A RESULT IN THE GEOMETRY OF NUMBERS

L. C. Eggan and E. A. Maier

1. Let N denote the set of rational integers, and R the set of real numbers.
Consider the function m defined on the non-negative real numbers by

m(c) = max{min{|a -u| | -u|;ueN};a,B€R, |a-8|=2c}.

THEOREM 1. The function m defined above has the following values:
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The problem of evaluating the function m was suggested to us by Professor Ivan
Niven. In the ninth series of Earl Raymond Hedrick Lectures [Michigan State Uni-
versity, August 29 and 30, 1960, as yet unpublished], Professor Niven proved the fol-

lowing two lemmas:
LEMMA A. If B and o are veal numbers lying between the same pair of con-
seculive integers, then theve exists an integer u such that

|8 -ufla-uf<1/4 and |B-u|<1.

LEMMA B. If B and a are veal numbers with at least one integer between them,
then theve exists an integer v such that

Iﬁ—ulla-ulslﬁ—;a—l and |B-u|<1.

Using these two lemmas, Professor Niven constructed a very simple proof of a
classical theorem of Minkowski [see 1; p. 48, Theorem IIA]. Whereas this is the
major importance of these two lemmas, they also yield the result that
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1/4 if c<1/2,
m(c) <
c if c>1/2,
and they prompt further investigation of the function m.

In Section 2 we prove Theorem 1. In Section 3, we use the methods of Section 2 to
prove the following theorem.

THEOREM 2. If a and B ave any two veal numbevrs, then theve exists an integey
u such that |B - u|< 1 and

< 1/4 if la -8|<1/2,

|8 - u| |a - u
<la-l/2 i |a-g|>1/2.

Note that of Theorem 1, Theorem 2, and Lemmas A and B, none implies or is
implied by any other. However, the same proof which Professor Niven uses to show
that Lemmas A and B imply the Minkowski theorem may also be used to show that
Theorem 2 implies it.

2. We now turn to the establishment of Theorem 1. For ease in proof we re-
formulate the problem in the following way: For b, c € R, ¢> 0, and n € N, let
g(n, b, c) be the product of the distances from n to the ends of the interval of length
2c with center at b. Then
gln,b,c)=|n-b+c)|n-®-c)}=|@-b2-c2.

Let f(b, ¢) = min g(n, b, c). Then
neN

m(c) = max f(b, c).
beR

We first prove a preliminary lemma.

LEMMA. If k is a rational number of the form m/2, wherve m is a positive inte-
ger, and if b € R, then theve exist integers n, and n, such that

(k-1/2)2< (ng - b2 < k%< (n, - b)®< (k+ 1/2)2.
Proof. There exists an integer n, such that k+b - 1 <n, <k + b. Either
k+b-1<n<k+b-1/2 or k+b-1/2<n,<k+b.

If the former inequalities hold, take n, = n, - 2k + 1; if the latter, take n,=n,. In
either case, (k - 1/2)®> < (n, - b)? < K2

Also, there exists an integer ng such that k+ b - 1/2 <ng <k + b+ 1/2. Let
n, = ng - 2k if k+b-1/2<n3<k+b,
n, = ng if k+b<ng<k+b+1/2,

As before, in either case, k® < (n; - b)? < (k + 1/2)%.
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We remark in passing that this lemma is the best of its kind, in the sense that if
k is any other rational number, there exists a real number b for which no two such
integers n, and n, exist.

We now show that m actually has the values previously stated. The argument,
as might be presumed from the statement of the theorem, is broken into five parts.
The technique in each case is the same. For a given b in R, we obtain an upper
bound for g(n, b, c), for some n in N; this upper bound is also an upper bound for
f(b, c). We then exhibit a value of b for which f attains this bound. Hence we have
the value of m.

