COHOMOLOGY FIBRE SPACES, THE SMITH-GYSIN SEQUENCE,
AND ORIENTATION IN GENERALIZED MANIFOLDS *

Glen E. Bredon

As indicated by the title, this paper concerns three related, but largely inde-
pendent, topics. In Section I we study the concept of what we call a cohomology fibre
space. Very roughly speaking, this is to Cech Cohomology as a fibre space is to
singular cohomology. Non-trivial examples arise in the theory of transformation
groups, as mentioned in Section I and elsewhere in the paper, and it is mainly these
examples that motivate the generality of the definition.

In Section II we derive an exact sequence for a very general notion of a sphere
fibration with singularities. The sequence, which we call the Smith-Gysin sequence,
is an analogue of the Smith sequences and a generalization of the Gysin sequence.
Although Section I is largely intended to provide a proper foundation for applications
of the Smith-Gysin sequence, Definition 1.1 is all that is needed to read Section II.

In Section III we show that every cohomology n-manifold M over a Dedekind do-
main L(n-cm;) has an orientable double covering (the emphasis is on “double”)
and that every self-homeomorphism of an orientable n-cmj, either preserves or
reverses orientation. These facts are almost obvious if L = Z, since Z has only
two automorphisms (as an abelian group), but they are by no means clear for general
L (L = Zp, for example) if M is not an n-cmy. These facts are obtained from the
general Poincaré duality of [3] by showing that the tensor product of the orientation
sheaf of any n-cm;, with itself is a constant sheaf. Section III can be read inde-
pendently of the rest of the paper except for the last two results which need Defini-
tion 1.1.

In Section IV we consider the analogue of the local Smith theorem for sphere
fibrations with singularities.

Except for Section III, we shall always take either the integers Z or a field for
the coefficient domain L. This is done only for simplicity and it would certainly
suffice for L to be a principal ideal domain. For notation, definitions and simple
properties of cohomology manifolds and cohomology dimension we refer the reader
to [2; Chapter I]; also see [4]. R denotes the field of rational numbers. A map is
said to be proper if the inverse image of a compact set is compact.

I. COHOMOLOGY FIBRE SPACES

DEFINITION 1.1. A cohomology fibve space over L (abbreviated cfsi) is a
triple (X, B, n) wherve X and B ave locally compact spaces and 7w is an open,
proper and continuous map of X onto B such that the Levay sheaf £* of w is
locally constant with %9 the constant sheaf L. We say that it is k-regular (and
call it a k-cfsy) if, morveover, the stalks of ¥* are finitely genevated, L1 =0 for
i > k, and the stalks of ¥ are isomorphic to L.
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5

Examples:

(1) If G is a compact connected Lie group acting on a space X with all isotropy
groups finite, then (X, X/G, n) is a k - cfsg where 7 is the orbit map.

(2) Let £ be a solenoid (inverse limit of circle groups) acting freely on a space
X with orbit space B and orbit map #. Then (X, B 7) is a cfs, but is nct regular
since, although @* is constant, ! ~ R and is not finitely generated. However, it is
a l-cfsip. (See [6].) The latter is true even if £ does not act freely but has no
stationary points.

If (X, B, n) isa cfs and b € B, we denote by F, the set 7-1(b). Note that the
stalks of Z* are H*(F; L). )

We shall let k = max{i| £ # 0} which will be finite for all the cases we con-
sider.

THEOREM 1.2. Let (X, B, 71) be a cfsy, with dimj, X =n <, IfL is afield,
then dim; B<n-k. If L=12, then dimy B<n + 1.

Proof. Let L be a field. We shall first show that if b € B then there exists a
neighborhood Ay of b in B’ such that if C C Ay is any compact set, then
H}{(C; L) =0 for i > n - k. We may assume that £* is constant.

