SOME RADIUS OF CONVEXITY PROBLEMS
M. S. Robertson

1. INTRODUCTION

In a recent paper [2] the author obtained the following theorem which will be
useful in certain applications in this note.

THEOREM 1. If F(u, v) is analytic in the v-plane and in the half-plane %Ru > 0,
if P[(Z) is regular with positive veal part in { |z| < 1}, and if P(0) = 1, then on
{lz]=r< 1}

min min % F(P(z), zP'(z))

P z|=r

is attained only fov a function P = P, of the form

if _ -if
Po(z)=1+a 1+ zel +1201(1+ze

2 1 - zeif ze~10

where -1 <a <1, 0< 0 < 27.
The following corollary is easily verified.
COROLLARY 1. The extremal function P of Theovem 1 may be described by

the equation

Pp(z) -1 bz - z2
Py(z) +1 1- bz ’

where b=cos 0+ aisin 8 and -1 < a < 1.
It is well known [3] that if

f=z+azzz+---+anzn+---

maps the circle { lzl < 1} onto a convex domain, then f is also starlike of order
1/2; that is,

Z% (|z| < 1).
Conversely, if f is starlike of order 1/2 for |z| < 1, then it maps
{lz]< (2(3)1/2 _3)t/2 _ o.68 e}

onto a convex domain, and the estimate is sharp. This result has been obtained just
recently by T. MacGregor [1].
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One might ask a similar question in the meromorphic case. What is the radius
of convexity for the class of functions

(1.1) g=%+b0+blz+---+bnzn+...
for which
(1.2) 9% {‘—Z%Z')(—Z)}>Bzo (|z] < 1)

for a given g8 (0< B < 1)? If 8 =0, the radius of convexity is 3-1/2 Tpe author’s
proof [2] is long and cumbersome and a much neater proof will be described in this
note, together with a proof of the theorem corresponding to the case 8 =1/2 and a
new proof of MacGregor’s theorem [1]. All three theorems follow easily from the
author’s Theorem 1.

2. PROOFS OF THEOREMS

Let g be regular, univalent and starlike of order 1/2 for 0 < |z| <1 so that g
is given by (1.1) and satisfies (1.2) with g = 1/2. We wish to find the largest circle
with center at the origin within which every g satisfies the inequality

zg"(z)
(2.1) 91{1+ e } <o.
Since we may write
-zg'(z) 1+ P(z) 1
2-2) gz) =~ 2 T 1-w(z)’

where % P(z) > 0 and |w(z) | < |w| < 1, it follows that (2.1) is equivalent to the in-
equality

1- zw'(z)

(2.3) N K(Z) Z 0, K(Z) = m .

In turn, the inequality (2.3) is equivalent to

<1.

(2.4) lK(z) - 1] | w(z) - zw' (z)
: K(z) + 1| ~ | 2(1 - w(2)) + (w(z) - zw'(z))

This will be satisfied if
(2.5) Iw(z) - zw'(z){g_ 1- |w(z)|.
But since

P(z) - 1
w(z) = P(z) + 1

and
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zg" (z) 1 zP' (z)
-{1+—é§m"} =-§(1+ P(Z)) —m,

we select F(u, v) in Theorem 1 to be

v
1+u’

Fu, v) =%(1 r ) -

Corollary 1 then allows us to confine ourselves to extremal functions of the form

_P(z)—l_bz-zz‘

VEB@ 1T 1 ke (Pl
Hence |w(z)|= |z|x, where
b-2z
= = 1.
x |1 TBz| S
We also see that
-(1 - |b[Hz?
zw'(z) - w(z) = =
(@) - W) = 2
and
(|1 - Bz|? - |b - z|Hr?
zw'(z) - w(z)| = = zl=r
|z @ 1-r?|1- bz|? (2] =)
(2.6)
_ r? - |W(z)|Z
- 1-r2 )
Consequently (2.5) becomes
r(1 - x%
et
or
0<1- 2r2 _(r - r)x + r?‘xz,
That is,
2
(2.7 0< [rx--;:(l—rz)] +%(3—6r2—r4).

