ON THE MAXIMAL DOMAIN OF A “MONOTONE” FUNCTION

George J. Minty
1. INTRODUCTION
Let X be a Hilbert-space. In X X X, we define the M-relation by

(x5, y1) M(x,, y,)  provided % <X1- X, Y1 - Y2) > 0.

(The symbol % may be dropped if the scalars are real.) This relation has been
studied in previous papers (for example [2], [3]). In harmony with these papers, we
shall say that a set EC X X X is folally-M-velated provided (x,, y,), (X,, ¥,) € E
implies (x,, y,) M(x,, y,). We shall say that a map F from a subset of ¥ into X is
monotone provided its graph in X X X is totally-M-related.

A real linear subspace is a subset X, C ¥ such that B,, 8, real and x,, x, € %,
imply B,Xx,+ B2X, € X,. A 7veal affine variety is a translate of a real linear sub-
space. We call a set Q C X almosit-convex provided it contains the interior of its
convex hull K(Q), where the “interior” is taken relative to the smallest real affine

variety containing Q (or equivalently, K(Q)).

2. THE THEOREM

THEOREM. Lel X beafinite-dimensional Hilbevi-space, with veal or
complex scalars, and let E ¢ X X X be a maximal totally-M-related set. Let P be
the projection P(x, y) = x. Then P(E) is an almosit-convex sel,

Proof. Our object is to show that int K[P(E)] ¢ P(E). For the moment, we re-
strict attention to the case where the scalars of X are real. Let x; € int K[P(E)].
Without loss of generality, we shall assume that x, is the zero-vector 9; for if this
does not hold, the translation x — x - x, (leaving the y’s fixed) will carry E into a
new maximal totally-M-related set E', and x, into 8, and so forth. Thus the “affine
variety” of the theorem becomes “linear subspace.”

Furthermore, we lose no generality by assuming that the “interior” is taken
relative to the space X. Suppose that X,, the subspace spanned by K[P(E)], is of
dimension less than that of X, and let .%:-("- be the orthogonal complement of X,.
Then each vector y can be resolved as y = y° + y!, where y® € X, and y! € 3,"‘—‘1)—, and
it is easily seen that (x, y) € E if and only if (x, y°) € E, and that the image E, of E
under the map (x, y)— (x, y° is a maximal totally-M-related set in X¥,%X X, such
that P(E,) = P(E).

With these assumptions, we proceed. Let S be a sphere with center 8 such that
S c K[P(E)]. It is easy to find a finite set F of vectors of S which generate X (con-
sidered as a convex cone). Each vector of F, in turn, is a finite linear combination,
with positive coefficients, of vectors of P(E), so that we can find a finite set
X1, ***, X Of vectors of P(E) which generate X.

Consider now the polyhedral convex set
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C=_f_11 {y: <xi- 6, yi- > >0} .

(It will be seen later that C is nonvacuous, but at the moment we wish to show only
that C is compact, so that we can ignore the vacuous case.) The set

Ct = ﬂ1 {y: &, v <0}

m
consists only of the vector 6; for suppose that y # 6. Then y = 2 Cj Xj, where
i=1

cj > 0, and thus

m m
0< |yl?= L Ex, vy = 2 ln v,
i= i=

so that at least one of the <xi, y»> is positive. Hence, by the Resolution Theorem
for Polyhedral Convex Sets (see [1, Theorem 1]), C is the sum of a bounded convex
polyhedral set and the vector 6; that is, C is bounded. Being closed, it is compact.

Now, it is clear that if a family of closed sets has the properties
(i) the intersection of some finite subfamily is compact, and
(ii) the intersection of any finite subfamily is nonempty,

then the whole family has nonempty intersection. We have just shown that the family

ly: (xa - 6,50 -¥> >0} ((xa, Yo) €E)

has property (i); the fact that it has property (ii) is precisely the main theorem of
[2]. Let y denote a point of the common intersection. We now have (xy, yo) M (6, ¥)
for all (xy, yo) € E, and hence (0, y) € E and 8 € P(E).

The case where the scalars of X are complex is now taken care of by the fact
that, with [x, y] = ® <x, y>, X becomes a Hilbert-space with real scalars and twice
the former dimension.

3. REMARKS

By the symmetry of the definition of the M-relation, it is clear that if we define
P,(x, y) = y, then P,(E) is also an almost-convex set.

An interesting related fact, trivial to prove, is that if P is regarded as a map
from E to %, the inverse-image of a point is a convex setin X X X.

The theorem could be rewritten as a theorem on the domain of a monotone func-
tion with maximal domain. For it is clear that if the domain is already maximal,
the further extension of the graph to be a maximal totally-M-related set does not add
any further points to the domain. If the theorem is rephrased in this way, it loses
the symmetry mentioned above, unless one knows that the graph is already maximal
—see [3] for sufficient conditions.
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In the view of some readers, the theorem may take a more natural form if the
M-relation is defined on X X 9);, where X is a finite-dimensional linear space and
9 is the dual-space. (A Hilbert-space structure can always be imposed on X, and
then 9 can be identified with X.)

REFERENCES

1. A. J. Goldman, Resolution and separalion theovems forv polyhedrval convex sets.
Linear inequalities and related systems, Annals of Mathematics Studies No. 38
(1956), 41-51.

2. G. J. Minty, On the simultaneous solution of a certain system of linear inequali-
ties, Proc. Amer. Math. Soc. (to appear).

3. , Monotone (nonlineayr) operators in Hilbert space (submitted to Duke Math.
J.).

The University of Michigan