Since dimj, X =n<e, dimj,F, < n. Let ¢ be a non-zero element of
HX(Fp; L), and (using the constancy of #¥) let @, be the element corresponding to
a in HX(F.; L) for all ¢ € B. Since #* is constant, there is a compact neighbor-
hood Ay, of b such that

a. € Im(HE(m-1(AL)) — HX(F )

for every c € A,. Thus a, € Im(HX(r-1(C)) — HK(F.)) for every compact set
Cc A, with c € C. :

Consider the spectral sequence of 7: 7-1(C) — C. The above remarks show that
1@ a, e H(C) ® Hk(Fc) =~ Eg’k is a permanent cocycle of this spectral sequence.
Thus for any 8 € H(C; L), 8 ® o is a permanent cocycle. 8 & o cannot be a co-
boundary, since H(F.) = 0 for j > k. It follows that i + k < n and hence that
HYC; L) = 0 for j > n - k for all compact sets C C A,. (For a justification of these
arguments see [2; XVI, Section 1].)

. _Now let V. C Ay be an open subset of B. Then Hj(V) =0 for j> n -k and
H)V - V) =0 for j> n - k. From the exact cohomology sequence

e s HW) - B - BT -v) - 8wy -

it follows that H-};:(V) =0 for j> n- k+ 1. However, if Hg"k"'l(V) # 0 then we
would conclude, from the spectral sequence of 7~1(V)— V, that Hrcl+1(7r’1(V)) #0

(since Z* is constant over V). Thus H-Z:(V) =0 for j > n - k and thus
dim; B < n - k [2, Chapter I]. This completes the case in which L is a field.

If L = Z, then an easy universal coefficient argument shows that (X, B, 7) is a
cfs i for any field K. Moreover, dimg X < n, and hence, by the Theorem for fields,
dimy B < n for any field K. A standard universal coefficient argument then shows
that dimyz (B) < n + 1.

Remark. If (X, B, 7) is a k-cfs; then an easy argument on the spectral
sequence of 7-1(V) — V, for V small, yields the inequality that dimy B < n - k.
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THEOREM 1.3. Let (X, B, m) be a cfsy, with the stalks of Z* finitely gen-
evated and assume that X is an ovientable n-cmj,. Then (X, B, 7)) is a k - cisy,
for some k< n and B is an (n - k)- -cm; . Moveover, if £* is constant then B is
ovientable (also see 3.8).

Proof. We may as well assume that @* is constant. Let k = max {i| 21 = 0}.
We may assume that k > 0. We shall first show that B is clcj,. For this it suf-
fices to show that for U and V open subsets of B with U compact and U c V that
Im (H1 (U) — o +(V)) is finitely generated for all i (see [2; I, 2.2]). Let s be the
smallest i for which this is not true for some such U and V Let W be such that
Uc W, Wc V, and W is compact. Consider the spectral sequence (with compact
supports) Ep d(U) of the map 7-1(U) — U and similarly for W and V. In the dia-
gram

0 ' ,0
E5’(U) — E3"(U)

Lf lu
ES-2tw)— ES'O(wW)— ESO(W)
v g

E5"2H (V) — E30(V)

the image of v is finitely generated while that of g o f is not. It follows that the
image of u is not finitely generated (see [2bV 1.1]). Contlnumg in this way, we can
find a Y with U cC Y and such that Im (E3*°(U) — ES’ (Y)) is not finitely generated
for any r (it suff1ces E o do this for r = s + 1) and in particular for r = . It then
follows that Im (H (#”"(U) — HS ('n’ (Y)) is not finitely generated, contrary to the
fact that X is clc (an n-cm is clc by [2; I, 2.2]).

We shall now complete the proof for the case in which L is a field. Let UC B
be an open connected set and let j = max{ | H (0) # 0}. Then in the spectral se-
quence of 7-1(U) — U we see that EJ' #0 and cannot be killed. Since

H (@~ H(0) ~ L,

it follows that j = n - k, that Hn k(U) ~ L, and that Q ~ L. Moreover, if UC V are
open and connected, then the map Hn” (U) — HY- k) must be an 1somorph1sm since
this is true of H ('n'l(U)) — Hn('n"l(V)) We must show that for any given V and

b € V there is an open set U with b € Uc V and with H(U) — H; (V) trivial for
i<n-k. Since X is clc and since

HY(F,) = dirlim (@ ~Y(U)) (b e V),

we can find a neighborhood U of b such that Hi(z-1(V)) — Hi(z-1(U)) is trivial for
all i> k. By Poincaré duality [2; II, 2.3] we then see that H.(7-1{U)) — HL(r-1(V))
is tr1v1a_1 for ] < n - k. Thus, in the spectral sequence, we conclude that

EJ’ (U) — EJ’ (V) is trivial for j < n - k. Now from an inductive argument, similar
to the one above which proved that B, is clc, we see that by choosing U sufficiently

small we can assure that H’ (0) — H <(V) is trivial for j <n - k. This completes the
proof if L is a field.

