A CHARACTERIZATION OF THE ANALYTIC OPERATOR
AMONG THE LOEWNER-BENSON OPERATORS

R. E. Lewkowicz

1. INTRODUCTION
C. Loewner [1] considered integral operators of the type

27 2m
(1) y(t) = - o K(s)x(t - s)ds = - o K(t - s)x(s)ds,

where K(t) is L-integrable on the interval [0, 27] and x(t) ranges over the contin-
uous 2rm-periodic functions. He gave necessary and sufficient conditions that such
operators generate only curves {x(t), y(t)} of non-negative circulation, that is,
curves whose index relative to any point not on them is non-negative. His conditions
are

(a) K(t) is (possibly after a change in its values on a set of measure zero) ana-
lytic in the open interval (0, 27) and

(b) K'(t) can be represented, in the interval (0, 27), by a Laplace-Stieltjes
integral

o0

K'©= | e au(),

-0

where u(t) is a non-decreasing function.

D. C. Benson [2, 3] extended Loewner’s result to include the case where K(t) is
not necessarily L-integrable on the closed interval [0, 27] but is such that the

2m
Cauchy Principal Value P o K(t) dt exists. For a certain class of continuous

periodic functions, he showed that, in order that the operator (1) (with the integral
understood as a Cauchy Principal Value) generate only curves of non-negative circu-
lation, it is again necessary and sufficient that conditions (a) and (b) hold.

Among the kernels which fall into Benson’s class is the kernel K(t) = - cot t/2.
This kernel corresponds to what we have called the analytic operator—the operator
that relates, on the boundary of the unit disk, the real and imaginary parts of a func-
tion continuous on the closed disk and analytic on the interior. The analytic operator

27 s
y(t) = PS cot§ x(t - s)ds
0

has the property that if m(t) is a continuous mapping of the line onto itself induced
by a one-to-one conformal map of the closed disk onto itself, then
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27 8 27 s
PS coty x[m(t) - s]ds - PSO cot x[m(t - s)]ds = const.
0
This is a consequence of the fact that the pairs {x(m(t)), y(m(t))} and

27 s
{x(m(t)), P‘S;) cots x[mf(t - s)]ds}

are the real and imaginary parts of analytic functions whose real parts coincide and
whose imaginary parts, as is well known, can therefore differ by at most a constant.

C. J. Titus (private communication) posed the problem of determining whether
the property of the analytic operator’s “commuting up to a constant” with all such
m(t) characterizes it among the Loewner-Benson operators. It does, and in fact a
much stronger characterization is possible.

2. THE CHARACTERIZATION
27
Let y(t) = -P 0 K(s) x(t - s)ds be a Loewner-Benson operator, that is, let K(t)
satisfy the following three conditions.
(i) There exist an L-integrable function ¢(t) on the closed interval [0, 27], and
o(t)
an o > 0 such that K(t) = ———~——.
( te (27 - )
27
(ii) PS K(t) dt exists.
0

(iii) The operator generates only curves of non-negative circulation, when opera-
ting on the class X[0, 27] of 27-periodic functions that satisfy a Holder condition of
order a on [0, 27].

Let H denote the set of all real-valued continuous functions h(t) defined for all t
and satisfying the following four conditions.

(H1) h(t + 27) = h(t) + 27,

(H2) h'(tt) > 0,

(H3) h"(t) exists,

(H4) P :ﬂK(s) x[h{t) - s]ds - P :ﬂK(s) x[h(t - s)]ds = const. (in t).

(In [2] it is shown that for a K(t) of the form assumed here, the integral

27
() = PSO K(s) x(t - s)ds
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exists for each t whenever x(t) is in X[0, 27]. That X[0, 27] contains x[h(t)] and
x[h~*(t)] whenever it contains x(t) is a consequence of (H2) and (H3).) It can be
readily verified that H is a group under function composition, and that H always
contains the translations hy(t) =t + b.

THEOREM. If K(t) is a Loewney-Benson kernel and therve exists an h(t) in H
which is not a translation, then K(t) = A cot t/2 + B (a.e.), for some A < 0 and
some B.

