
variation L. Then

27 .
(5.1) or) = g lf'(reif)| rd6 <re  (0<r<1).
0

The result is (probably) known, but for the sake of completeness I include the
following simple proof, which was communicated to me by C. Pommerenke. Suppose
that 6g =0 < 0; < - < O =27, and consider the function

k-1
ulz) = 27 sz(ze16 v+ly o f(zelgV)I .
v=0
Then u(z) is subharmonic in |z| <1 and continuous in |z| <1, and so u(z) attains
its maximum in |z| <1 at a point ¢ =ei on C. Thus

k-1

u(z)_<_ E If(ei(9+9v+]_))_f<ei(9+ev))l S ,Q,
V=0

by hypothesis. If r is fixed, we can choose the 6, so that
or) <ulr)+e < L+e.

Since ¢ is arbitrary, we deduce that ¢(r) < £ Finally, we note that |f'(z)| is sub-
harmonic, so that the mean value £(r)/r increases with r. This gives the required
result.

The next two lemmas require some further notation. For each o (0 < a <7/2)
and each p (0 <p < cos @), we write
D(6, a, p) = {z: 0< |1 - ze—wl < p, |arg(1 - ze'ie)l < a}
and
(5.2) M(6, a, p, f) = M(0, @, p) = sup |£(z)] .
z€ D(0,a,p)
Also, we shall say that a sequence of arcs

v, = {z: 2= rn(B)eie, 6 <6<6:1r (=12 )

smoothly approximates the arc y: z = etf (6g < 0 < 8p) of C provided that
(i) o<r,(6)<1 (6, <0<8),
(ii) |r1’1(9)| <K (8, <6 < 8,; K independent of n),
(iii) 6, — 6p and 6, — 6 as n — o,
(iv) ry(6) > 1 and v (6) -0 as n —» o, p.p. in 6.

LEMMA 9. Under the hypotheses of Lemma 8, f'(z) — £'(el®) p.p. in 6
as z — eif in D(6, a, t), for fixed @ and p. Further,
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2T
(5.3) M(6, @, p)de < K(a)e,
0

where K(a) is independent of p, 4, and f.

LEMMA 10. Under the hypotheses of Lemmas 8 and 9, £(ei9) is absolutely
continuous for 0 < 0 < 2m, and if the sequence of arcs y,, smoothly approximates
the arc z =eif, 0, < 6 < 0y of C, then

60
(5.4) § lr@l ezl = § " ltEi®)]as  asn—-.

Y1 b0

The results of Lemmas 9 and 10 that are not already known are simple conse-
quences of known results. In the first instance, (5.3) is a form of the Hardy- Little-
wood Maximum Theorem [7] applied to the subharmonic functions |f'(z)|!/2 and
(5.1). It follows from (5.1) that f'(z) is of bounded characteristic and so possesses
p.p. in 0 a limit ¢(8) as z — el? in any D(9, a, p). Also,

On )
g |£'(z)] |dz]| = Sg |£'[r(0)e*®]] |r1(0) +ir (0)] 6.

yn n

Here the integrand is (for varying n and 6) uniformly bounded by IK + i| M(6, 0, 1),
and this function is integrable over [0, 27], by (5.3). Also, the integrand tends to
}¢(9)| p.p. in & for 6; < 6 < 65, and to zero for 6 outside this range, so that by
Lebesgue’s dominated-convergence theorem,

9'
0
6-5) § Izl fazl - § aco)] a0
Yn A
and similarly
o . ob .
5 f'(z)dz = f[r(61)e ] - flry(6,)e" *] — S ¢(6)ietf a6 .
Yy %

But by the continuity of f(z), we see (at least if the y,, are chosen so that

o .
r,(6) =1 - 1/n, for instance) that the left-hand side tends to f(eleo) - f(e16O ). Thus
f(eiY) is absolutely continuous, and the integral of i¢( 6)eif (and hence the derivative
ieif £1(eif) of f(el?)) exists p.p. and is equal to i¢(0)eif. Thus ¢(8) = £'(ei?) p.p.
in 6, and this proves the first statement of Lemma 10. Also, (5.5) now yields (5.4),

since |f'(e19)‘ = ¢(8) p.p.