We turn now to the case L = Z. Let jp=n - Kp be the dimension for which B is
a jp - cm over Zp (jo over the rationalsf. Clearly k, > ko, and hence jp < jo for
all primes p. Thus, by a standard universal coefficient argument, dim,B < jj + 1
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and ng+l (B; Z) is all torsion. From the spectral sequence of X — B it follows that
HZ;" (B; $k°) modulo its torsion subgroup is isomorphic to Z, since Ejz"'k" consists
of permanent cocycles, Eg’q is all torsion for p > j; or q > kg, and HICI(X; Z) = Z.
Since @Xo is constant with finitely generated stalks, it follows that HJ;:"(B; Z) modulo

its torsion group is isomorphic to Z. Thus HJCO(B; ZP) # 0 for any p, and hence
ip =1Jo for all p (we now drop these subscripts). It is now easy to see that [ Z,

since Hi: (B; Zp) ~ Zp for all p. Moreover, the spectral sequence now shows that

H)(B; Z) ~ EJZ’k ~ E2F & Ho(X; Z) ~ Z
jt+l,k-1 . L. . n
(Bw = 0 since it is a torsion subgroup of H_(X; Z) ~ Z). We conclude the same
facts for open connected subsets U c B and, since the isomorphism HL(U; Z) ~ Z
is natural with respect to inclusions, the result follows from [2; I, 4.11].

We leave it as an exercise for the reader to prove the partial converse: if
(X, B, m) is a cfsy,, X is an orientable n-cmj, and B is an (n - k)-cmy,, then
(X, B, m) is k-regular (and therefore, in particular, the stalks of #* are finitely
generated).

Remavrk. Theorem 1.3 would not be true if X were non-orientable over a field
L of characteristic different from two, even if (X, B, m) were k-regular, as the fol-
lowing example shows. Let Z; acton S and on gZm+l by the antipodal map and
on E2m+l x gl py the diagonal action. Let X = (E2m*1 x gl }/zz and B = E2¢mtl/ 7,
with the map 7: X — B induced by the projection g2t st - E2™*l Then X is
a (2m + 2)-manifold and (X, B, m) is a l-cfsj, for any field L of characteristic dif-
ferent from two, but B is not a cmy,. (Note that for m = 0, X is an open Moebius
band and B is a ray.) Note also that every fibre but one has an orientable neighbor-
hood in X.

However, we are able to prove the following result for L = Z.

THEOREM 1.4, Let (X, B, m) be a cfs, with the stalks of &* finitely generated
and wheve X is an n - cmy. The following statements are then equivalent and imply
that B is an (n - K)-cmy:

(1) Some fibre has an ovientable neighbovhood.
(2) The fibration is k-vegular.
(8) Every fibrve has an ovientable neighborhood.

Proof. If Fy, has an orientable neighborhood, say 7-1(U), then Theorem 1.3 im-
plies that 7: X — B is k-regular for some k and that U is an (n - k)-cm 3. Thus
it suffices to prove that (2) implies (3). Note that X is orientable over Z, and thus
B isan (n - k)-cmzz. Suppose that Fy has no orientable neighborhood in X. Let U

be an open connected neighborhood of b in B, and consider the spectral sequence of
7-1(U) — U. We know that

-k -k,k -k,k -1
H, (U; Z) ~ E; ~ Eo ~ Ho(m™ (U); 2) =~ Z,.

Moreover, for any open connected V with b € V € U the inclusion map induces an
isomorphism

Z, ~ HEN(V; Z) - H2NU; 2) ~ Z,.
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By the universal coefficient theorem we see that the map

2 *Yv;z2,) - H

C

n-k-1
c

(U; Z,)

is not trivial. This contradicts the fact that B is an (n - k)-cmZz and finishes the
proof.

