SUMMABILITY OF ORDINARY DIRICHLET SERIES
BY PERRON-TYPE MATRICES

W. T. Sledd

1. INTRODUCTION

Let £(z) be a function which is analytic for |z| <R (R > 1), and suppose that
£(1) = 1. Then given a series = u,, we formally rearrange the series Z up [£(z)]"
into powers of z so that it becomes Z U, z™. Explicitly, if we let

(@] = Dtz @m=1,2, -,

foo =1, fo=0 (k=1,2,-),

then

U, =2fu, (=0,1,2, ).
k

The matrix F = (f,;) is said to be generated by f(z), and it will be called a Perron-
type matrix. The series Z U, is called the F-transform of Z u,; and if Z U, con-
verges, then Zu, is said to be F-summable. If Z IUn| converges, then Zu, is
said to be |F|-summab1e. Such transformations have been studied by Perron [6],
Knopp [2], and Macphail [3, 4].

Given an ordinary Dirichlet series Zu,(n + 1)”° and a suitable Perron-type
matrix ¥, we will here be concerned with several problems, which together with
their solutions comprise the following theorem.

THEOREM. Let w = {(z) be a function that is analytic and univalent in |z| <R
(R > 1) and let z = g(w) be its inverse function, Assume thal

(1) g(w) generates the matvix (gni),

@) % l:eie f:(eiB)
f(eiH)

3) (1) =1, =] <1 |z|<1,

]>0 (0< 0< 2m),

4) 22 Zlfnk gkj[ converges (n=0,1, 2, ).
j k

Assume that u, = O(r™), where |rf(0)| < 1. Then

(A) if Zuy(n+ 1) %0 is F-summable, then Zuyn + 1) ~° is F-summable for
RNs > Rs,,
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(B) if Zup(n+ 1) %0 is |F|-summable, then Suy(n+ 1)7° is |F|-summable for
NRNs > Rs,, and

(C) if Zuy(n+ 1) %0 is F-summable, then Zuym+1)7°% ds ]F|-summable for
RNs > 1+ Rs,.

These results generalize results of Obrechkoff [5] concerning Euler methods and
results of Cowling and Piranian [1] concerning Taylor methods.

Before we proceed with the proof, there are several remarks to be made concern-
ing the hypotheses on f(z) and g(w). A function f(z) satisfying (2) maps the circle
|z| < 1 onto a “star-shaped” domain, that is, one whose boundary is cut at only one
point by each ray from the origin. It is well-known that (3) implies that £'(1) > 0.
The assumption (4) is somewhat restrictive, requiring in the case of the Taylor TP
matrix, for example, that 0 < p < 1/3. If £(0) = 0, then (f,;) and (g,,) are tri-
angular matrices, in which case (4) is satisfied.

2. THREE LEMMAS

Our proof of the theorem depends on three lemmas.

LEMMA 1. Assume that w = {(z) and z = g(w) arve as described in the hypotheses
of the theorem. Suppose that u,= O(x), where [ rf(O)l <1, and that = U, the F-
transform of Zu,, converges. Then

u, = {\-’gnkUk n=0,1, 2, --).

Proof. By definition,
U,=21f,u (=0,1,2 ).
‘ k
Then, since 2 U, converges,

Z)Unzn=z:znzk)fnkuk (|z] < 1).

But since |rf(0)|< 1, there exists a number 6 (0 < § < 1) and a neighborhood of

z = 0 where |rf(z)]< 0. Thus, since u, = O(r?), the series T uy [£(z)]¥ converges
uniformly in this neighborhood, and so we may apply Weierstrass’ theorem on double
series and write

EUnz’rl = Z)uk[f(z)]k
k

for sufficiently small z. Since f(z) maps |z| < 1 onto a star-shaped domain,
Ig(O)I < 1, so we may reapply Weierstrass’ theorem, obtaining the result

Z) unwn = ?Wn§gnkUkr

for sufficiently small w. Equating coefficients of w? completes the proof of Lemma
1.
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LEMMA 2. Letw = 1(z) and z = g(w) be as before. Then

(a) there exists an Ry, > 1 such that for all t> 0 the function g(f(z)e™Y is an
analylic function of z for |z| < Ry,

(b) there exist numbers T,> 0 and R, (0 <R, < 1) suckh that

g(f(z)e™t) = zexp{to(z, )}, ¢(z, t) = - [£(z)/z'(2)] + tp(z, t)

and p(z, t), @-%Z—Z’—Q ave bounded functions of z and t for 0 < t< T, and
R'1 g [Z[ S. Ro;

(c) theve exist positive numbers p, > 1, T,, and ¥ such that Ré(z, t) < -y
on p;* < 2| < pp for 0Kt T, and

(d) # T = min(T,, T,) then theve exist numbers 6 (0 < 6§ < 1) and p, > 1 such
that
le(iz)e H)| <0< 1

if |z|<p, ana t> T.

