SECOND MAIN THEOREM WITHOUT EXCEPTIONAL
INTERVALS ON ARBITRARY RIEMANN SURFACES

Leo Sario

1. In the present paper an integrated form of the second main theorem is estab-
lished for meromorphic functions on an arbitrary Riemann surface W. The theorem
is valid for all compact bordered subregions of W.

An analogue of Nevanlinna’s classical reasoning is first used to derive the first
main theorem and a preliminary form of the second main theorem. A method intro-
duced in [41] for analytic mappings is then applied to reach the final form of the
second main theorem in its full generality. The proximity function is here expressed

in terms of l?;g.

Literature on meromorphic functions on Riemann surfaces and on analytic map-
pings is listed in the References.

2. The basic idea of our approach is as follows. In the classical theory no esti-
mate valid for all values of the variable r is known for the remainder term in the
second main theorem. It is the integral of the integral of the remainder that can be
given a dominating function. The remainder itself might have an arbitrarily wild
behavior in certain intervals that can be estimated but which must be omitted in
stating the second main theorem. These exceptional intervals, together with the re-
lated change of the coordinate system for a varying subregion of a Riemann surface,
prohibit the use of directed limits in deriving the defect relation. However, on an
arbitrary Riemann surface ordinary limits cannot be employed, for there is no one
single parameter that gives an exhaustion of the entire surface. Thus the exceptional
intervals block any attempt at transferring the classical theory to arbitrary Riemann
surfaces.

This difficulty can be overcome by the following simple device. The conventional
proximity function gives the mean proximity to a point a of an image curve. We re-
place this by the mean proximity to a of the corresponding image vegion, and then
integrate that. Analytically this means that, in some sense, we bring all quantities
involved to the same level of integration. Then the remainder in the second main
theorem can be estimated for every subregion, directed limits may be used, and the
theory can be developed on arbitrary Riemann surfaces.

For the classical cases of the plane and the disk one obtains as a by-product an
elementary proof of the defect relation, and a second main theorem without excep-
tional intervals.

1. GENERALIZATION OF JENSEN’S FORMULA

3. Let © be a compact bordered Riemann surface with border B, and let p de-
note the capacity function in © with pole at a given £ € Q. By definition,
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p(z)—10g|z— C’—-»O as z — ¢,

and p(z) = k = const. on Bq.

Given a continuous real-valued function f on Bq , the solution v(z) of the Dirich-
let problem can be expressed in the form

v(©) = o= 5BQfdp*.

To see this let a be a level line p = ¢ near &, oriented to leave ¢ to its left. Then
by Green’s formula,

‘S‘ vdp¥ - pdv* =0,
B-a

and the statement follows on letting ¢ — -co.

There is a trivial relation between p and the Green’s function: g(¢, t) = k - p(t).
For the proof let & be a level line g(¢, t) = ¢; near t, encircling t counterclock-
wise. Then

SB ngp*—pdg*=0,
Q-

and the statement follows on letting ¢ — -, ¢; — «. It is also a direct consequence
of the well-known symmetry g(¢, t) = g(t, ¢).

4. Let W be an arbitrary open Riemann surface. We consider the class L of
functions u on W, harmonic except for logarithmic singularities A; loglz - Zil at
z; (i=1, 2, ---) with integral coefficients ;. By definition, the class M. consists
of locally meromorphic functions

(1) w=e"i  (yer).

The conjugate function u* has periods around z; and along some cycles in W,
Every branch of w is meromorphic, the branches differing by multiplicative con-
stants ¢ with |[c|= 1. The modulus ]WI is single-valued throughout W. The class
M, contains the class M of (single-valued) meromorphic functions on W.

5. Given ¢ € W, let Q be a relatively compact subregion containing ¢ and
bounded by a finite set B of analytic Jordan curves. Denote by a,, b,, the zeros
and poles of a given w € M, on W. We first assume that w({) # 0, «, and that no
ay, b, is on Bg. Consider on 2 the function

(2) v(z) = log|w(z) |+ 2 g(z,a,) - 2 gz, b)),
aueQ b, €Q

where each ay, by is taken as many times as indicated by its multiplicity. Clearly
v(z) is harmonic on 2, and

(3  log|w®)] =5 SB log | wia)|ap® - D G- plap) + Z e - o)
Q a[,l, € VE
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If an ay or by is on Bg, we first apply (3) to a slightly smaller region
Q. _g € © bounded by the level lines p =k - ¢, and then let ¢ — 0. Since all terms
in the equation are continuous in g, (3) remains valid for Q.

