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1. INTRODUCTION

Let B(X) be the ring of bounded holomorphic functions on an open Riemann sur-
face X, and assume that B(X) is a proper extension of the complex numbers €.
With respect to the supremum norm, B(X) is a Banach algebra. (Because B(X) is
semisimple, this is the only norm, up to equivalence.) Let .#(X) be the maximal
ideal space of B(X), endowed, as usual, with the weak-star topology. For x € X,
define

M(x) = {f € B(X)| f(x) = 0}.

M(x) is a maximal ideal of B(X). We call such maximal ideals of #ype I; all others
are called of fype II.

In this paper, we obtain several characterizations of the ideals of type I. We
must assume, however, that X is a relatively compact domain of another surface W,
and that either the boundary of X in W consists of analytic simple closed curves or
every boundary point is an essential singularity of some bounded holomorphic func-
tion on X.

2. PRELIMINARIES

Definition 1. Let W be any Riemann surface. By a bounded domain of W we
mean a domain X € W for which Cl X is compact and C1 X # W (Cl X denotes the
closure of X in W). A domain X is called a finite domain if it is bounded and the
boundary of X in W equals the boundary of W - X and consists of a finite number
of analytic simple closed curves.

If X is a domain of a compact Riemann surface W, and if the complement of X
in W consists of a finite number of simply connected, nondegenerate continua, then it
follows from the uniformization theory for Riemann surfaces that X is conformally
equivalent to a finite Riemann surface. Our results for finite surfaces remain valid
for this kind of surface.

LEMMA 1. Let X be a bounded domain of a Riemann surface W, and let
x € Cl X. Then there exists an £ € B(X) such that

(1) £ is analytic in a neighborhood of Cl1 X,

(2) £ has a simple zevo at x and no othev zeros, and

Received May 21, 1966,

This paper is part of the author’s doctoral dissertation at Columbia University,
written under the supervision of Professor Lipman Bers while the author was sup-~
ported by an NSF Graduate Fellowship. The preparation of this paper was partially
supported by the Air Force Office of Scientific Research, Office of Aerospace Re-
search, United States Air Force, under AFOSR Grant No, 335-63,

83



84 IRWIN KRA

(3) £ is bounded away from zevo outside every open neighborhood of Xx.

Proof. Since Cl X # W, there exists a w € W such that C1XCW - w=X,;. Be-
cause X) is an open Riemann surface, the generalized Weierstrass theorem (see, for
example, Behnke and Sommer [4, p. 591]) implies that there exists a holomorphic
function f on X; that vanishes of order 1 at x and has no other zeros. This is the
required function.

If Y is a topological space, denote by C(Y) the ring of continuous complex-
valued functions on Y. Let X be a Riemann surface. Then every f € B(X) has an
extension f* € C(.#(X)). This extended function is defined as follows:

f*"M)=a <> f-ae M, M e #(X).

By the theorem of Gelfand and Mazur, there exists a one-to-one correspondence be-
tween the maximal ideals of a commutative Banach algebra with identity and the €-
homomorphisms of the algebra ontc ¢. Thus f* is well-defined. Henceforth, the
symbol M will stand for both a maximal ideal and the corresponding homomorphism.
(Thus £~(M) = M(f).) If M = M(x) for some x € X, then (M) = {(x).

For the case where X is a bounded domain of the Riemann surface W, we intro-
duce some more terminology:

B.(X) = {f € B(X)| £ has a continuous extension to Cl X}
= {f € C(C1X)| f is holomorphic on X},
M (X) = maximal ideal space of B (X),

and for x € C1X

M_(x)

{t € B_(X)| f(x) = 0} .

LEMMA 2. Let X be a bounded domain. Then for x € X, the maximal ideals
M(x) and M. (x) of B(X) and B.(X), respectively, are principal. Moreover, these
tdeals have genevators that ave analytic on Cl1 X.

Proof. Let f be the function described in the previous lemma. Then
f € M.(x) € M(x), and { is analytic on Cl1 X. Let g belong to M(x) (to M (x), re-
spectively). Then clearly g/f is holomorphic on X. Choose a relatively compact
neighborhood U of x such that C1 U C X. Then f is bounded away from zero on
Cl X - U. Thus g/f is bounded in X - U. Also, g/f is bounded on U. Thus g/f is
bounded on X. If g is continuous on Cl X, then g/f is also continuous on Cl X.

Let X be a bounded domain. It is well known that the map ¢ that sends x € C1 X
into M _(x) € .#_(X) is a homeomorphism.. (That ¢ is surjective was shown by Arens
[3).) S1m11ar1y, For every Riemann surface X there exists a natural continuous map
¢ that sends each point x € X into M(x) € .#(X). Whenever X is a bounded domain,
¢ is injective, and we call ¢ the natural injection of X into (X).

LEMMA 3. Let X be a bounded domain of a Riemann suvface W. Then there
exists a continuous map Y: A (X) — Cl X such that if ¢ is the natural injection of X
into M (X), then

Yo = Identity on X  and ¢ = Identity on $(X).