Proof. (a). This conclusion follows because f(z) is analytic for |z| <R R>1),
because g(w) is the inverse function of f(z), and from (2) and the fact that
0<e-t<1,if t> 0.

(b) Let H(z, t) = log g(f(z)e t). Restrict t and z so that g(f(z)e Y is analytic
and nonzero for 0 <t < T, and R, < |z| < R,. Then since

0H(z, 0) _ f(z) .
ot T T zf'(z)’

we may write

H(z, t) = log z - zif('?()ﬁt"L t2p(z, t)

for 0<t< T, and R, < |z| <R,.

(c) From (2) it follows that there exist numbers p, (R > p,> 1) and ¥, > 0
such that

9 [%f(—z()i)-] >y (< |z|<p).

Hence there exists a number ¥, > 0 such that

f f 2 fl
o[25] - |l o[2592) > w0 6 < el <

Since

bz, 9 = - S22 4 o),

the proof of (c) follows immediately.
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(d) The image of Izl = 1 under the mapping given by € = g(f(z)e_T) is a curve
C, lying inside CI = 1. This follows from the hypotheses made on f(z) and the fact
that e-T < 1. Hence, there exists a circle of radius p, > 1 whose image in the (-
plane lies between C and |¢| = 1, and hence along which

lgte )] < 6 < 1.
Thus, since e't__<__ e" T for t> T,

max |gfe D] < o<1 (t>T).
z|=p
This completes the proof of Lemma 2.

In all that follows let p, = min (p,, p,, Ry, RTY).

LEMMA 3. If {(z) and g(w) arve as above, then there exists a constant M such
that ‘

lew) - 1] < M@ - [gw)) O < w< ).

Proof. We need to show that there exists a sector of the half-plane %z < 1 in-
side of which the image of 0 < w < 1 lies. But g(w) is analytic at w = 1; and since
f(z) maps |z| < 1 onto a star-shaped domain and f(1) = 1, g(w) is analytic in an
open connected set about [0, 1], and [g(w)| < 1 for 0 < w < 1. Furthermore, (3)
implies that £'(1) > 0 so that g'(1) > 0 also. Thus the image of 0 < w < 1 under
the mapping by g(w) is perpendicular to |z| =1 at z = 1. Hence it is possible to
find a circle of sufficiently small radius about z = 1 that the image of 0 < w < 1 will
intersect at some point interior to |z| < 1. The points where this small circle in-
tersects |z|=1 together with z = 1 determine the desired sector. This completes

the proof of Lemma 3.

3. PROOF OF THE THEOREM
Next note that since u, = O(r™, where |rf(0)| < 1, there exists a number r'

such that ]r' f(O)l < 1 and such that, for sufficiently large n, un(n + 1)” 50 = O(x'™).
Thus we may assume without loss of generality that s, = 0.

We now proceed with the proof of the main theorem.

Proof of (A). Set

U, =U,(0) = 2fux  (=0,1,2, ).
k

Then by Lemma 1,

u, = ?gnkUk (n=0,1,2, ).

Thus,

U, (s) = %:zfnkuk(k+ 1% = %)fnk(k +1)°° Zj)gkj U; (=0,1,2, ).
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Then using (4) and that %s > 0 and Uj; — 0, we may reverse the order of summation,
obtaining the result

Un(s) Z>p*n_],a n=0,1,2, -) ’

J
J

where

Ap; = Uik + 1D (n,§=0,1,2, ).
k
Further, since %s > 0,

k+1)° = Fl(—g SO g5 et tge k=0, 1, 2, ).

But (4) implies that %) Ifnk gkjl converges for all n, j. Thus we may write
A -=—1—-'Swts'1e’t2f ge <tat.
nj = T'(s) 0 " nk 5kj

Also by (4),

22 Ditegge™" = Tage ' H@]" = [a@e ™)} .
Thus,

1 (st 1 [et@e )P ]
An_] = -]—:"(—S)SO t e [2“1 C‘—‘—'—Zn+1 dz dt,

where C is a circle of sufficiently small radius about the origin. So, by partial
summation,

n:BAnj = -1—.,—%5-55: 51 gt [2—115 ‘S‘c [e(f(z)e b))’ (%) dz] dt.