6. Suppose now w(¢) = 0 or . A branch of w near ¢ then has the Laurent
expansion

(4) W(Z) = C) (Z - C)A + Cyt1 (z - C))\"'l + e,

and the other branches are obtained through a multiplication by constants el®, The
same is true of the branches of the function

¢(Z) = eP(Z)ﬂ'iP*(Z) € Me
and of
(5) Y(z) = w(z) ¢p(z)"*=c, +e(z - ¥) € M,

where £(z - £) — 0 as z — £. On applying (3) to ¥(z), one obtains

(6) loglc)t| = ziﬂ SB log|w|dp* Sk - (k - p(ay)) + > k - p(b)),
Q

the sums Z' being extended over points in & - ¢.

7. For -« < h <k consider the region 4, C Q bounded by the level lines p = h.
Let n(h, a) be the number of a-points, a = 0 or «, of w in Qp, counted with their
multiplicities. It is understood that n(-w, a) is the multiplicity (> 0) of the a-point
at £. Then

k
27 (k - pw-1(a))) = S (k - h)d(n(h, a) - n(-=, a)) = Sk (n(h, a) - n(-~, a))dh,

-00 -00
and A = n(-w, 0) - n(-», ©). We set

h
) N(h, a) = S (n(h, a) - n(-w, a))dh + n(-=, a)h

-0

and also use the notations N(2, a) = N(k, a), N(22, w) = N(R, »). We have obtained
the following result.

JENSEN’S FORMULA ON RIEMANN SURFACES. For a locally mevomovrphic
Junction w € M, with single-valued modulus on an arbitvary open Riemann surface
w,

1
(8) logl(:)\lzz—7T 5‘ log|w|dp* + N(Q, w) - N(Q,%) _

B
8. We set
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1
m($2, w) = 5= X 13g|w|dp*,
Q

and we see that

gl

L S loglwldp* = m(R, w) - m(SZ,
27
BQ

The counterpart of Nevanlinna’s characteristic function is
(9) T(Q) = T(R, w) = m(, w) + N, w),
and Jensen’s formula (8) takes the form

(10) log|cy| = TR, w) -T(Q,%)

for all w € M,.

2. FIRST MAIN THEOREM ON W

9. In the present section we consider differences w - a, and we therefore re-
strict our attention to the class M C M, of single-valued meromorphic functions w
on W,

For a # « we define the counterpart of Nevanlinna’s proximity function as

(11) m(Q2, a) = m(Q’V}_a) = EI'E 13g ——1-——-dp*,
BQ |W - a|

and the counterpart of the counting function as

1
w-a

) = Sk (n(h, a) - n(-e=, a))dh + n(-=, a)k.

=00

(12) N@, 2) = N( @,

For a = « the definitions were given in Section 1.

We apply Jensen’s formula (10) to w - a. Clearly N(2, w - a) = N(R2, w), while
m(2, w - 2)< m(R, w) + 18g|a| + log 2.

We can now state the following (see [16, 39]):

FIRST MAIN THEOREM ON RIEMANN SURFACES. For a meéromovphic func-
tion on an avbitvary Riemann suvface W,

(13) m(gy a) + N(Q’ a-) = T(Q) + ¢(a) ’

wheve Iqb(a) I < l3g|a| + log2 + llogl cH, c being the fivst Laurvent coefficient of
w-~aat .
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The theorem expresses a universal property of meromorphic functions w on
compact bordered subsurfaces Q of arbitrary open Riemann surfaces W, regardless
of topological or conformal properties of @ or W. The theorem simply states that
in the Poisson-Jensen decomposition of log[W(z) - a] into positive and negative
harmonic functions on © their values at £ must add up to logIW(C) - aI. The value
of the positive component of log [w(z)[ at ¢ is the characteristic T(R).

10. The Ahlfors-Shimizu interpretation of the characteristic continues to be
valid. The chordal distance between the sterographic images of w and a is denoted
by [w, a], and the proximity function for B, : p = h<k is defined as

1 1
m(h, a) = &— S log dp*.
’ 2 Bh [W7 a']
The counting function is, by definition,

h
N(h, a) = S n(h, a)dh,
hy(a)
where hg(a) is so chosen that limy _, _(m(h, a) + N(h, a)) = 0.