Suppose that h(t) is in H and that h(t) is not a translation. Without loss of
generality, we may suppose that h(0) = 0 and h'(0) # 1; for under the assumption that
h(t) is not a translation, there must exist a t, such that h'(t,) # 1. If we let
h(t) = h(t + t,) - h(t,), we find, in the light of the remark made above concerning the
translations, that h(t) is in H and has the additional properties H(0) = 0 and
h'(0) # 1. It can easily be verified that the set of all h(t) in H having the additional
property h(0) = 0 is a subgroup of H. We shall denote it by H,,.

Conditions (a) and (b) allow us to assume that, on the open interval (0, 27), K(t)
is continuous and K(t) is continuous and positive. We may also take K(t) to be ex-
tended by the formula K(t) = K(t + 27). Finally, for convenience, we absorb the minus
sign prefacing the operator into the kernel and regard K'(t) as negative. These pre-
liminaries over, we prove the following:

LEMMA. If h(t) is in H,, then theve exists a continuous, 2m-periodic function
G(s) such that h'(s)K[h(t) - h(s)] - K(t - s) = G(s) for all s and t (-0 < 8 <+,
-0 <t <+, s+t (mod 2m)).

Proof. Let F(t, s) = h"*"(s)K[h~%(t) - h~(s)] - K(t - s) for 0 < t < 27 and
0<s<2m 0< |s-t|<2r. For fixed t (0 <t< 2m), F(t, s) is continuous in s for
all s (0 < s < 27w except possibly for s=1t or s - t = 27, because the only possible
discontinuities of K(t) occur at points of the form 2n7. We show first that for any
two points t; and t, in the open interval (0, 27), F(t,, s) = F(t,, s) for all s such that
0<s<27 and t, # s # t,. If we suppose the contrary: that there exist an s
(0 < s < 2m) and points t, and t, in the interval satisfying t, # s # t,, for which
F(t,, s) - F(t;, s) > 0, we are assured that there exists an interval [ a, b], containing
s and contained in the open interval (0, 27), such that F(t,, s) - F(t,, s) > 0 for all s
in [a, b]. The interval may be taken to exclude t, and t,.

Let X[a, b] be the subclass of continuous, 27-periodic functions that satisfy a
Ho6lder condition of order a on the interval [a, b] and which vanish on the comple-
ment of (a, b) in [0, 27]. It is readily proved that these functions satisfy a Holder
condition of the same order on [0, 27] and thus form a sub-class of X[0, 27]. Now,
for any x(t) in X[a, b] and for t in the formulas below equal to t, or t,, we may
write

b b b
5 F(t, s)x(s) ds = S h~1t(s) K[h~1(t) - h-1(s)]x(s) ds - S K(t - s)x(s) ds.

A change of variable s = h(r) in the first of the integrals on the right-hand side
above produces

b 1
S F(t, s)x(s)ds = 5 ( )K[h'l(t) - s]x[h(s)]ds - SbK(t - s)x(s)ds.
a h-1(a) a

Since x[h(s)] vanishes outside of (h~(a), h~!(b)), we have
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27 nh~1(b)
PS K[h™ 1) - s]x[h(s)]ds = S K[h (1) - s]x[h(s)]ds.
0 h-1(a)
Similarly,
27
P K(t - s)x(s)ds = S K(t - s)x(s)ds.
0
Hence,
b 27
S F(t, s)x(s)ds = PS K[h~1(t) - s]x[h(s)]ds - P K(t - s)x(s)ds.
a 0 0

If we replace the point t in the right-hand side of the above equation by h(t), we do
not change the value of the difference of the integrals, and we may also conclude that

b b
S F(ty, s)x(s)ds =5 F(t,, s)x(s)ds for all x(t) in X[a, b] .

But, if we choose an x(t) in X[a, b] which is positive on (a, b) and which vanishes
on the complement of (&, b) in [0, 27], we find that

b
S [F(ty, s) - F(tz, s)]x(s)ds >0,

which contradicts the equation above. This establishes that F(t,, s) = F(t,, s) for all
s (0 < s< 27 and all t, and t, in the open interval (0, 27), provided that t, # s # t,.
Now, for t such that 0 <t < 27, since F(t, s) is continuous in s at s = 0 and

s = 27, we have

F(ty, 0) = lim F(ty, s) = lim F(t;, s) = F(t,, 0).

s—0 s—0

Similarly, F(t,, 2m) = F(t,, 27). This, together with the equality F(0, s) = F(27, s)
for 0 < s < 27, shows that if t; and t, are any two points in the closed interval

[0, 27], then F(t,, s) = F(t,, s) for all s (0 < s < 2m) provided that 0 < |s - t,] < 27
and 0 < |s - t,| < 2m.