Remark. It is to be expected in the situation of the preceding two theorems that
the fibres have some resemblance to manifolds (see, for example, [10]). One may
show without great difficulty, for example, that the fibres have (globally) a Poincaré
duality. (To see this, one may make use of the Poincaré duality in open subsets of
X and B and of the spectral sequence.) Note, however, that as far as is known it
may even be possible for F to be non-locally connected; for if the solenoid % could
act freely on a cm M, then (M, M/Z, #) is an 1-cfs over the rationals. We conjec-
ture, in view of a theorem of Spanier and Whitehead [11], that if L is a field and X
is contractible (or, perhaps, even when a fibre is homologically trivial in X) then
the cohomology ring of a fibre is an exterior algebra on odd dimensional generators.
In the case of a k-cfs (X, B, m) with singularities (not defined here in general, but
see Definition 2.1 below) in which X is a cm, we conjecture that the fibres have the
cohomology of a k-sphere. This is true in less general situations, and this is the
reason that we restrict our attention to the k-sphere case below.

II. SPHERE FIBRATIONS WITH SINGULARITIES

DEFINITION 2.1. A cohomology k-sphere fibve space over L with singulavrities
(k-cfssy,) is a quintuple (X, F, X*, F*, 1) where X and X* are locally compact
Hausdovff spaces with closed subspaces ¥ and F* respectively and w is an open,
proper and continuous map of X onto X* such that

(1) F = 71 (F*)

(2) 7|F is a homeomorphism onto F*

(3) (X - F, X* - F*, 7| (X - F)) is a k-cfsy, with £* =0 for i + 0, k.

We shall assume throughout that k > 0. We denote by & the locally constant
sheaf ¢k on X* - F* (which has stalks isomorphic to L).

Our main result is the following one.

THEOREM 2.2, There exists an exact ""Smith- Gysin'' sequence

. . . . 6 -
o Ehe - 79 S EL0) B Hh e - Fx @) @ BAE) O EE L - B - e

where o = j** (j* is the natural map H¥(X - F) — H§(X)), Bj* and w are the cor-
responding maps in the Gysin sequence of X - F — X* - ¥* v {s the natural re-
stviction, and 0 is the connecting homomovphism for the paiv (X*, F*) preceded by
the natuval isomorphicm w*: HE(F) = HE(F*).

Proof. Let X} =X* X}=X}=--=Xf=F* and X}, =0, and put X; = 7-1(x}).
Consider the Fary spectral sequence EY’? associated with this filtration of X* and
with 7 (see [2; XI, 3.3]). Then E_ is the graded module associated with some fil-
tration of H}(X; L) and

+t -t + -k

EDY =2 BETNXE - xby; 2970) = R - PN 29 @ HETRY 2979).
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Thus we see that Eg’q =0 if q # 0, k, and

,0
E5 HE (X* - F*; L)

DN - B (x* - FY 2) @ BB L)

The exact sequence now follows from the exact sequence associated with any
spectral sequence which has non-trivial terms in only two “fibre” dimensions.

We shall leave it to the reader to check that the homomorphisms in the sequence
are as indicated. Various naturality properties of the sequence are evident from the
construction and will not be stated explicitly. '

Remark. The sheaf £ is constant in each of the following cases (the last three
of which are examples of a k-cfss):

(2) 7 is the orbit map of an action of SO(2) or Sp(1l) which is free outside the
set F of stationary points.

(3) L is a field of characteristic zero and 7 is the orbit map of any action of
SO(2) or of any action of Sp(1) without two-dimensional orbits.

(4) L is a field of characteristic zero and 7 is the orbit map of the action of a
solenoid (see [6]).

Also see Lemma 4.2 and Theorems 4.3 and 4.4.

Using this sequence, it is evident that, if & is constant, several “Smith type”
theorems may be derived in complete analogy to the exposition to be found, for ex-
ample, in [4]. This procedure is somewhat easier than that of Conner and Dyer [7]
who use the ordinary Gysin sequence.