LEMMA 11 (Fejér and Riesz [4]). With the hypothesis of Lemma 8,

1
5 |t'(reif)| ar < 2/2 (0 < 6 < 27).
1

5.1. From the global results represented by Lemmas 8 to 11 we proceed to de-
duce the local theorems we require,
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LEMMA 12. Let D be a subdomain of D whose frontier consists of the avc

v: 7 = eif (6 < 6 <L 87) of C, together with a cvosscut joining elel and elel in D.
Suppose that w = f(z) is regular in D and continuous in Dy , and that £(z) maps v
onto a path of finite length in the w-plane. Then

[f1(reif)] dr < =
ro
if 0,<6 <0} and r is sufficiently near 1.

The following proof was suggested to me by J. G. Clunie. We may suppose with-
out loss in generality that @ = 0 and that 6; < -26 <0< 28 < 6] . Then, if rg is
sufficiently near 1 and z, lies in the set

D, ={zg 1y < lzol <1, ]argzol < o},
|£(z)| is bounded by some constant M, in the disk |z - zy| <1 - ||, and so

(5.6) |tz o) < M/(1 - |z¢])

in the set D;. We now set z; = e"10 angd Zp = eiﬁ, and we consider the function

(5.7) ¢(z) = (z - z,)(z - z,)i(z)

on the frontier C; of D;. On v, ¢(z) is the product of two functions of bounded
variation of 6, so that ¢(z) has bounded variation as a function of ¢ and maps y
onto a path of finite length. On the remaining part of C,,

l0'@)] < |z - 21| |2 - 22 |1@)] + |22 - 21 - 2] |£(2)],
and the right-hand side is uniformly bounded, in view of (5.6). Hence ¢(z) maps the

boundary of D; onto a curve of finite length £.

Let z = z(s) give a symmetrical map of |s| <1 onto Dj, so that the real axes
correspond. Then ¢[z(s)] is regular in Isl < 1 and continuous in lsl <1, and
maps rs| =1 onto a curve of length £. Hence, by Lemma 11,

1
Sl lo'[z(s)]] |z'(s)] as < ¢/2,

1
that is, S Igb'(r)l dr < £/2. We now apply (5.7) and note that for ro <z <1,
o
¢'(z) #(z) (2z - z1 - z3)
(@-2)0-22)  (z-2)2(z - 2,)?

< K |¢'(z)] + K2,

@) =

where K; and K, are constants. Thus

1
{7 el ar < K1 0/2 4 %501 - 20),
To
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and this proves Lemma 12.

LEMMA 13. Suppose that £(z) satisfies the hypotheses of Lemma 12 and that
0, <0y < 60 < 6] and 0 < a <mw/2. Then the function £(ei?) is absolutely con-
tmuous for 6 in the intevval [0¢, 64] and so has a devivative ieid £'(ei®) p.p. in
this intevval. Further, p.p. in [0, 00),

f'(z) — f'(el?)

as z — ei% in any domain D(0, a, p) for 0 < a < /2. Finally, if 0 < a < 7/2,
M(0, a, p) is defined by (5.2), and p is sufficiently small, then

00
5 M(6, a, p)df < o,
60
Let 0, and 6, be chosen so that 6] < 6, < 6g < 65 < 65 < 01, and let
D, = {z:z=relf, rp<r<1, 6,<0 <65},

Then it follows from Lemma 12 that f(z) is continuous on the boundary C, of D,
and maps this boundary onto a path of finite length ¢, say. Suppose now that
z = z(s) maps [sl <1 onto D,. The map is analytlc and conformal on an arc

o = 1s:s=el®, ¢g <o <oh}

that corresponds to the arc yy = {z: z = eie, <0< 6(')} of |z| =1. Hence we
can apply Lemmas 9 and 10 to