In particular, X is homeomorphic to §(X).
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Proof. Let M € #(X). Then M is a CG-homomorphism of B(X). The mapping
M | B.(X) is also a €-homomorphism, and is thus determined by a unique point
Y(x) € Cl X, by the result of Arens [3]. The topologies of .#(X) and Cl X are both
weak-star topolog1es Thus Y is continuous. The rest of the lemma is obvious.

Definition 2. Let X be a bounded domain of the Riemann surface W. Let
x € Cl X, and define the fiber of -#(X) over x to be

M = {M e #(X)| y(M) = x},

where ¥ is the map of the previous lemma.

Remark. The fibers of Definition 2 are not new. They appear in Hoffman’s book
[6, p. 161] as well as in the work of Alling [2].

LEMMA 4. Let X be a bounded domain of a Riemann surface W. Lel x € X
and M € M . Then M = M(x).

Proof. M N B.(X) = {g € Bo(X)| g(x) =0}. Let £ be the function described in
Lemma 1. Then f € M N B.(X), and (f) = {B(X) € M. By Lemma 2, (f) is maximal.
Thus M(x)=({f)=M

COROLLARY. Let X be a bounded domain of a Riemann surface W. Then X is
homeomorphic to an open subset of H(X).

Proof. Using the notation of Lemma 3, we see that ¢(X) = ¢ "}(X). The set X is
open in Cl X, and ¢ is continuous. Thus ¢(X) is open in .#(X).

LEMMA 5. Let X be a finite domain of the Riemann suvface W. Then for each
discrete sequence {x,} C X, theve exists an £ € B(X) such that lim, _, o, £(x,)) does
not exist.

Proof. Ahliors [1] has shown that there exists a mapping p, analytic in a neigh-
borhood of Cl X, that is an N-to-one covering of the closed unit disc, for some
positive integer N. Moreover, p ] X is an N-to-one covering of the interior of the
closed unit disc, and p| Cl1 X - X is an N-to-one covering of the unit circle. Be-
cause Cl X is compact, we may assume (by choosing a subsequence) that
x, — x € Cl X - X. Then p(x,) — 1 and |p(x,)| < 1. Again, we may choose a sub-
sequence such that p(x,) is distinct and infinite and constitutes an interpolating se-
quence (see Hoffman [6, pp. 194-204]). Choose a bounded analytic functmn f on the
unit disc such that f(p(x;,+1)) =0 and f(p(x;,+2)) =1 for n=0, 1 2, +--. Then
fop € B(X), and lim,,_, . (fop)(x,) does not exist.

3. CHARACTERIZATION OF THE IDEALS OF TYPE I

THEOREM 1. Let X be a finite domain of the Riemann suvface W. Tken the
following ave equivalent for M € #(X).

(1) M is of type 1 (that is, there exists an x € X such that M = M(x)).

(2) #(X) satisfies the first countability axiom at M.

(3) M has a neighbovhood in A(X) that is homeomorphic to the open unit disc.

(4) M is a principal ideal.

(5) B(X)(M N B (X)) is a maximal ideal in B(X).

(6) BX)(M N B,(X)) = M
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(7) No element of M possesses roots of all ovders in B(X).

Proof. We show that (1) <> (4), (3) = (2) = (1) = (3), (1) = (6) = (5) = (1),
and (1) <> (7).

That (1) = (4) is the content of Lemma 2.

(4) > (1). Assume M = (f). Since f is not a unit, inf { |f(x)| | x'¢ X} =0. Thus
there exist x,, € X such that lim, _, » f(xn) = 0. Let g € M; then there is an
h € B(X) such that g =fh. Because h is bounded, lim,_, . g(x,) = 0. The ideal (f)
is maximal. Hence, for each g € B(X), thereisa A € € suchthat g - € (f). It
follows that lim_ _, ., g(x,) exists for all g € B(X). Furthermore, if g € B(X), then
g € M if and only if lim, _, , g(x,) =0. By Lemma 5, {x,} has no discrete subse-
quences. We may assume that x, — x € X. Thus, if g € B(X), then g € M if and
only if g(x) = 0. Thus M = M(x). ‘

(3) = (2). This is trivial.

(2) = (1). Since .#(X) satisfies the first countability axiom at M, the topology
at M can be described in terms of sequences. Alling [2] has shown that ¢(X) is
dense in .#(X), where ¢ is the natural injection of X into..#(X). Thus there exists
a sequence {x,} C X with M(x,) » M. Thus f(x,) — £f"(M) for all f ¢ B(X).
Lemma 5 implies that we may choose a subsequence of {xn}, denoted again by
{xn}, such that x,, — x € X. By continuity of the map ¢, M(x,) — M(x). Thus
M(x) = M, because #(X) is a Hausdorff space.

(1) = (3). This is an immediate consequence of the corollary to Lemma 4.

(1) = (6). By Lemma 2, the generator of the principal ideal M may be chosen
in B.(X).