Remark. If  is a general paracompactifying family of supports on X and
¢p={Kc X*I K = #(K*) for some K* €} then ¢ is also paracompactifying and
and ¢ are “very well adapted” since 7 is open and proper (and hence closed). (See
[2; Chapter XI] for these notions.) Let & be any sheaf on X* and let 7* & be its
inverse image on X. Then, in the same way, there exists an exact Smith-Gysin
sequence:

<iI>|X*-F «(X* - F*; &) — H:L(X; T* F)

— pr"]l;{*_F*(x* SF 2R P @ H:UIF(F; T*P) — on .

(That £* ® & is the Leray sheaf with coefficients in 7*'% of X - F — X* - F*
follows from the fact that the stalks of £* are torsion free and requires some
argument. Also it need not be assumed that £* is locally constant on X* - F* but
only that it has stalks as indicated in (1.1) and (2.1).)

III. ORIENTATION

This section is a digression into the topic of orientation on an n-cmy . (It will
suffice for L to be a Dedekind domain in this section.) We shall assume familiarity
with the results of [3]. M will denote a connected n-cmj;, and £ will denote a
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locally constant sheaf on M with stalks isomorphic to L. ‘@ will denote the orien-
tation sheaf on M (see [3; 7.5]).

LEMMA 3.1. For U openin M, H(U; £) — HJ(M; &) is onto.
Proof. If UcC V are connected orientable open sets with £ constant on V, then
HY(U; ) — H2(V; &) is an isomorphism [2, Chapter I], [4]. Let
Gy = Im (H_(U; &) — H_(M; £))

for any open UcC M. Thus Gy = Gy if U and V are as above. Since M is con-
nected, Gy is constant, say Gy = G, for all U which are connected and orientable
with & constant over U (thus for U sufficiently small). Let S be the collection of
open subsets U such that Gy = G. The Mayer-Vietoris diagram

H(U; £)® H (V; 2) = HL(UUV; £2) -0
! l
Ho(M; £) @ Ho(M; £) — HY(M; £) — 0
shows that, if U; V € S, then U U V € S. Hence S contains every relatively compact

open set. But HZ(M; &) = lim HYU; £) over the relatively compact open sets U,
and thus M € S, which implies that Gy = Gys = HZ(M; £) for all open U.

LEMMA 3.2. £ Q @ is the sheaf genevated by the presheaf
U — Hom (H_(U; £); L).

Proof. Let U be a connected open set over which & is constant. Then there
exist the following isomorphisms each of which is natural with respect to inclusions
of such open sets:

Hom (H2(U; £); L) = H (U; £) = HO(U; £ @ 0) =~ (£ @ 0)(U).

(The first isomorphism is by [3; 3.3] and the fact that Q,IU is constant, the second

by [3; 7.6]; the third is standard [9].) The result follows immediately. (Note that in
using [3; 7.6] we do not need U to be paracompact since & is the constant sheaf L

over U.)

THEOREM 3.3 HJ(M; ) = L if and only if £ @ 0 is constant.

Proof. Assume HZ(M; £) =~ L. Then by Lemma 3.1, Ho(U; ) — HZ(M; £) is
an isomorphism for all connected open U C M, since any epimorphism L — L (as
L modules) is necessarily an isomorphism. Thus for every connected open set U
over which % is constant, there exists an isomorphism

L ~ Hom (H2(M; 2); L) 5 Hom (H2(U; ), L) = (£ @ 0)(U)

natural with respect to inclusion (the last isomorphism is by the proof of Lemma
3.2). This provides a trivialization of £ @ ¢ showing that £ @ ¢ is constant.
The converse will be proved following the next corollary.

COROLLARY 3.4. ¢ @ O is constant.

Proof. HZ(M; 0) =~ H(M; 0 ® o-1) = H§(M; L) =~ L, where 0-1 is the inverse
sheaf to ¢. (Thatis, ¢ & 0~! is the constant sheaf L. ¢~ exists because @ is
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locally constant [3; 7.7].) The first isomorphism is by [3; 7.9] and the last by [3;
6.6, 6.10(2)] (since an n-cmj, is always clcy,). Thus ¢ & ¢ is constant by the
part of the theorem we have proved.

We will now complete the proof of the Theorem. We may take o1 = 0, and
hence, if £ @ ¢ is constant, then

HY(M; £) ~ HG(M; £ ® ¢ 1) = H(M; L) = L.