We now show that there exists a function G(s), defined and continuous for
0 < s < 2w, such that G(0) = G(27) and such that, for each t in the closed interval
[0, 27], G(s) = F(t, s) provided that 0 < |s - t| < 27. We define

G(s) = lim F(s, s').

s'—s

That this limit exists can be seen from the following: If we choose 0 < |s" - s| < 27
then, because F(s", s') is continuous in s' at s' = s, we have

b

lim F(s, s') = lim F(s", s') = F(s", s).

s'—s sl—s



A CHARACTERIZATION OF THE ANALYTIC OPERATOR 121

Suppose now that t and s are two points in the closed interval [0, 27] with
0 < |s - t| < 2m; then F(t, s') = F(s, s') for s+ s' # t, and we see that

F(t, s) = lim F(t, s') = lim ¥F(s, s') = G(s).

s'—>s s'—s

Further, since limg—t G(s) = lims_,t F(t, s) = G(t), it is proved that G(t) is contin-
uous. That G(0) = G(27) follows from the property F(t, s) = G(s), condition (H1), and
the periodicity of K(t). Because H, is a group, we may drop the sign of the inverse
in F(t, s), and although we realize that G(s) is determined by the group element for
which the equation F(t, s) = G(s) holds, we do not emphasize this and write simply

(2) h'(s) K[h(t) - h(s)] - K(t - s) = G(s).

This completes the proof of the lemma. From now on we deal only with the func-
tional equation (2).

3. PROOF OF THE THEOREM

In what follows, we suppose that G(0) = 0 and h'(0) < 1. If this is not the case,
we may reduce the general case to this by first setting

G(0)

“ro -1 K(t) = K(t) - P.

P

Thenﬁﬁ'(t) < 0, and the functional equation (2) is satisfied by ﬁ(t), the original h(t),
and G(s) = G(s) - P[h'(s) - 1]. It is clear that G(s) is continuous for all s and that
G(0) = G(2m) = 0. We assume, then, that G(0) = 0 in (2). Now, if the original h(t) in
(2) is such that h'(0) > 1, we proceed as follows: we replace s in (2) by h~%(s), and
t by h=(t); and multiplying throughout by h~!'(s), we obtain

h'[h=%(s)] h™*'(s) K(t - s) - K[h~%(t) - h™*(s)]h~*'(s) = G[h~(s)]h™1'(s).
Since h'[h~(s)]h~!'(s) = 1, the above equation may be rewritten as
h-1'(s) K[h~1(t) - h~1(s)] - K(t - s) = - G[h~1(s)]h™2!(s) .

This is a functional equation of the same form as (2) and, since h-*(0) = 0, we see
that h'(0) h~*'(0) = 1 and consequently h=*'(0) < 1. We also note that the right-hand
side of the newest functional equation is continuous for all s and vanishes for s=0
and s = 27.

Next, we show that limy_ 5 t K(t) exists and is positive, and that the functional
equation

(3) h'(t) K[h(t)] - K(t) = G(t) + Mh"(t)/h'(t)
(where M = lim¢_,ot K(t)) holds for 0 < t < 27. For each fixed s (0 < s < 27), the
left-hand side of (2) is differentiable (as a function of t) for each t such that

0<t< 27 and 0< |s - t| < 27 and

(4) h'(t) h'(s) K'[h(t) - h(s)] - K"t - s) = 0.
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For each fixed t (0 < t < 27), the left-hand side of (2) is differentiable (as a function
of s) for each s such that 0 < s < 27 and 0< |s - t| < 27, and

(5) h"(s)K[h(t) - h(s)] - [h*'(s)PK'[h(t) - h(s)] + K'(t - s) = G'(s).

Solving (2) for K[h(t) - h(s)] and (4) for K'[h(t) - h(s)], and substituting in (5), we
get

h"(s)

h'(s)
(6) T (s)

[G(S) + K(t S)] - h'(t)

K'(t - s) + K}t - 8) = G'(s).