(6) = (5). This is trivial.

(5) = (1). M N B.(X) = M.(x) for some x € C1 X. If x € X, then by Lemma 4,
M = M(x). Assume that x € C1 X - X. Choose {x,} C X such that x, — x. Let

f € B(X)M_.(x). Then f= Z;;Ll f; g; with f; € B(X) and g; € M_(x). Hence
lim, — 0 gj(X,) = 0. The f; are bounded. Thus lim, —« f(x,) = 0. Because
B(X)M_(x) is maximal in B(X), there exists for each f € B(X) a A € € such that
f -2 € B(X)M.(x). Thus lim, _,« f(x,) exists for all f € B(X). This contradicts
Lemma 5.

(1)=> (7). If fe M, then f has a zero of order n> 1 at x € X. Thus f does
not have an (n + 1)st root in B(X).

(7) = (1). Assume that M N B, (X) = M.(x) and x € C1X - X. Let p be any
Ahlfors map (see the proof of Lemma 5). We may assume that p(x) = 1. Let
g(z)=z -1 for z € C1 D, where D= {z € 6| |z| <1}. Then f=gop e M.(x).
For each positive integer n, there exists a g, € B_(D) such that g =g. Now
f,=g,°p e M c(x), and fg = f. This contradicts the hypothesis.

Remarks. (1) The equivalence of conditions (1) to (4) was conjectured by Kaku-
tani [7]. He proved that (1) and (4) are equivalent for finite domains of the complex
sphere.

(2) Gleason [5] has shown that in any commutative Banach algebra with identity,
(4) implies (3) unless the principal maximal ideal is isolated in the maximal ideal
space of the algebra. Under the hypothesis of the theorem, M cannot be isolated. It
is well-known (see for example Rickart [9, p. 168]) that the maximal ideal space of
an algebra without idempotents is connected.
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THEOREM 2. Let X be a bounded domain of a Riemann suvface W. Assume

that every boundayry point of X is an essential singularity for some bounded holo-
movphic function on X. Let M € #(X). Then M is of type 1 if and only if M is a

(oo
principal ideal and N a1 M?={0}.

Proof. It M is of type I, then by Lemma 2, M is a principal ideal. Let
M = M(x), with x € X. If f ¢ M™, then f has a zero of order at least n at x. Thus

M., M= {o}.

To prove the converse, note that M N B (X) = {f € BC(X)l f(x) = 0} for a unique
x € Cl X. By Lemma 4, it suffices to show that x € X. Let f € B(X) generate the
principal maximal ideal M. #(X) is connected (Rickart [9, p. 168]). Thus (Gleason
[5]) there is a neighborhood U of the origin in & such that if ¢: N — N(f) for
N € A(X), then ¢ is a homeomorphism of ¢-1(U) onto U. Shrinking U, if necessary,
we now see (either from [5] or from [8]), that for each g € B(X), g” can be expanded
in a power series

g*(N) = 2 a #*(N)" (a e ©)

n=0

that converges in ¢-1(U). We may without loss of generality assume :
U={z¢€ c| |z| <e} for some £ > 0. Now, if a, =0 for all n, then g € M™ for
all n; that is, g = 0. Let g be the function of Lemma 1; then g, is analytic in a
neighborhood of Cl X, vanishes of order 1 at x, and is bounded away from zero out-
side every neighborhood of x. Clearly g, € M N B_(X), and if

go(N) = 20 b (N in ¢7H(U),

n=0

then bO = 0.

There exists a smallest k such that by # 0. The function " [ ¢-1(U) covers U
precisely once, and g is an analytic function of £* in ¢-1(U). Thus there exists a
6 > 0 such that each B € € with 0 < IBI < 0 is covered exactly k ftimes by
g5 | ¢-1(U). Let y be the map described in Lemma 3; then go(t}/(N)) = g5(N) for
N € (X), because Y(N) is the homomorphism N restricted to B (X) and
g, € Bc(X). Choose 6 small enough so that for IBI < 6 the equation gy(y) =8 has
at most one solution y € X, and choose an x; € X such that gy(x;) = 8 with
0 < |B| < &; then there exists a set {Ng, ---, Ny _1} € ¢-1(U) such that

WNg) = - = N_)) = x,.

By Lemma 4, Ny = -+ = Np_; = M(x;). Thus k =1, and £* is a holomorphic function
of g5 in ¢-1(U). Hence, for all g € B(X), g* is a holomorphic function of gg in
¢-1(U). Clearly, this means that every g € B(X) can be expanded in a convergent
power series in gg, in some neighborhood of x in W. This is only possible if

x € X, because every boundary point is an essential singularity for some bounded
holomorphic function on X.

Remavk. Theorem 2 is a generalization of Theorem 1, because every boundary
point of a finite domain is an essential singularity for some bounded holomorphic
function. The unit disc certainly has this property. The general case is reduced to
the case of the unit disc via any Ahlfors map. (See the proof of Lemma 5.)
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