COROLLARY 3.5. Ar n-cmj, M has an orvientable double covering.

Proof. Since 0 is the sheaf generated by U — Hom (HZ(U; L), L), it follows
that the automorphism g of L (as an L module) induced by the path (in the sense of
[4]) U, Ui, ***, Um, U (by means of the induced maps on H2(U;; L)) is just the
same as the automorphism of L induced (in the obvious way) by the induced maps
on the ¢(U;) = L. Since ¢ @ & is the constant sheaf, it follows that this auto-
morphism is of order two. Thus if a = g(1), then a% = 1, and hence a = +1 since L
is an integral domain. Hence g is either the identity or -(identity), and the corol-
lary follows from the results of [4] (see the remark below [4; 2.2]). (In fact, it is
clear that any non-zero component of @, as a bundle, is an orientable covering of
M.)

COROLLARY 3.6. Let U and V be connected open subsets of a connected
ovientable n-cmi, M, and let £: U — V be a homeomorphism. Choose an isomovph-
ism HZ(M; L) = L. Then the composition

~ %k ~
g: L~ HY(M; L) & HY(V; L) B u; L) S YV L) ~ L

of isomovphisms is eithev the identity or minus the identity.
Proof. Let M' be the (n+ 1)-cmj, obtained from

Ux(-1,1) uMX (0, 1) UV x (0, 2)

(open intervals) by identifying <x, t> with <{f(x), 2 + t> for all x € U and
t € (-1, 0).

The path (in the sense of [4])
Mx (0, 1); MXx (0, 1) U VX (0, 2); VX(1, 2) = Ux (-1, 0);
M X (0) 1) U U X (_1: 1); M X (O: 1)

clearly induces the automorphism g of L. The result then follows from the proof of
Corollary 3.5.

Remavrk. The last two results, of course, are not of interest if M is an n-cmgy.
For general L (particularly L = Z, or the rationals), however, they give a very
satisfactory completion of the results of [4; Sections 2-5]. In particular, in Theorem
5.2 of [4], M* can be replaced by the orientable double covering of M (this is as-
sumed to be two copies of M having opposite orientation if M is orientable). We
would also like to point out at this time that Theorem 6.1 of [4] can be strengthened
to include all topological transformation groups G, that is, any homeomorphism suf-
ficiently close to the identity must preserve the local orientation. This can be seen
by an argument on the Cech cohomology of the one point compactification of M (con-
sider coverings containing the complement of the closure of some small open set
Uc M).
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Now let (X, B, 7) be a k-cfsy, (see 1.1) with X an n-cmj, and B an
(n - kK)-cmy,. Let €x and Opg be the orientation sheaves on X and B, respective-
ly, let & be any locally constant sheaf on B with stalks isomorphic to L, and let &
be the sheaf @k of (1.1). Consider the Leray spectral sequence with compact sup-
ports of 7 with coefficients in the inverse image 7* ¥ of & (see [9; I, 2.11 and
4.17]). The Leray sheaf is defined by the presheaf

U — H*(r~}(0); 7* &) ~ H*(n~}(0); L) ® #(U)

for U connected and such that & is constant over U. Thus it is the sheaf Z* ® &,
The spectral sequence has E5’? ~ HE(B; #9® &) and converges to HE(X; n* ¥).
Now E5’? =0 for p> n - k or for q > k, and thus it follows that

HY(X; 7 %) ~ Hy "(B; 2 ® 9).

Since £ is locally constant with stalks L, there is an inverse sheaf & -1 such that
2-1® & is the constant sheaf L. Now put ¢ = £-1 ® 0Oy, and we obtain from
Theorem 3.3 the result that 7*(#-1 ® ¢5) ® O is constant, and hence, by 3.4 and
uniqueness [3; 7.7],

Ox ~ 21 @ 0p) ~ (2" ) @ 1x(0p).

Tensoring this isomorphism with itself and using 3.4, we obtain the conclusion that
1r*(.9?‘1 & Q'l) is constant; andf since the fibres of 7 are connected, it follows that
L Q@ &£ is constant and £ ~ £-*. We have proved the following result.