After dividing (6) throughout by h'(s), we may write the result as

)] - flﬁ:!T(ss)l]'—" [G(s) + K(t - s)] + (s ) [G'(s) - KMt - s)] + h'(t) K'(t-s)=0

from which we conclude that

%[H,(—IE‘J[G(S) + K(t - s)]-ETl(-aK(t- S)] =0

for 0<t<2m 0<s<2m 0< |s-t]<2m Hence, for each fixed t (0 <t < 27), the
function

1 1
(8) #(s, t) = '(s) [G(s) + K(t - s)] - YG) K(t - s)
is constant in s for 0 < s <t and for t < s < 27. Since
_ . 1
(s, t) =¢(0, t) forall s (0<s< 27, s=t).
Returning to (2) and setting s = 0, we obtain

(10) h'(0)K[h(t)] - K(t) = 0

Solving (10) for K(t) and substituting the result for the first member of the right-
hand side of (9), we get

(11) ¢(0, t) = K[h(®)] - K(t).

h (t)
Rewriting (8), where it is now known that ¢(s, t) = (0, t), as

(12) h (t) G(s) + [R'(t) - h'(s)] K(t - s) = h' (D) ' (s) $(0, 1),

and substituting (11) in (12), we obtain

(13) h'(t) G(s) + [h'(t) - h'(s)]K(t - s) = h'(s){h'(t) K[h(t)] - K(t)}.

Now let A (0 < A < 27) be such that h"(d) # 0. Should no such A exist, then h'(t)
would be constant on the interval 0 < t < 27 and therefore constant on the closed
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interval 0 < t < 27. Since h(0) = 0 and h(27) = 2w, it follows that h(t) = t on the
closed interval. This has been disallowed. From (13), we have

_hE){nMK[h®)] - KQ)} - h'(d) G(s)
(A-8)K@A-8)= ) - BV =9 ,

(where the denominator of the right-hand side is non-zero for s sufficiently close to
2). Letting s approach )\, we conclude that, since the right-hand side has a limit,
the same is true of the left-hand side. But this is equivalent to the assertion that
lim;—q t K(t) exists. We may further conclude that limgs_,¢ (t - s) K(t - s) exists for
all t (0 <t< 27). We denote this limit by M, and remark that since it is a two-
sided limit, and since K(t) is periodic,

lim tK(t) = lim (t-20)K@t- 27 = lim (t- 20)K(t) =M.
t+—0+ t—27-0 t—27-0

Writing (13) as

W] gkt - s) = hr(s) {0 (O K[®)] - K©)}

: [b'(t) -
h'(t) G(s) + ra—-

and letting s approach t, we obtain

h'(t) G(t) + h*(t) M = h'(t) { b’ (1) K[h(1)] - KD},
which we rewrite as
(14) h!(t) K[h(t)] - K(t) = G(t) + Mh"(t)/h'(t).

Let Ky(t) = [K(t) - K(-t)]/2. Interchanging s and t in (2) and setting s = 0, we
obtain h'(t) K[-h(t)] - K(-t) = G(t). Subtracting this equation from (14) and multiply-
ing by 1/2, we get

——

_1\_4. h" (t)
2 h'(t)’

(15a) h'(t) K, [h(t)] - K (b) =

The functions h'(0) K[-h(t)] and K(-t) can differ by at most a constant on the in-
terval 0 <t < 27, because their derivatives are equal — as can be verified by setting
s = 0 in (4) after interchanging s and t. Thus, h'(0)K[-h(t)] - K(-t) = -~ 2C. Sub-
tracting this from (10) and multiplying by ‘1/2, we get

(15b) h'(0) K, [h(t)] - Ko(t) = C.