;

N

Hence, recalling part (a) of Lemma 2, we see that

~ _ 1 ®os-1 -t -t\qj
EoAnj'—mSO t7 e [g(e )] at.

Thus in order for the convergence of Z U, to imply the convergence of Z Uy(s), it
suffices to show that
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m
Z(An_] - An,j'l'l) < o,
n=0

supE
m

But
m 0
1 -1 -t
21 (A = Ap ji1) = ﬁg)“jo 7 e Bm(t) dt,
n=0
where

1 f(z)e t) - 1 [g(f(z)e )]
oy = g £ = L eI,

Evaluating the residue at z = 1, we find that

. -t -ty1j
O By = g™ - e g e - D lelilde s

(Recall that p, is defined to be
po = min (p;, pz, Ry, RyY) > 1.)
If t > T, then by part (d) of Lemma 2,

g(i(z)et) - 1 [gi)e D] . 1
Gl T dz—O(;(-)rh-).

|Z|=Po

If 0<t<L T and 0 < j < m, then, using Lemma 2 (b) and 2 (c), we conclude that

(f(z)e"t) - 1 [g(f(z)e-)]I j-m
i1y, BB s - o,

If 0<t<T and m+ 1< j, then, using parts (b) and (c) of Lemma 2, we conclude
that

1 (g(f(z)et) - 1) [g(f(z)eb)P m-j
BmJ(t) = E’;T-:-l' ’z|=p'1 & Zz(i 1 & an‘?'l ] dz = O(po J)'

Therefore by (5) and Lemma 3,

2

j=0

(AnJ - An,j+1)

n=0

s 1 (P, % -t “ty ). 603 ored/om) gt
S-j=o|I‘(S)|‘S‘C['t e {lgte™ - 1] - lg(e™ [ + 0(0"/pgh}
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- T o : .
+ D gyt e e - 1] - (g™ + 0oy} at

oC
0

IN

© m++1
+ 1 ST tms—le—tO(l -0 )dt

Tl pI(1 - 0)
1 T gts-1 -t po(l - pam-l)
’ IF(S)ISO 7 e o po- 1 ) at
= I]_"l(s)| SO t¥#s-le-to(1)at = 0(1).
And
[~ o] m w T
2 |2 Aa-A, )| < X 1. (Tyfs-lg-tgm-i) gt
j=m+l n=0( nj n,j+1 S l]."(s)l SO e PO
e |1“:S)| ST £%5 Lo t{|g(e™®) - 1]-|ge™®) '+ OE/p)} at
j=m+l

1 T 1
< j tf"s—le'to( )dt
= |r(s)| Yo po -1

o N m+1 m+1
po—L S ths-lo-t)oyd Lo (————9 ) dt,
|T(s)| YT 1-2 p‘r)n(l )

where A = max Ig(e't) | < 1. Combining these results, we obtain the estimate
t>T

m
E (Anj - An,j+1)

n=0

>

j=0

= 0(1) )

where the constant implicit in O(1) is independent of m. This completes the proof
of (A).

Proof of (B). Here it suffices to show that

squ]Anj| < oo,

J n

Let
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1 ¢ [g@e P
T 27 c n+1 dz

where C is a circle of radius p (p5' < p < p,). Then if t> T, let p = p, so that by
part (d) of Lemma 2,

anj (t) = 0(9]/»08) (n’ i=0,1,2 “ee) .
If 0<t< T, then by part (b) of Lemma 2 and by letting p = 1,

1

1 jon-l g
T o]t z exp [jt¢(z, t)]dz

anj (t) =

27 . _
= '2'11} ,S; eili-n)0exp[jte(el?, t)]1d6.
If j = n, then by part (c) of Lemma 2,
1 (27 o .
;) = 37 S exp[jtoet?, ©]do = o VY.
0

If j # n, then integrating twice by parts, we find that

1 27
i = g7 ), e""[‘("n)e”t‘”{“é'_*"t’z(_?) fa

ity
= 0(%% Gt+ %)  ©O<t<T.

Since

1 cO
_ s-1_-t .
Anj‘ () SO t e anJ(t) dt,

we therefore obtain the result

2 la .l < 2 t9is-1 —to[ o-itw (t+ (Y) )]
2 1Al < nmIP(s)IS ° (j - n)2
Ir(s)IS t¥eteto(e-iW) at
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This implies that

1 1 .
© 2 1] S'nzajj O( G - W2 + 1)925) ' O(m) "o

Finally, we see that for Ris> 0,

sup 2 |Anj| < oo,
j n
This completes the proof of (B).
Proof of (C). Here it suffices to show that

2220 |Ayl < .
n j
But from (6) it follows that this is true if %s > 1.
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