NOTE ON AN INVARIANT OF KERVAIRE

Edgar H. Brown, Jr.

In [2] Kervaire defined the so-called Arf invariant $\Phi(M)\in Z_2$ for an (n-1)- connected, compact, closed, C^∞ manifold M of dimension 2n, where n is odd and n \neq 1, 3, 7 (see also [3]). In fact, he showed that Φ induces a homomorphism from the $2n^{th}$ framed cobordism group into Z_2 , and that $\Phi=0$ if n = 5. It is an unsolved problem whether $\Phi=0$ for all n.

Let $\Omega_m({\rm Spin})$ denote the m^{th} spin or cobordism group [4]. The aim of this note is to generalize Φ in the following sense. We define a homomorphism

$$\Psi: \Omega_{2n}(Spin) \rightarrow \mathbb{Z}_2$$

for $n \equiv 1 \pmod 4$ such that $\Psi(M) = \Phi(M)$ if M is as above. The writer has not been able to show that $\Psi \neq 0$. It is known that the image of framed cobordism in Spin cobordism is not zero. (Milnor has shown that there exists a homotopy 10-sphere that is not a Spin boundary.)

In the following, $n \equiv 1 \pmod 4$, n > 1, and all cohomology groups have \mathbb{Z}_2 coefficients. Recall that

$$Sq^{n+1} = Sq^2 Sq^{n-1} + Sq^1 Sq^2 Sq^{n-2}$$
.

Hence, on n-dimensional cohomology classes,

$$Sq^{2} Sq^{n-1} + Sq^{1} (Sq^{2} Sq^{n-2})$$

is a relation. In [1] it is shown that such a relation gives rise to a secondary cohomology operation

$$\psi$$
: Hⁿ(X) \cap Ker Sqⁿ⁻¹ \cap Ker Sq² Sqⁿ⁻² \rightarrow H²ⁿ(X)/Sq² H²ⁿ⁻²(X) + Sq¹ H²ⁿ⁻¹(X).

Furthermore, if $\psi(u)$ and $\psi(v)$ are defined, then $\psi(u+v)$ is defined and

$$\psi(\mathbf{u} + \mathbf{v}) = \psi(\mathbf{u}) + \psi(\mathbf{v}) + \mathbf{u} \cup \mathbf{v}$$

modulo the indeterminacy of the operation.

Suppose M is a closed, compact, simply connected 2n-manifold such that the Stiefel-Whitney class $W_2(M)$ is zero. If $u \in H^n(M)$, then

$$Sq^{n-1}u \in H^{2n-1}(M) = 0$$
, $Sq^2 Sq^{n-2}u = W_2 Sq^{n-2}u = 0$,
 $Sq^2 H^{2n-2}(M) = W_2 H^{2n-2}(M) = 0$, and $Sq^1 H^{2n-1}(M) = 0$.

Hence ψ defines a quadradic function

$$\psi$$
: Hⁿ(M) \rightarrow H²ⁿ(M).

Received July 2, 1964.

Let

$$\Psi(\mathbf{M}) = \sum \psi(\lambda_i)(\mathbf{M}) \psi(\mu_i)(\mathbf{M}),$$

where λ_i , $\mu_i \in H^n(M)$ (i = 1, 2, ... r) is a basis such that $\lambda_i \lambda_j = \mu_i \mu_j = 0$ and $\lambda_i \mu_j = \delta_{ij}$ (compare with c(M) in [3, p. 535]). $\Psi(M)$ is the Arf invariant of ψ and is independent of the choice of basis.

THEOREM. ψ induces a homomorphism $\Psi \colon \Omega_{2n}(\mathrm{Spin}) \to \mathbb{Z}_2$ such that $\Psi(M) = \Phi(M)$ if M is an (n-1)-connected π -manifold.

Proof. It is trivial to verify that Ψ is additive with respect to connected sums. Thus to show that Ψ is defined on $\Omega_{2n}(\mathrm{Spin})$ it is sufficient to verify that $\Psi(M)=0$ if $M=\partial N$, where $W_1(N)=W_2(N)=0$. Applying surgery (see [3]) to N, we make it 2-connected. Let $j\colon M\to N$ be the inclusion map. Recall that if $u\in H^n(N)$ and $v\in H^n(M)$, then $\delta(j^*(u)v)=u(\delta v)$, where $\delta\colon H^n(M)\to H^{n+1}(N,M)$. Using this fact, the cohomology exact sequence for (N,M), and Poincaré duality, one may choose elements $\overline{\lambda}_i\in H^n(N)$ and $\mu_j\in H^n(M)$ such that $j^*\overline{\lambda}_i$ and μ_j is a basis as above. Since N is 2-connected and M is 1-connected, $H^{2n-i}(N)\approx H_{i+1}(N,M)=0$ for i=0 and i=1. Therefore ψ is defined and zero on $\overline{\lambda}_i$, and hence

$$\psi(j*\overline{\lambda}_i) = j*\psi(\overline{\lambda}_i) = 0.$$

Therefore $\Psi(M) = 0$.

Finally, to show that $\Psi(M) = \Phi(M)$ if M is an (n-1)-connected π -manifold, we verify that ψ satisfies Lemma 8.3 of [3]. That is, we verify that an embedded nsphere in M has trivial normal bundle if and only if its dual cohomology class v satisfies $\psi(v) = 0$. Let ν be this normal bundle, let $T(\nu)$ be the Thom space of ν , let $u \in H^n(T(\nu))$ be the Thom class, and let $f: M \to T(\nu)$ be the canonical map. Since $f^*(u) = v$, $\psi(v) = f^*\psi(u)$. But $T(\nu)$ is $S^2 \vee S^{2n}$ or $S^n \cup [\iota, \iota]$ e^{2n} (where $\iota \in \pi_n(S^n)$ is the generator), according as ν is trivial or not. In [1] it is shown that $\psi(u) = 0$ in the first case and $\psi(u) \neq 0$ in the second case.

REFERENCES

- 1. E. H. Brown and F. P. Peterson, Whitehead products and cohomology operations, Quart. J. Math. Oxford Ser. (2) 15 (1964), 116-120.
- 2. M. A. Kervaire, A manifold which does not admit any differentiable structure, Comment. Math. Helv. 34 (1960), 257-270.
- 3. M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres: I, Ann. of Math. (2) 77 (1963), 504-537.
- 4. J. Milnor. Spin structures on manifolds, Enseignement Math. 9 (1963), 198-203.

Brandeis University