We show now that M > 0. Suppose M = 0. The mean-value theorem applied to
h(t) on the interval 0 < t < 27 assures us that, since h(0) = 0 and h(27) = 27, while
h'(0) # 1, we can find a A (0 < A < 2m) such that h'(A) = 1. From (15a) we conclude
that K,[h(M)] = K,(0). But Ki(t) = [K'(t) + K'(-)]/2< 0 for 0 <t < 27. Hence K,t)
is strictly monotonic on the interval, and this implies that h()) = A. Setting t = A
and s = 0 in (4), we conclude that h*(A)h*(0) = 1. Since h'(\) = 1, it follows that
h'(0) = 1, which is a contradiction. Since M # 0, neither of K(0+) and
K(27 - 0) = K(0-) is finite. Since K'(t) < 0, we conclude that

K(0+) =+, K(@2r-0)=-o, M>0.
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We solve (10) for h(t), obtaining

(16)

h(t)=K"1( 1 K(t))

m (OStSZTI),

where K-! is the inverse of “K restricted to [0, 27].” Consider t, = K~'(0). We
see that

h(t) = K~? (Fl(—(-)—) K(to)) = t,.

If t, is any fixed point for h(t) in the open interval 0 < t < 27, setting t =t; in (10),
we conclude that K(t,) = 0 and hence t, = t;,. We have established

Property 1. h(t) has one and only one fixed point in the open interval 0 < t < 27.
If t, is this fixed point, then K(t,) = 0.

We proceed to establish a few other properties of h(t).
Property 2. h'(ty) h*(0) = 1.

This follows immediately upon setting t = t, and s = 0 in (4).

Property 3. If 0 <t <ty then 0 < h(t) <t <ty Ift,<t< 2m, then
t, < t < h(t) < 2.

Suppose that 0 < t < t,. In this case, K(t) > 0 and

1
77(0) K(t) > K(t) > 0.

Since K™! is a strictly decreasing function, we find that

h(t) = K~* (H"%T)’i K(t)) <KRM] =t <K0) = t,.

If we suppose that t, < t < 2w, then K(t) < 0 and

1
w0 K(t) < K(t) < 0.

Hence

h(t) = K~ (o5 KO ) > KK = > K-0) = t.

We set Y(t) = 2

MKo(t), for convenience, and observe that Y(t) satisfies the system
h" (t)
1] —_— ——
(16b)

h'(0) Y[h(t)] - Y(t) = —2-1\%-

Integrating (16a) between the limits t, and 0 < t < 27, we have
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h(t) t t
(17 St Y(s)ds - St Y(s)ds = log]?,—((t%.
(4] 0

t
Let F(t) = eQ(t), where Q(t) =S Y(s)ds. From this and (17), we have
tO

F[h(t)]_ h'(t)
F{) ~h'(ty)’

With the aid of Property 2, we may write

(18) F[h(t)] = h'(0) h'(t) F(t).
Differentiating (16b), we have

(19) h'(0) h'(t) Y'(h(t)) = Y'(t).
Combining (18) and (19), we obtain

(20) : F[h®]Y'[h®)] = F® Y'(t),

which holds for all t (0 <t < 27).

We define a sequence of functions hy(t) (0<t< 27, n=..,-1,0, 1, --).

Let hy(t) = t, and for k > 0, let
hi(t) = hihe_1(0]  and  h_y(t) = h " [h 1 (0)].
We shall show that for each fixed t (0 < t < 27),

0 HO0<t<t,,

lim hpt) = {t, if t=t,,
n—+4o0
21 if t,<t< 2m,
and lim h(t) = t, if 0<t< 27,
n—-.oo0

From Property 3, it is readily seen that for 0 < t < t, and k > 0, we have

(21) 0 <hy(t) <hy ;) < -+ <hy(t) <t<h_j(t) < -+ <h_p g (®) <h_ (B <t,

and for t, <t < 2w, we have

(22) t, <h_ () <h 3 (® <o <h_j () <t < hy(t) < - < hy_1(®) < hy(t) < 27.

125

It is clear that h,(0) = 0, hu(t,) = t,, and hy(27) = 27 for all n (- < n < +«). From

(21), it is evident that for 0 < t < t,,

lim hy() >0 and  lim hu(t) <t,.

n —~4-00 n—-o0
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Similarly, from (22) it is evident that for t, < t < 2w,

lim hu(t) < 27 and lim h,(t) >t,.

n—s 400 N—?=00

In all of these relations, equality holds; for, if we suppose that t; = lim,, h,(t), then,
since h(t) is continuous, we have lim, h[h,(t)] = h(t;). But

lim h[h,(t)] = lim h,(t) = t,.