F(s) = f[z(s)]

instead of f(z). Also, > gz
z ds

lowon T'y. If Dy(¢, @, p) and M;(¢, @, p) are defined with respect to |s| < 1 and
F(s), and D(6, a, p) and M(6, a, p) are defined with respect to lz| <1 and f(z),
we see that, given o such that 0 < @ < 7/2, then, for

remains continuous, positive, and bounded above and be-

1 T
a‘=§(a+§—) and p' = cosa',
we can choose p so small that D(6, «, p) corresponds to a subdomain of
l(¢, a', p'), where z = elo corresponds to z = el?, Thus

¢l
S M(6, a, p)dé < constant X S 0M1(¢, a', p)de < =,
6o %o

Also, since F'(s) has an angular limit £'(e!?) p.p. in ¢ in the interval [¢g, 06], the
derivative

t — 1 _d__S_
f'(z) = F'(s) i
has the angular limit % F'(ei?) = f'(eie) p.p. in 6.

This completes the proof of Lemma 13.
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6. STATEMENT AND PROOF OF THE LOCAL THEOREMS

THEOREM 8. Suppose that f € T, and that £ is normal at all points of the arvc
y:€=¢elt (0, <60<0,). Then £(elf) is absolutely continuous on (01, 62 in the
metric of the Riemann spheve. Fuviher, if the sequence of arcs vy, smoothly ap-
proximates vy, then

S f*(z)ldzl ——>S f*(eie)dG as n — ©,
Y Y

COROLLARY. If f is normal in D, then f(eig) is absolutely continuous in
[0, 27] and

27 .0 27 .0
L(C.) = S *(retV)rdo — S f*(el”)do as r— 1,
0 0
In particulay, Theorem 2 holds.
THEOREM 9. With the hypotheses of Theorem 8,

g .
(6.1) S(6,, 65, 1) = Sl ng [t*(rel?))2rdrdo < .
0 "0

Conversely, if f € T, and (6.1) holds, then f is normal at § = ell for 0 <6 <6,.
Finally, we prove a result which shows what curves in D map onto curves of
finite length on the Riemann sphere.

THEOREM 10. With the hypotheses of Theorem 8, suppose that 6, < 8 < 6,
and that 7y, is an avc of the form

2= el 11690 (0<t<ty),

lying in D except for the endpoint eif , and such that ¢(t) is absolutely continuous
and |t¢'(t)| is essentially bounded in (0, ty). Then

‘g *(z) |dz| < .
"1

For instance, all crosscuts in D with continuously turning tangents and with end-
points at normal points of D have images of finite length on the Riemann sphere.

6.1. Proof of Theorems 8 and 2. In order to prove Theorem 8, we suppose first
that |f(eif)| <2 on 7. Then it follows from Lemma 13 that f(ei?) is absolutely con-
tinuous on y in the ordinary metric, and that £'(z) has the angular limit £'(eif) p.p.
on y. Also, since f is continuous on ¥, it follows that

|£'(z)] w10y |1'(e19)]
1+ |£(z)]? £ = 1+ |#(et?)|?

*(z) = p.p. on v,

as z — ei? in any Stolz angle D(0, @, p). Again,
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O |t'(r, eif)] |r1(6) +ir (6)| a0
f* d — n n ' n
Syn (2) | dz| Sn pRTaE

In view of the definition of smooth approximants, the integrand tends to f*(el?) as
n— e, p.p. in 0, and for fixed 6 and varying n it is dominated by

K sup f*relf) = KM(6),
0<r<1
say. Also, if
Mp(9) = sup f*(reig),
1-p<r<1

and if p is fixed and sufficiently small, then

M(6) < Mp(6)+K' (6, <6 <6,)

and

62 02
S M(6)do < S M,(0)d0 + 27K’ < o,
01 61

by Lemma 13. Thus, by Lebesgue’s dominated-convergence theorem, we deduce
Theorem 8.

