COEFFICIENT ESTIMATES FOR STARLIKE MAPPINGS

Thomas H. MacGregor

Suppose that f(z) = z + azzZ + a3z> + -+ is regular and univalent for ]zl <1 and

the image domain is starlike with respect to the origin. Then the Bieberbach con-
jecture 1an[ < n holds, and equality occurs only for the functions f(z) = z/(1 + £2)2,
where |e|=1 [4; p. 222].

The following generalization of this result was proved by Golusin [2]: If

oC

(1) f(z) =2+ 20 apyee 205
m=1

is regulay, univalent, and stavlike for IZI < 1, then

2
(2) |2miert | < o (“+E)-

Equality in (2) occurs only for the functions £(z) = z/(1 + szk)z/k, where |e| = 1.
For k = 1 the estimate in (2) is the same as |a,| < n. For k = 2 this theorem as-
serts that the coefficients of odd starlike functions satisfy the inequality |a,|< 1.
In [3] Golusin showed that the estimate |a,| < 1 holds for n = 3, 4, 5, --- if only
a,=0.

Theorem 1 in this paper implies that (2) holds if the hypothesis that f has the
form (1) is replaced bg the assumption that the power series for f begins with
Z+ 4] Z g Ak+2 Z *2 4 .... This theorem also contains estimates for the co-
efficients which are not of the form apx+1. In particular, for k = 2, it gives upper
bounds for Ian| which are less than 1 for each even value of n.

The proof of Theorem 1 depends essentially on a method introduced by Clunie [1].
In that paper the exact upper bounds are found for the coefficients of the functions
f(z) = 1/z + a; 2z + --- which are regular and univalent in 0 < |z| < 1 and map
]z, < 1 onto the complement of a point set starlike with respect to the origin.

THEOREM 1. Suppose that 1(z) = z + Zpryy) 2, 2" is vegular, univalent, and
starlike for |z| < 1. Then

m-1

K 2
|20l < G 1L (n+2).
=0

wherve mk + 1 <n< (m + 1)k, m =1, 2, -,

Proof. f is univalent and starlike for |z|< 1 provided %{zf'(z)/f(z)} > 0. Let
g(z) = zf'(z)/f(z) and let
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h(z) = (g(z) - 1)/(g(2) + 1).
Then h is regular for |z| < 1, satisfies the inequality Ih(z)l < 1, and has a power
series which begins with by Z% + by Z5t! + .... By equating coefficients of the
power series on both sides of the equation
(3) zf'(z) - {(z) = h(z)(z{'(z) + £(2)),
we obtain the relations

(4) (n-1)a,=2b , for n=k+1, k+2, -, 2k.

Since |h(z)| < 1, it follows that =i |b,|% < 1, and therefore

2k-1
(5) 2 v %< 1.
n=k -
From (4) and (5) we find that
2k
(6) 27 (m-1)2a ]2 <4.
n=k+1
We rewrite (3) as follows:
oc [=s]
27 (n- Da_z" = h(z) {22 + 2 (n+ l)anzn}
n=k+1 n=k+1
p-k o
= h(z){Zz + 20 (m+ l)anzn}+ 27 c, z"™.
n=k+1 n:p+1
This can also be written as
p ) p-k
€)) 2 (- 1a, 2™ + 27 dnznzh(z){zz+ 27 (n+ 1)anzn}.
n=k+1 n=p+l1 n=k+1

Since (7) has the form F(z) = h(z)G(z), where ]h(z)] < 1, it follows that

1 27 . 1 27 .
(8) o |Frel9) > do < 5 So |G(reif) 2 do

0

for each r (0 < r < 1). Expressing (8) in terms of the coefficients in (7), we obtain
the inequality

P 0 p-k

(9) 27 (n- I)ZIanIZ D ) |dn|2 anS ar® + 20 (n+ 1)Z| anlz rn
n=k+1 n=p+1 n=k+1
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In particular (9) implies

P p-k
(10) 27 (n- 1)2|an|2r2n§_ 4v* + 27 (n+ 1)Z|an|Z r2?,
n=k+1 n=k+1

By letting r — 1 in (10), we conclude that

P p-k
(11) 2 m-D3a P <4+ T @+ DPay)*.
n=k+1 n=k+1 ’

This inequality is equivalent to

P _ p-k
(12) 2 (- 1)2|an12_<_4{1+ 2 nlanfz}.
=p-k+1 n=k+1
By an inductive argument we will establish the inequalities
(m+1)k m-1 >
_12a 2 d K Z)
(13a) -E n - 1)?]a )% < {(m ~y7 II (p * i }
n=mk+1 ‘u,=0
(m+1)k 1 m-1 9 2
(13b) 2 nla |2<(mk+ 1) {—rﬁ— 11 (M+E)}
n=mk+1 L =0 :

for m =1, 2, 3,
For m = 1 (138.) is Valld since it is the same as (6). We can prove (13b) for m =1
by using (6) as follows.