THEOREM 3.7. £ ® £ is constant, and 0Oy ~ (%) @ 1*(0p).
The first fact is, of course, trivial if LL = Z. The second yields a corollary.

COROLLARY 3.8. If any two of the following conditions hold then the thivd also
holds:

(1) X is orientable.
(2) B is orientable.

(3) Z is constant.

IV. THE LOCAL SMITH THEOREM

As we mentioned in Section II, several “Smith-type” theorems can be proved
using our exact Smith-Gysin sequence. As examples of results which have analogues
for a k-cfssy, with dimj; X <« and & constant, we refer the reader to [4], Theo-
rems 7.8, 7.13, 10.1, 10.5, 10.6, 11.2 and 11.4 and to [2], Chapter III, Theorems 4.3
and 4.4. Also see [7].

We shall restrict our attention in this section to the statement of the analogue of
the local Smith theorem and to some results concerning the constancy of £ and the
possible values of k. We assume that (X, F, X* F* 7) is a k-cfss;, with X an
n-cmy, in this section.

THEOREM 4.1. If £ is constant, then each component of ¥ is an r-cmjy, with
r =n (modulo k + 1). If U* is an open neighborhood in X* of a point in F* with
F* N U* connected and U = 7-1(U*) orientable, then the composition
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r L *) W pr(r+1)+(k+1) *y @
HI(U N F) S BEEPL(U* - pr) 8 glrr)r(crl)gx - 7o) 8 ...

S HENU* - FY Q. H2(U)

of homomorphisms in the Smith- Gysin sequence is an isomovphism. Moreover, F
is orvientable if X is ovientable.

This can be proved by the method of [4; 7.4, 7.5] in case L is a field and for
L = Z with some extra work. However, it is preferable to proceed roughly as fol-
lows. If U* and V* are open, relatively compact subsets of X* with the closure of
U* contained in V¥, then it follows by an inductive argument (regressive) on the
Smith-Gysin sequence that

Im (HX(U* - F*) — HL(V* - F*) and Im (HL(U* N F*) — B (V* N F¥)

are both finitely generated for all i (note that all spaces considered are finite dimen-
sional and that this argument uses the fact that X is clc over L). Thus F is cley,.
By the same type of argument, it follows that the inverse families { HL(U* - F¥)}

and {Hg(U* N ¥*)} are locally constant on F* c X* in the sense of [8]. The fact
that each component of F is an r-cmj, then follows from [8; 7.5]. It also follows
that the sequence of “local groups” induced by the Smith-Gysin sequence is exact [8].
That the composition of homomorphisms in our Theorem is an isomorphism follows
from the corresponding fact in the local Smith-Gysin sequence (which is easy to
establish) and from the natural map of the “local composition” into the global one.
(See [4; 7.5].) The orientability of F follows from this isomorphism.

We now take up the question of the constancy of ' . Recall that if X is orient-
able, then X* - F* is an (n - k)-cmj, by Theorem 1.3, and that, if L. = Z and
F # @, then X* - F* isan (n - k)-cmy even if X is non-orientable by Theorem 1.4
(since any fibre near some point in F is in an orientable neighborhood).

LEMMA 4.2. If X and X* - F* are both ovientable, then ¥ is constant.

Proof. From the Smith-Gysin sequence we obtain the isomorphisms
HYK(X* - F*; @) ~ H3(X; L) = L,
and hence & ~ £ ® 0 is constant by Theorem 3.3 (with M = X* - F¥). Of course,

this also follows from the more general result (3.8).

THEOREM 4.3. If L = Z and H21(X; 2,) = 0, then X and X* - F* are ovient-
able; hence & is constant.

Proof. If X were non-orientable, then HE(X; Z) ~ Z,, and hence H‘é'l{X; Z,) # 0,
which is a contradiction.

Now Theorem 4.1 is valid for coefficients in Z;, and consequently

dimZZ(X* - F*¥)=n -k and dimZZ(F)Sn-k— 1.

Since k > 1, the Smith-Gysin sequence with coefficients in Z, shows that

Hg'k’l(X* - F*; Z,) = 0, and hence X* - F* is orientable (over Z) by the same

argument as that used for X.
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THEOREM 4.4. If L= Z and if x* € F*, then there exists a neighbovhood U* of
x* in X* such that U* - F* is ovientable. Thus ¥ is constant near x*.