If |f| > 1/2 on v, we deduce the result similarly by considering 1/f instead of
f. In the general case, we divide 7y into a finite number of arcs in each of which
either |f <2 or |f I > 1/2. The general result follows by addition when we make a
corresponding dissection of the arcs y, . Finally, we deduce the corollary by choos-
ing for {yn} a sequence of circles z =ryei® (0 < 6 < 27), where r, — 1. Theo-
rem 2 follows at once from the corollary. For if f is normal and does not belong to
T,, then L =« in Theorem 2.

6.2. Proof of Theorem 9. Let D, be the sector 0 < |z| <r (6, <argz< 6;),
and let y_ be the arc z = rei® (6, < 6 < 6,). Then, by Theorem 8,

S f(reif)do0 < K (0<r <1).
')/I'

Also, if f(eiel) # oo it follows from Lemma 12 that if r; is close to 1, then

1 . 1 .
S e’ 1)a < S ltte'f 1) at < w,
To To
and so

1 i0
5 e 1)dt < =,
0

since f*(t eig 1) is continuous in 0 <t <ry. If f(e119 1) = », we obtain the same re-
sult by considering 1/f instead of f. Thus, if g, denotes the boundary of D, it
follows that the length L. of the image of g, by f(z) on the Riemann sphere is at
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most K' for 0 <r <1, where K' is a constant. Let w;, w,, w3 be three distinct
complex numbers not assumed by f(z) on the segments arg z = 6; and arg z = 62
or on Y. Since the images of these sets on the Riemann sphere have finite length,
such points wj exist. Also, the number of roots nj of the equation f(z) = w;j in D;
must be finite. Now it follows from Ahlfors’ theory of covering surfaces ([1], see
also [6, p. 148 et seq.]) that if S, is the area in the spherical metric of the image of
D, by f(z), then

S, <m(n;+n,+n3+hL,)=0(1) asr—1,
where h is a constant depending only on wi, w2, w3. This proves (6.1). From
Theorem B it follows that if f is not normal at ¢ = e19, where 87 < 6 < 62, then
(6.1) cannot hold.

6.3. Proof of Theorem 10.
LEMMA 14. With the hypothesis of Theorem 10, let

up *(z).

M(t) = s
]zl <1, lz—ewI:t

Then, if ¢ is sufficiently small,

€
S M(t)dt < o .
0

We may suppose without loss in generality that f(eie) # o since otherwise we
can consider 1/f instead of f. ‘We also suppose ¢ so small that if |elf' - el0| < 2,
then 67 < 6' < 0, and £(el€') is finite. Let ¢ = ¢(t) be the number such that
0<¢<7/2 and

(6.2) |eiO0+d) _ol0] = 95ing/2 =t (0<t<e).
We note that the arc |z - e?] =t (|z| < 1) lies in

D(6 + ¢, a, p) UD(0 - ¢, @, p)
provided that

¢ 7 _3¢ W+¢)
aZz, a24 7 andeZtcos( 7 ,

which is certainly the case if o =7/4, and p = 2¢. We now choose & so small that
£
S M(6 + ¢, 7/4, 2e)dep < =,
-€

in the notation of Lemma 13. Then t and ¢ are related by (6.2), 0 <t <¢e,
M(t) < M(6 + ¢, /4, 28) + M(6 - ¢, /4, 2¢),

and hence
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5: M(t)dt < ‘S:{M(9+¢,-Z—, 28)+M(9 —¢,%,25)} l% dé

< SS M(e +¢,%,28)d¢ < o,
-

This proves Lemma 14.

To complete the proof of Theorem 10, we suppose without loss in generality that
to < &, where ¢ is the quantity in Lemma 14 (otherwise, £*(z) is certainly bounded
on the closed subarc [g, ty] of y;, which is a compact subset of D). By hypothesis,

z = elf +tel0)  |az| = |1+t¢'(t)] at < Kat

on ¥y, . Thus, by Lemma 14,

S
S *(z) |dz| < K 5 M(t)dt < .
Y1 0

This proves Theorem 10.