2k K 1 2k 2
2 _ + 2
27 nla |? == k+1I«tl
n=k+1 k*  p=
K 1 2k
+
<=/ 2 (n-.l)zlanlz
k n=k+1
k+1 2\ 2
< k2 +1) (E) -

Now suppose that (13a) and (13b) hold for m =1, 2, -+, q - 1. Using (12) with
= (q + 1)k and the inductive hypothesis concerning (13a), we obtain the inequalities

(g+1)k gk
2 (n—l)zlanl‘2 §4'{1+ 27 nlanlz}
n=gk+l n=k+1
q-1 (m+1l)k

=4{1+ 2 nlanlz}

m=1 n=mk+l
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- q-1 . m-1 0 2
<4{1+ 2 (mk+1)|— II 2 }
- { ’ m=1 i ‘:m! 1L=0 (u+k)jl

q-1

- { k 11 (,u + 2) } :

VY- 117 K :

(a-1)! 11=0 k

The last equality can be readily proven with an inductive argument on q. This last

sequence of inequalities implies (13a), where m = q.
Continuing our inductive argument, we use (13a) with m = q to deduce (13b) for

m = q as follows.
(q+l)k K1 (q+1)k N 2
(gq+l)k

gk +1 5~ _1)2 2
- (qk)z n=qk+1(n ) lanl

q-1
qk + 1 k 2\ {2
= ()2 {(q-l)! ul}o (U+k)}
q-1 v )2
~@oen{d I (ue2) |7
(=0

This completes the proof of (13a) and (13b). The theorem follows from (13a).

It is not difficult to verify the following remarks. The estimate in Theorem 1 is
precise if n is of the form n = mk + 1, and equality holds only for the functions

£(z) = z/(1 + e25)2/k
where |e|=1. If k+ 1< n< 2k + 1 the estimate for |a,| is exact for the same
functions where k is replaced by n. For all other values of n, Theorem 1 does not

give exact bounds.
COROLLARY. Iff(z) =2z + 2:=k+1 a, z" is vegulay, univalent, and convex for

|z|<1, then
K e 2
lanlsn(n_l)(m—l)lu:[fo (”+E)’

ere mk+ 1< n< (m+ 1)k, m=1, 2, -,
Proof. f is convex if and only if zf' is starlike.
Remarks. 1. If n is of the form mk + 1, then the estimate in Theorem 1 is the
same as (2). For k =1 this becomes |an| < n. For k = 2 Theorem 1 yields the
-. This improves |a_] <1

bounds |a, ,;|<1, |a,, 5] <2n/@2n+ 1), n=1,2,3, -

for each even n.
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2.| A generalization of the concept of starlike function is the concept of spiral-
like function. Spiral-like functions are characterized by the condition

9% {ezf'(z)/f(z)} > 0
wherell le|= 1. If £(z) is spiral-like for |z|< 1, then f(z) is univalent for |z|< 1.

Morlepver, the coefficients of normalized spiral-like functions satisfy the inequality
la,| < n [5].

Theorem 1 remains valid if one replaces the condition that f be starlike by f is
spiral-like. The proof is essentially the same. One considers

h(z) = (g(z) - €)/(g(z) + €)

where g(z) = ezf'(z)/f(z). This function h(z) satisfies the same conditions as h(z)
in the proof of Theorem 1. (4) is replaced by

(14) | e(n - I)an = (g + E)bn_l for n=k+1, k+ 2, -+, 2k.

Nevertheless (6) remains valid, for it follows from (5) and (14) since |s| =1. (7) is
replaced by

P 0 p-k
(15) 27 g - Da, z™ + 2 d,, z™ = h(z) {(5 +&)z+ 2o (ne + g)a, z" } .
n=k+1 n=p+1 n=k+1
From (15) we obtain
P p-k
(16) 27 (n- 1)2'[2111[Z <le+elf+ 2 |me+8)a,l>.
n=k+1 n=k-+1

Since (16) implies (11) we can establish Theorem 1 for the spiral-like functions by
continuing exactly as we did in the proof of Theorem 1 for the starlike functions.
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