For any two values a, b one obtains at once the equalities

w-a *_L‘S‘ W-a
w—bldp =37 ) dareyTg
By

dm(h, b) dm(h,a) 1 S d,
dh dh 27 dn °%
B

= n(h, a) - n(h, b),

and integration from -« to h gives the result m(h, a) + N(h, a) = m(h, b) + N(h, b).
The common value of the sum is taken as the characteristic function T(h). For

h = k, T(k) = T(R), the first main theorem takes the familiar Shimizu-Ahlfors
form

(14) m(2, a) + N(2, a) = T(Q).

One integrates (14) over the area elements dw(a) of the sphere A above the w-

plane. Since SS log (1/[w, a])dw(a) is independent of w,
A
(15) T(@) =1 55 N(Q, a) dw(a) + const.
A

For more general distributions (15) is replaced by an inequality, obtained by in-

tegrating (14) over an arbitrary positive mass distribution du on the w-plane with
total mass unity:

(16) N(Q, a)du(a) < TE) .

(2)

It is clear that, as in the classical theory, the two forms (9) and (14) of T()
differ by a bounded quantity and can be used interchangeably in the sequel.
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3. SECOND MAIN THEOREM ON W

11. Denote by Wy the relatively compact region with boundary ;. Let w e M
be a meromorphic function on W, and set

dw dP

(17)
where dP is the differential dp + idp*. Returning to the l_(‘ig—form, we write

1 + 1
m(h, a) =5, ‘S‘B logmdp* for a# «,

and
1 +
m(h, w) = m(h, ©) = 5 5 16g | w|dp*.
i Bh R

The number of a-points, with their multiplicities, of w in W}, - W is denoted by
n(h, a). For the counting function we now choose

h
(18) N(h, a) = ‘S‘O n(h, a)dh,

and we set N(h, w) = N(h, ), T(h) = m(h, w) + N(h, w).

12. One is able to show that Eqm(h ay) for a, # « is asymptotically m(h, WPI)

and that m(h, w) is essentially m(h wWp).

First consider the function

q
f—zl 1 = 1 (1+Ew-a‘u)
1 W - a3y w-ay w&“w-au

It is known (see [26, p. 242]) that

q
27 m(h, au) < mf(h, f) + O(1),
n=1
where
. q wp
(19) m(h, f) = m(h, prwi,l) < mf(h, wl'gl) + m(h, EJ:IW — au) .

The modification of the counting function to (18) only contributes a term O(h) in the
Jensen formula (10) applied to wp:

(20) m(h, wi!) = m(h, w) + N(h, w_) - N(h, w;) + O(h) .
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Furthermore,
(21) m(h, wp) = m(h, wwpw™!) < m(h, w) + m(h, wpw™1).

Set ag4] =, and add m(h, w) to both sides of (20). On the right the first main
theorem (13) can be applied, 8y again only contributing a term O(1). It gives rise
to 2T(h), while the counting functions add up to

_2N(h, W) + N(h, wp) - N(h, wgl) = -2N(h, w) + N(h, w,) - N(h, w;1) + N(n, P;1),
there being no poles of P, in W - W,. We can also choose the parametric
disc |z - i;’| < 1 with p(z) - log |z - Cl — 0 for z — ¢, so small that W contains

no zeros of P,. The number n(h, P;l) of the zeros of P, is the sum of the indices

at the singularities of the vector field gradp. By Lefschetz’ fixed point theorem,
this sum, for any differentiable vector field, is the Euler characteristic e(h) of
Wy, - Wp. We conclude (compare with [39]) that

h
N(h, P;!) = E(h) = S e(h)dh.
0

The remaining terms form the counting function
h
0

for multiple points of w, each k-tuple point counted k - 1 times:
N, (h) = N(h, w;1) + @N(h, w) - N(h, w,)).

We have arrived at the folilowing result.

PRELIMINARY FORM OF THE SECOND MAIN THEOREM ON RIEMANN
SURFACES.

qt+l
(22) 22 m(h, ay) < 2T(h) - Ny(h) + E(h) + S(h),
1
where
Wp : wVp )
(23) S(h) = m(h, —“}—) + m<h, ?W) + O(h) .