6.4. Proof of Theorem 3. Suppose now that f € T, and that f is abnormal at ¢,
so that condition (i) of Theorem 3 does not hold. Then, by Theorem B, (ii) and (iii)
are also false, and so is (iv); since if f is continuous at ¢, f(z) cannot assume any
value other than £(€) infinitely often near {. Next, if (i) holds, so that f is normal
at ¢, then f remains continuous at ¢ and at all pomts of C near ¢, since f is nec-
essarily normal at points near ¢. Thus (iv) and so the weaker condition (ii) holds.
Also, (iii) follows from Theorem 9. This proves Theorem 3.

7. PROOF OF THEOREMS 4, 5, AND 7

We proceed to prove the remainder of our global results, namely Theorems 4, 5,
and 7. We prove Theorem 4 under the somewhat stronger assumption that

(7.1) LIC.) <7 (ro<r<1).

The argument is similar to one given by Lehto [8].

Let T',. be the image on the Riemann w-sphere of C,. by the mapping induced by
f(z). Then the length of the curve I', on the sphere is at most 7 for ro <r <1,
and hence (see for example [5, p. 152]) the complement of T, contains a hemisphere
H,. Also, unless I'. is the union of two great semicircles, we may assume that I';
lies in the interior of the complementary hemisphere H;. On the other hand, if for
some r the curve I', contains an arc of a circle, then f(z) can be analytically con-
tinued into the whole closed plane, by simultaneous reflection in lz] =r and Ty, so
that f is rational and so certainly normal in ]z] < 1. Thus we may ignore this case,
and assume that in the range (7.1) I', has a complementary domain A, which con-
tains a closed hemisphere in its interior and so contains at least one of each pair of
d1a.metr1ca11y opposite points w and w. In particular, the equations f(z) = w and
f(z) = W cannot both have roots on |z[ = r, if (7.1) holds.
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Next, if £(z;) = f(z;) = w, where ro < |z1| < |z3| <1, then £(z) # % for
|z1| < |z| < |z;|. For we suppose without loss in generality that f(z) # w in this
range, which could otherwise be subdivided. Write szl = |r jl (j =1, 2). Then 1"rl

and T'_ contain w, so that W liesin A_ for r=r,, r,. Suppose now that we can
1'2 ’ Tr 1 2
find an r; suchthat r; <r; <r, and I‘r3 contains w, so that Ar3 contains w.

Since A, always contains at least one of w and W, it follows by continuity that we

can find r; and r, suchthat r| <rj <r, <r, <r, and A_ contains both w and
% for r =r] and r,. Hence these two values are assumed equally often by f(z) in
|z| <r} and |z| <r), which contradicts the assumption that the equation f(z) = &
but not the equation f(z) = w has a root in r} < |z| <r}.

We deduce at once that if the equation f(z) = w has infinitely many roots in
|z| < 1, then f(z) = % has only a finite number of such roots. By taking for w and
W in turn the values 0, «; 1, -1; i, -i, we see that there are at least three values
that f assumes only a finite number of times in ]zl < 1, and so, by Theorem 3 (ii), f
is normal at each point of C and so in |z| < 1. If now ¢ = 0, then, by Theorem 1,
f(z) is constant on C and so in D.

7.1. The class T,(0): Proof of Theorem 5. Let {)A,} be a sequence of positive
integers such that

(7'2) An-l-l/hn - %,

and consider

o0
f(z) = 22 a A% zhn,
n=1

where 1 < a <, where for each n
a, =-1,0,1,or 2,

and where infinitely many a, are different from zero. Then for |z| =r 0<r<1)
we have the inequality

|f(z)| < 27 2m%r™ = O(1 - r)'a'1 .
m=1

Thus

1
T(r, f) = 0{10g1_r},

and hence f(z) is tame on C, in view of Theorem C.
We choose r,, = exp(-1;!), and for |z| =r, we write

n-1

[oe]
A A A
2:1 a,m}\?nz m 4 anhgz n o4 Z_\I am}»?nz m
n

£(z)