The last inequality, is satisfied for r < (2( )1/2 - 3)1/2. For the choice
z = i(2(3)1/2 - 3)1/2 b =1(2(3)}/2/3 " 1)1/2, we find that

_1—r2‘
- 2r

b-=z

X = =
1 - bz

so that equality holds in (2.7). Moreover, for this choice of z and b, zw'(z) = 1,
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which implies that K(z) = 0. It follows that the corresponding extremal function

1-

=

Ly
cL-im) 2, y=@e 8- /2,

]

1 .
g_2(1+1z)

has a radius of convexity equal to (2(3)1/ 2 _ 3)1/ 2. We have completed the proof of
Theorem 2.

THEOREM 2. Lef
= 1 b0 b . bz
g — + + 1 Z + .e + + esse

be regular and starlike of ovder 1/2 for 0< |z|< 1. Then g maps
{lz] < @@ - 92}

onto a domain the complement of which is convex. The estimate is sharp.

If B8 =0 in (1.2) instead of 1/2, a few modifications are needed in the proof of
Theorem 2. The equalities (2.2) are now replaced by

-zg'(z) _ _ 1+ w(z)
g(z) P) = 1 w(z)’

and (2.3) and (2.4) now become

2 1
% K(z) >0, K(z)= (1 + w(z))” - 2zw'(z)

1- (w2
K(z) - 1 w(z)z‘ - [zw'(z) - w(z)]
(2.8) lK(z) + 1| 1-[zw'(z) - w(z)] < 1.

Inequality (2.8) holds provided
(2.9) Iw(z) |2 + 2|zw’(z) - w(z) | <1.
Because of (2.6) we may write (2.9) in the form

2
1-r1r2

lw(z) | + - |w@ ) <1,

or
(3r2 -1) - (1 + rz)[w(z) ’2 <o.

The last inequality is satisfied if r < 3°1/2. We see that K(z) = 0 if z = b = 371/2;
and the corresponding extremal function is

g=(1+ iz)l—c -(1 - iz)1+C ,

where c¢ = 3'1/2.
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THEOREM 3. Let

N~

g==+bg+byz+ e +b,z"+ e

be regular and starlike for {0< |z|< 1}. Then g maps {|z|< 3'1/2} onto a

domain the complement of which is convex. The estimate is sharp.

If the function

2

f=2z+azz +...+anzn+...

is regular, univalent and starlike of order 1/2 for |z[ < 1, we may let

zf'(z) 1+P(z) 1
f(z) ~ 2 1 -w(z)
Then
3 zf"(z) 1+ zw'(z)
K(z) =1+ f'(z) ~ 1-w(z)
and
K(z) - 1| | [zw'(z) - w(z)] + 2w(z) <1
K(z) + 1 [zw'(z) - w(z)] + 2 | —
provided

Izw'(z) - w(z)|+ 2|W(z)| <2 - ]zw'(z) - w(z)|,
that is, provided
(2.10) lw(z)| + |zw'(z) - w(z)[_<_ 1.

Since (2.10) is precisely the same inequality as we encountered in (2.5), we again
obtain (2.7). Hence (2.10) is satisfied for |z|=r < (2(3)1/2 _ 3)1/2,

For z = (2(3)!/2 - 3)1/2 and b = x = [(2(3)1/2 - 3)/3]1/2 we find that
1+ zw'(z) = 0 and K(z) = 0. The corresponding extremal function is

1/2 1/2
f=2z(1 - 2bz + zZ)'l/Z, b= (-2-%-—3) .

Thus MacGregor’s theorem [1], which we state here as Theorem 4, follows as a
consequence of Theorem 1.

THEOREM 4. Let
f=z+a.zz2 + ---+anzn+---

be regulav and stavlike of ovdev 1/2 for |z[ < 1. Then { is convex in
{1z] < @(3)1/2 - 3)1/2}. The estimate is sharp.

235



236 M. S. ROBERTSON

It would be of some interest to obtain the radius of convexity for functions star-
like of arbitrary order B. Estimates may be obtained by the method used here.
However, the problem of obtaining sharp estimates for 8 not 0 or 1/2 appears to
be more difficult than for 8 = 0 or 1/2.
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