I. Suppose 0 < c < 1/V8. For b € R, there exists an integer n, such that
-1/2<n, <b+ + 1/2. Now 2c? - 1/4 <0< (ng - b)®< 1/4, so that

2-1/4<(ny-b)®-c2<1/4 - c2.
Hence
g(ng, b, ) = |(n, - b)® - 3| < 1/4 - c?
and
f(b, ¢) = min g(n, b, ¢) < 1/4 - c2.
neN -
Now note that g(1, 1/2, ¢) = g(0, 1/2, ¢) = 1/4 - ¢2. Also, if n # 0, 1, then
(n-1/2)2>1/4> c?, so that
gn, 1/2, ¢) = (n - 1/2)% - ¢ > 1/4 - c2.
Thus £(1/2, ¢) = 1/4 - c2. This together with the above gives us
m(c) = max f(b, ¢) = 1/4 - c2.
beR

II. Suppose that 1/V8 8 < c<1/2. As before, for b € R there exists an integer n
such that b - 1/2 <ny, < b+ 1/2. In this case, O < (ng - b)® < 1/4 < 2¢?, so that

0

-c2< (ng - b)% - e < c?.

Hence g(ny, b, ¢) = [(n, - b)? - c2| < c2, and therefore f(b, c) < c2
Now clearly g(0, 0, c) = c2. If n# 0, then n®> 1> 2c?, so that

g(n, 0, ¢) = n% - c2> c2.

Thus (0, c) = c2 and we also have m(c) = c2.

OI. Let j be any positive integer, and suppose j < 2c < j+ 1. We now consider
three cases depending on where 2c lies in this interval.

(a) Suppose first that j < 2c < Vj®+ 1. Letting k = (j - 1)/2, we see that this is
equivalent to

k+1/2)2<c2<K*+k+1/2.
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For any b in R, by the lemma there exists n, in N such that
k< (n, -b)?< (k+ 1/2)%.

(Note that if k = 0, the above inequality is satisfied if we take n, to be the integer
nearest to b.) By subtracting c? throughout, we obtain

k? - c2< (n, - b)? - c?< (k+ 1/2)% - c2.
Hence
g(ny, b, ¢) < max { |k - 2|, |(k+ 1°2)% - ¢?|}.
But c® > (k + 1/2)?, so that
|k +1/2)2 - c?| =c®- (k+1/22<kP+k+1/2-k®-k-1/4=1/4
<K+ k+1/4 - k® < c? - K2,

Thus g(n,, b, c) < c? - k%, hence f(b, c) < c? - k2,

In order to obtain a value of b for which f(b, ¢) = ¢2 - k2, we consider the two
situations where k is an integer and where k is an integer plus 1/2. If k € N, then

gltk; 0, c) = |k? - c?| =c2 - k2.

If n* <Kk?, then c® - n® > c? - k?, hence g(n, 0, c¢) > c® - k% If n* > k?, then
n? > (k + 1)? and

m-c)?>k+12-Kk+k+1/2)=k*+k+ 1/2 - k2> c® - k2.

Hence, if k € N, then £(0, ¢) = ¢2 - k2.
If kgN, then k+ 1/2 € N and

glk+1/2,1/2, ¢) = g(-k + 1/2, 1/2, ¢) = |k* - ¢2| = ¢2 - k2.
Ifn#k+1/2, -k+1/2, then (n - 1/2)2# k% If (n - 1/2)? < k2, then
c2-(n-1/2)2> c? - k2,
hence g(n, 1/2, ¢c) > c? - k% If (n - 1/2)*> (k + 1)?, then
n-1/22-c2> (k+1)?-(k®+k+ 1/2) =k*+ k+ 1/2 - k* > c? - k?,
so that £(1/2, ¢) = ¢® - k.. Thus, regardless of whether k ¢ N or k+ 1/2 € N, there

exists b € R such that (b, ¢) = ¢® - k.. Thus m(c) = ¢? - k2= c2 - (j - 1)?/4, as was
to be proved.

(b) Suppose next that vjZ+ 1 < 2¢c < ViZ+ j+ 1/2. If we let k= (j + 1)/2, then
k%2 -k+ 1/2<c*<k*-k/2+1/8.

If b € R, then by the lemma there exists n, € N such that
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(k- 1/2)% - ¢2< (ny - b)? - 2 < K2 - 2,
so that g(n,, b, ¢) < max { |k - c?|, |(x - 1/2)2 - cz|}. Since
0<1/4=Kk>-k+ 1/2-(k-1/22<c?-(k-1/22<Kk®-k/2+1/8 - (k - 1/2)?
k2 - (k% - k/2 + 1/8) <K - c2,

it follows that g(n,, b, ¢) < k? - c2. Hence f(b, c) < k? - c2

By the same method as that used in (a), we can show that if k € N, then

£(0, ¢) = min g(n, 0, c) = g(+k, 0, c) = k? - ¢,
neN

while if k+ 1/2 € N, then £(1/2, ¢) = gk + 1/2, 1/2, ¢) = k? - ¢2. Thus the bound for
f(b, ¢) is attained and

m(c) = k% - c2= (j+ 1)%/4 - c2.