13. To estimate S(h), consider a unit mass distribution du(a) of density p(a)
over the a-plane. The mass on the image surface of W, - W, under w is

h
(24) M@ = (7§ Jwel® pmapran= | @, 2au),

o “B, (a)

its h-derivative is
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wm = § |wel? p(wdp*,
Bh

and its integral is

. h

(25) Q(h) = S M(h)dh = j; N(h, a)du(a) < T(h) + Oh).
0 a)

In the special case p(w) = 1/[272|w[2 (1 + (log|w|)2)],

(26) m(n,“B) <L XB bg(|wp|? pw)dp* + 5 | log(1 + (og|w|)P)ap* + O(1),
h h

where the first term is estimated by the convexity of the logarithm,

zi,” S 16g(|wp [* p(w))dp* < 16g M'(h) + O(1),
Bh

and the second term has the standard estimate

-21—17 S log V1 + (10g|w|)2 dp* Slog-él-E S (1 + [10g|w||)dp*
Py, By,

=10g(m(h, W)+m(h,;];-) + 1)

< 15g T(h) + O(h).

14. Changing our notations slightly, we take two disjoint relatively compact
bordered subregions: Wy with border By and @ with border 8y U Bp. To econo-
mize symbols, denote by p the harmonic function on © with p=0 on Bos
p = k = k(2), a constant, on B¢, and S dp* = 27.

Bo

For 0 < h <k consider the level line 8, in . Formulas (22) through (26) con-

tinue to hold without modification. For any continuous function ¢ in [0, k] set

6,0 = Soh § #eaaxay.

Then the preliminary form of the second main theorem gives

q+1

(27) 27 m,(h, ay) < 2T,(h) - N )(h) + E, (h) + S, (h),
1

1(2

where
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q
(28) S>(h) = m, (h, va'vg) + mz(h, Z.l) % ':Vl;u> + 0(h3)‘.

To estimate m, we have

(29) m (b, =2)= 4§ 1e(wp |2 pm)ap* + g TM) + OM),

Py

where the inequality

S 16g (|wp|2 p(w))dp* < 2mIbg M!'(h) + O(h)
Bh

gives the result

h
S S 16g (| wp|? p(w))dp*dy < 2whl$g(-l—11M(h)) + O(h?)
0 "By
< 27h16g M(h) + O(h?).

In virtue of the inequalities

h h
S xlogM(x)dx < hS log M(x)dx
0 0

< W ibg(zam)

< h* 16g T(h) + O(K°),

we obtain the estimate

Shjyj 16g (|wp|? p(w))dp* dxdy < 27h2 Ibg T(h) + O(h3).
0 Yo "B,

Similarly,

BeY 2 1= 3
log T(x)dx dy < h” log T, (h) + O(h”),
0 *0 -

and we conclude that

(30) m, (h, %E) < O(h®1og T(h) + h®) + O(h%log T,(h)).

On substituting this into (28) and taking h = k, we obtain our main result.

215
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SECOND MAIN THEOREM ON ARBITRARY RIEMANN SURFACES. For every
QLCcCW,

q
(31) ? my(k, ay) < 2T,K) - Ny (5)(k) + E, &) + S,(k)
with
(32) S, (k) = O(k> + k% log (T(k) T,(k))) .

Observe that the variable here is the region @ which determines k = k().

15. Using directed limits, we define for canonical regions €,

. NZ(k’ a)
(33) ’ 6(a) =1 - QlinW sup ~T50)
N k
(39) 6= 1im inf1@®
E (k)
(35) n = lim inf-,I-‘—Zi(—,

and obtain our last result.

DEFECT AND RAMIFICATION RELATIONS ON ARBITRARY RIEMANN SUR-
FACES. For functions with lim (S,(k)/T,(k)) =0
Q—-W

(36) Eﬁ(au)+9_<_2+n.

In particular, there can be at most 2 + n Picard values. The classical bound 2
is met by functions for which T, grows more rapidly than E;.

The condition S, (k)/T,(k) — 0 or, equivalently, (k3 + k% log T(k))/T,(k) — 0, is
natural and is obviously satisfied even by such functions as T(k) = k¥ with a > 1
and T(k) = ek with o > 0.

16. In case W isa W, surface, that is, W has a capacity function p with com-
pact level lines, then By, B can be chosen as level lines, and the two meanings of p
coincide. In (31), (32), k instead of Q can be taken as the variable and the directed
limits in formulas (33) through (35) replaced by ordinary limits as k — supyw p. By
IL’Hospital’s rule the subindex 2 can here be dropped and 6, § can then be used in
the traditional sense. In the special cases of the plane and the disk, we have in (31)
a new second main theorem without exceptional intervals and an elementary proof of
the defect and ramification relations.
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