27, + 2, + 225
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Let p be an integer such that p > «. Then

oo oo

A AL \P

125 <2 2 a%ew(-32) <20t 2 a2 ()
n+l n nt+l

A'ITJ.
(7.3)
o0
= 2p!aP 20 2&°P = O(PAZ P) = 009,
n+l
in view of (7.2). Again
n-1
(7.4) lEl | < 2 El A% = o% ) = o0Q),
m=

in view of (7.2). Thus, on |z| =1,

[|a,| +o(1)]ag

(7.5) |t(z)| = ankgzhn+o()\g)| = _

By taking a + 1 instead of « in the above argument, we see that

[|a,| +0(1)]a%+1
e

(1.6) |z1'(z)| =

b

so that if a, # 0, we have on |z| = r, the estimate

*(0) = |£'(2) ] -
(=) 1+ |£(z)|? (

€ _+ 0(1)) Al
|y |

and the last member tends to 0 as n — », since a > 1., Thus,
L(C. ) >0 asn—x,
n

so that f € T,(0). Since f is also tame on C, it possesses asymptotic values at
every point of C, by Theorem 6, and these asymptotic values must all be infinite in
view of (7.5).

To construct a function in T,(0) without asymptotic values and without Picard
values, we set

a,=11if nisodd, a,=2if n is even,

and

e@) = 2 2% 20 8() = Hz)/e().

Using (17.5), together with its analogue for g, we see that

6(2)] = ag+0(1)  (|z| =rp),
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and therefore ¢ can have no asymptotic value. We set

ve) = @[ - ] = T (- )0 s

so that

2 A
zyY'(z) = 20 (ay, - an)kgnﬂz "
m=1

We apply (7.3) and (7.4) to ¥(z) and zy'(z) on the circle lz| =r,, and deduce that
on this circle

|W(z)| = OGRAZP) +0(r, )%,
- 1
[@@)] = OO )+ 00, YT
We now choose A, = 2K” where K is a positive integer such that K > a‘f 1- Then

if p is sufficiently large,
AR )P = oKlpHla-pK]l | o g h e,
Also,

o
>tn--l

-1
= g K270 o o(hg'l).
Thus, on |z| =r_, ¥(z) = o1& -1), and similarly ¥'(z) = o(29).

Hence, on |z| =Trn,

(2)y'(z) - Ylz)g'z) OMZ%)
e [Z(z)]2 - A2a o),

in view of (7.5) and (7.6) applied to g(z). Hence

¢'(z) =

¢*(z) = o(1) on lzl =T,

so that ¢(z) € T,(0).

Finally, we note that if wy is a Picard value for a function f € T,(0), then w, is
necessarily asymptotic in the more general sense that there exists a path I" tending
to C (but not necessarily with a definite endpoint on C) such that

f(z) — wy as z tendsto C on T.
We may without loss in generality suppose that wg = *«°, so that f(z) is regular for
ro < lzl <1, say. Let {I‘n} be an expanding sequence of Jordan curves such that

the spherical lengths of their images tend to 0, and such that

(7.7) lfz)] >n on T,.
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Let z, be a point of T',,, and suppose that ng is an integer such that for n > ng, T'y
lies in the annulus r¢ < |z| < 1 and that M(rg, f) <ng. Consider the component K,
of the set |f(z)l > n containing the point z,. This component cannot meet |z| =Ty,
and so it must have limit points on C. Thus there is a path 6, in K, joining z, to
a point of T, and so to z,y;, in view of (7.7). We now take the path consisting of
the union of 6n0 » Ong+1, *** and obtain a path T through all the points z, for n> n,

on which f(z) — . We can clearly allow I" to spiral in turn around the various con-
tinua I' | and so to have the whole of C as its limiting set.

7.2. Proof of Theovem 1. The following form of Iversen’s theorem for Tsuji
functions yields Theorem 7 as an immediate consequence of Theorem 6.