(c) Finally, suppose vjZ+ j+ 1/2<2c <j+ 1. Again letting k= (j + 1)/2, we
find

K2 - k/2 + 1/8 < 2 < k2.

If b € R, then by the lemma there exists, as in part (b), an integer n, such that
g(ng, b, ¢) < max { |k - ¢?|, |(k - 1/2)® - c?| }. But now

|k? - c?| =k®- c2<Kk?- (k?-k/2% 1/8) =k%-k/2+ 1/8 - (k - 1/2)* < c? - (k - 1/2)?,

so that g(ng, b, ¢) < c? - (k - 1/2)% Thus f(b, c) < c? - (k - 1/2)2

Again as in part (a), we can show that if k € N, then
£f(1/2, c) =gk, 1/2, ¢c) = c% - (k - 1/2)2,
while if k+ 1/2 € N, then
£f(0, c) =gk - 1/2, 0, c) = c% - (k - 1/2)2.
Hence in every case
m(c) = c2 - (k- 1/2)% = c2 - j3/4.
This completes the proof of Theorem 1.

3. Using the notation of Section 2, we prove Theorem 2 by establishing the follow-
ing equivalent statement.

THEOREM 2'. If b, c € R, ¢ > 0, then theve exist integers n, and n, such that
(1) In, - b+e)|<1, |nm-@®@-0c)|<1,

and
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<1/4 i e<1/2,

<c if c>1/2.

(2) f07' i= 1: 2’ g(ni’ b, C)

Proof. If ¢ =0, we may clearly take n, = n, to be the integer nearest to b. Sup-
pose then that 0 < c < 1/2. For b € R, there exists an integer n, such that
-1/2<n, -b<1/2. Then

-1<-1/2-¢c<n-b-c<1/2-c<1/2

A

and
-1/2<-1/2+c<ny-b+c<1/2+c<1.

Hence In0 - (b+ c)[< 1 and Ino - - c)] < 1. Also, (n, - b)? < 1/4, whence
“1/4<-c2<(ng-b)?-c2< 1/4 - 2 < 1/4

and g(n,, b, ¢) = |(n0 - b)? - c2] < 1/4.

Now suppose ¢ > 1/2. If b+ c € N, take n, = b + c. Then |n1- (b + c)l =0 and
g(ng, b, c)=0. If b+ c-£ N, there exists n, € N suchthat b+ c-1<n,<b+ c and
hence |no- (b + c)| < 1 and |(n0+ 1) - (b + c)| < 1. Nowlet e =b+ c - n,. Then

g(ng, b, c) = |[(ng - b)% - 2| = |(c - €)% - 2| = 2ce -e2> ¢ - 2> 0,

since 0 <g < 1. If 2ce - €2 > c, then c(2e - 1) = 2ce - ¢ >€e%#> 0, sothat 26 - 1> 0
since ¢ > 0. Hence

glng+ 1, b, ¢) = I(no+1-b)2-c2[= |(0—8+1)2-c2|
=2c-(2ce -€?) -2 -1)<2c-c-0=c.

Thus take n, to be n, or ny + 1, whichever is appropriate.

To find n,: If b - ¢ € N, take n, = b - ¢. Otherwise, there exists n, € N such
that b-c<n,<b-c+ 1. Hence |n,-(b-c)| <1and |[ng-1)-(b-c)| <1,
Now let € = n, - (b - ¢). Then, as above, g(ny, b, c) = 2ce - €2 Again, if
2ce - g2 > c, then

gng-1,b,¢c)=|(ng-1-b2-c? =|€-c-12-c?=](c-e+1)?-c? <ec,

as above. Therefore n, is the appropriate choice of n, or n; - 1.

We remark that, by the proof, equality holds in this theorem only when ¢ = 0 and
b is equal to an integer plus one half.
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