However, the only fixed points of h(t) in the interval 0 < t < 27 are 0, t,, and 27.

Returning to (20), one readily verifies that for - < n < +« and each fixed t
(0 < t < 27), we have

Flha@®)]Y'[b, ()] = F®) Y'(t).

Since lim,—,_. h(t) =t for 0 <t < 27 and since F(t) and Y'(t) are continuous at
t = t,, we see, on letting n — -, that

FOY'(t) = lim F[h,®]Y'[h,(0)] = F(t) Y'(t) .

n—s-co
Since F(t,) = 1, we have, for all t (0 < t < 27),

(23) F(H)Y'(t) = Y' () -

From (23) we easily deduce the differential equation Y"(t) = -Y'(t) Y(t), a first inte-

gral of which, when we use the boundary condition Y(7) = 0 (Y(t) is odd and 27-
periodic), is

Yi(t) = - -[l(zt—)]—z + YY),

2
Since Y'(7) < 0, we set - 2 .y (m) and write

2
1
- — Y'(t)
[ _lal
1+ (Y'(t))2 T2
El
Integrating once more, we obtain
(24) P cot™! —I¥—(t|—) = I_;—_I t + const.,
a

where P cot~! u is that branch of the inverse cotangent for which 0 < P cot™*u < 7.
Now, because

lim Y(t) = +o and lim P cot-! Y

=0,
t—0+ t—0+ |a‘
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the constant in (24) is 0. Hence
Y() = |a| cot-l-gl— t.

Y(7) = 0 implies that a is an odd integer, and since Y(t) is continuous in 0 < t < 2,
it follows that |a| = 1. We have thus established that

M t
(25) Ko(t) = —2— cot —2' .
From (25) and (15b) we now have
h(t) t_ 2
h'(0) cot =~ CtE_MC'

We evaluate C by setting t = t,, obtaining

(26) h'(0) cot—= h(t) coticz- = [h'(0) - 1] cot 329 .
We now show that

h (t
27 h,,'(0) cot n2( - cot-;— = [h,*(0) - 1]cot %9

holds for each n> 1 and for each t (0 <t < 27). If n =1, then (26) assures us that
(27) holds. Suppose (27) to hold for n > 1. Replacing t by h(t) in (27), multiplying
by h'(0), and using the relation h,'(0) = [h'(0)]™ (which holds for all m > 1), we
obtain

= [h,41'(0) - h'(0)] cot—tzﬂ

hpp1(t) h(t)

h,41'(0) cot 53— - h'(0) co

Adding this to (26), we see that (27) holds for n + 1.

Now, since limp—ije hn(t) = 0 for 0 < t<t, and limy 4o h,(t) = 27 for
to < t < 27, we may (for n sufficiently large and t + t,) rewrite (27) as

cot% + [h,'(0) - 1] cot L

cot ,Izl

If 0<t<t,, then for n sufficiently large, we have

t
h_'(0) cot—2-+ [h,'(0) - 1] cot:cg

_ 2
hy,'(0) h(t) cot 1—1‘5—“1

(29)

Letting n — + in (29), we find that
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hn'(o) t t
lim = (cot—-cot—“)/z.
0 h,® 2 2

If t, <t < 2w, then for sufficiently large n, we write

t t
hy,'(0) cot 5 + [hn'(0) - 1] cot "%

—on
Bn(t) - 2 [hy(t) - 27] cot h;(t)

(30)

Letting n — +«, we find that

. h,'(0) ( t t, )
lim h® - 27 " cot 5 - cot - /2.
n—s4co

Now, from (10) and the definition of h,(t) (n > 1), a simple induction establishes
that

(31) h,'"(0)K[h (t)] = K(t)
holds for 0 < t < 27. Writing (31) as

h,'(0)
o h, (1) K[h,(D)] = K(t)

or as

h,,'(0)
T [ha(t) - 27] K[hy(t)] = K@),

depending on whether 0 <t <t, or t, <t < 2w, and letting n — +«, we conclude, in
the light of our remarks (in the paragraph which follows (13)) concerning the limits

lim tK(t) and lim (t - 27)K(t),
t—0+ t—27-0

that for 0 < t < 27, we have

K(t) =% (cot%— cot%’—) .
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