THEOREM 11. Suppose that f € T,, that { is tame on an arc T: z = eif
(6; < 0 < 6,) of C, and that i(z) + wy in a neighbourhood of an intevior point
& = el of . Then either f is normal at &, or w is an asymptotic value at §; .

To prove Theorem 11, let ¢;(6) and ¢,(6) be asymptotic values at §; whose
existence is asserted in Theorem 6. If one of these is equal to wg, there is nothing
to prove. Otherwise, we suppose that f is abnormal at £y and also (without loss in
generality) that wg = <, so that ¢;(8) and ¢,(0) are finite. Since f is abnormal at
fo, f is unbounded there, and so there exists a sequence {zn} of points in D such
that z_ — ¢, and |f(z,)| > n.

Also, we may assume that z, lies outside D;(6) U D2(8) for each n, where
D;(6) and D,(6) are the domains of Theorem 6. We then construct the paths y,(6)
and y,(6) of Theorem 6, in D;(0) and D,(8), respectively, so that f is regular on
y1 and y, (except at {(). Finally, we join the distinct endpoints of y;(6) and y,(0)
by a Jordan arc on which f is regular. We thus obtain a closed Jordan curve y that
lies in D (except for £;) and contains all but a finite number of the points z, in its
interior. Further, |f(z)| is bounded by a constant M on y and is regular and un-
bounded inside 7.

Consider now the component D, of the set If(z)l > n containing z,, where
n > M. Then, for large n, z, and so D, lies inside y, and D, contains a frontier
point of y, which must be ¢, since |f| <M on the other frontier points of . It
now follows from the Phragmen-Lindel8f principle that f(z) cannot be bounded in
D,. Thus D, contains a point z;4+; such that

[f(z., )] >n+1,

and we canjoin z_ to z),; ona path T, in D, on which |f(z)] >n. We now con-
struct the component D, of the set |f(z)| > n+ 1 containing z;+1, and proceeding
as before, we obtain a path that joins Zn+1 to a point zp42 in this component, where
|£(z}+2)] > n+ 2. In this way we construct a path inside y along which f(z) — .
Since f is bounded inside ¥, outside any fixed neighbourhood of {g, this path must
tend to ¢ and so has « as an asymptotic value at {y, as required. This proves
Theorem 11.

Theorem 7 now follows at once from the last statement in Theorem 6. For if {,
is a point on C where f is abnormal and has two Picard values w, and wy, then, by
Theorem 11, f has two asymptotic values w,, and wy at {,; by Theorem 6, the set

of all such points ¢, is countable and 27 d(w,,, w}) < £.

The corollary follows immediately; for if f € T;(¢) for some positive £, then f
is tame on C. Also, if f # a, b, then every abnormal point of C belongs to E. If
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there are k such points, we deduce from Theorem 7 that k-d(a, b) < ¢. Thus E has
at most finitely many points, and only these can be endpoints of segments of Julia.

It follows from Theorem 7 that the points {; of E must be isolated abnormal
points. For £(z) # w,, w;, in some neighbourhood U of {,, and therefore, at any
other abnormal point ¢ in U, f(z) has w, and w;, as Picard values, and so there
are at most ¢/d(w,, wy,) such points ¢ in U, by Theorem 7.

An interesting open question concerns the hypothesis that f is tame on an arc of
C containing {3. In fact, for the proof of Theorems 6 and 11 it is only necessary
that there exist sequences {¢!} and {{!} of points of C approaching {, from both
sides at which f(z) has asymptotic values. If this is not the case, {( is the endpoint
of an arc y of abnormal points of C, and if {( is a point of the set E of Theorem 7,
so that f(z) # wg, w in some neighbourhood U of £g, then the same is true at each
point of y in U. Thus in this case E contains a whole arc of points, none of which
is an endpoint of an asymptotic path. If such a situation is possible, the conclusion
of Theorem 7 certainly fails.
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