Proof. This result is just a localization of the preceding Theorem 4.3. Let
U* ¢ V* be open, connected neighborhoods of x* in X*, and let U and V be their
inverse images under 7. It may be assumed that

Im (H2 1 (U; 2,) - B2 Y(V; Z,)) = 0.
Then, the Smith-Gysin sequence shows that
Im (HR2-k-L(Uu* - F*; 7,) — HR-R-Y(v* - F*; 2,)) = 0.

However, if U* - F* were not orientable, then a universal coefficient argument
shows that this image could not be trivial.

COROLLARY 4.5. If L = Z, then each component of ¥ is an r-cmz for some
r =n (modulo k + 1).

Remark. Theorem 4.4 would not be true if L, were a field of characteristic dif-
ferent from two as the following example shows. Let X be the open cone over the
unit tangent bundle T 1(P2') of the projective plane PZ, and let F be the vertex of the
cone. Let X* be the open cone over P2 and 7: X — X* be the natural map. If L is
a field of characteristic different from two, then X is a 4-cm;j, S‘since T (P2 isa
cohomology 3-sphere over L). Moreover, X is a cohomology E* over L. However,
X* - F* is not orientable, even near F*, and & is not constant near F¥*,

We know of no examples, however, for which F is not a cmj..

Since we will be interested in the remainder of this section only in the neighbor-
hood of a point x* € F*, we may assume X to be orientable. We shall also assume
that & is constant and, consequently, we may assume that F is a connected r-cmj,
with n - r = h(k + 1) for some h > 1.

We shall also assume in the remainder of this section that x has a basic sys-
tem of open neighborhoods U = 7~ 7(U) such that U - F is paracompact, where
w(x) = x*. Then 7(U - F) is also paracompact since 7 is open and proper.

LEMMA 4.6. If & is constant then the ving Ind lim H¥*(U* - F*; L), U* ranging
over neighborhoods of x*, is a truncated polynomial ving L[a]/aP on one genevator
a of degree (k + 1) and height h.

Proof. The lemma makes sense since cup products may be introduced into the
inductive limit. Since X and F are orientable cohomology manifolds of dimension
n and r, respectively, it follows that for any connected open neighborhood U of x
(with m(x) = x*) there are arbitrarily small connected open neighborhoods V of
X, V C U, such that

Im (Ho(V - F; L) — HY(U - F; L))

is trivial for i # n, r + 1 and is isomorphic to L for i =n, r + 1. Moreover, this
image is stable in V; that is, this inverse family forms a locally constant family at
x in the sense of [8]. It follows easily from Poincaré-duality [2; II, 2.3] that

. Lfori=0,n-r-1
Ind lim H*(U - F; L) =
O for i#0,n-r-1.
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Since inductive limits and exact sequences commute, there exists a limit Gysin se-
quence of the (ordinary) Gysin sequences with closed supports of the maps

U- F — U* - F* (if U= 7-}(U*). The lemma follows immediately by a familiar
argument on this sequence.

THEOREM 4.7. If & is constant, with L = Zp and h> p, then (k + 1) divides

(p—l)pﬂforsome 0. If L=7Z and h> 3, then k is 1 or 3. If L=2Z, and h> 2,
then k is 1, 3 or .

Proof. Since the Steenrod squares and reduced powers can be introduced into the
inductive limit, the first statement follows from the arguments in [12; I, 4.5 and VI,
2.8]. The second statement follows by comparing the cases L = Z and L= Z3j.
Adams’ operations ¢j j [1] can also be introduced into the inductive limit and the
last statement follows from his results.

COROLLARY 4.8. If L = Z, then one of the following situations must occur:
1) r=n-k-1,

(2) k=7 and r =n - 16, or r = n - 24,

(3) k=1 or 3.

This is merely a restatement of part of Theorem 4.7. Examples of all these
cases come from cones over known sphere fiberings of spheres. Note that if the
fibering is the orbit map of the action of a compact Lie group on X, then case (2)
cannot occur (see [5]). It is also reasonable to conjecture that the case k = 7,

r = n - 24 cannot occur.
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