ON ISOMORPHISMS OF ORDERS

D. G. Higman

1. INTRODUCTION

Let there be given a commutative ring $\mathfrak o$ with identity element, and an $\mathfrak o$ -algebra $\mathfrak O$. As in [2], we denote by $I(\mathfrak O)$ the ideal consisting of the elements of $\mathfrak o$ which annihilate the cohomology groups $H^1(\mathfrak O,T)$ for all two-sided $\mathfrak O$ -modules T (cohomology being taken in the sense of $\mathfrak o$ -algebras [1, Chapter IX]). There is a reduction theorem [1] stating that for n>1, $H^n(\mathfrak O,T)=H^{n-1}(\mathfrak O,T')$ for a suitable two-sided $\mathfrak O$ -module T'. Hence $H^n(\mathfrak O,T)$ is annihilated by $I(\mathfrak O)$ for all n>0.

In case $\mathfrak o$ is an integral domain with quotient field k, an $\mathfrak o$ -algebra $\mathfrak O$ is called an $\mathfrak o$ -order if it is finitely generated and torsion-free as an $\mathfrak o$ -module. We shall call an $\mathfrak o$ -order $\mathfrak O$ separable if its k-hull $\mathfrak O \bigotimes_{\mathfrak o}$ k is a separable k-algebra; a necessary and sufficient condition for this is that $I(\mathfrak O)$ be different from $I(\mathfrak O)$ when $I(\mathfrak O)$ is a group ring of a finite group of order $I(\mathfrak O)$ = $I(\mathfrak O)$

If \mathfrak{o} is the valuation ring and \mathfrak{p} the prime ideal of a field k with a discrete valuation, every non-zero ideal is a power of \mathfrak{p} , and therefore, for a separable \mathfrak{o} -order \mathfrak{D} , $I(\mathfrak{D}) = \mathfrak{p}^s$ with s > 0. We call s the *depth* of \mathfrak{D} .

Two \mathfrak{o} -orders are called *isomorphic* if there is an \mathfrak{o} -algebra isomorphism of the one onto the other. The purpose of this note is to prove the

THEOREM. Let $\mathfrak o$ be the valuation ring and $\mathfrak p$ the prime ideal of a field k complete with respect to a discrete valuation. A separable $\mathfrak o$ -order $\mathfrak D$ is isomorphic with an $\mathfrak o$ -order $\mathfrak D$ if and only if the $\mathfrak o/\mathfrak o$ $\mathfrak p^{2s+1}$ -algebras $\mathfrak D/\mathfrak p^{2s+1}$ $\mathfrak D$ and $\mathfrak D/\mathfrak p^{2s+1}$ $\mathfrak D$ are isomorphic.

Our proof is simplified following a suggestion of the referee. The theorem reduces the problem of isomorphism of orders over complete, discrete valuation rings having finite residue class rings to a problem concerning finite algebras. Thus an immediate consequence is the

COROLLARY 1. If o as in the Theorem has finite residue class rings, there are only finitely many non-isomorphic separable o-orders of given finite rank and depth.

A second corollary, concerning *genera* of orders in a separable algebra over the quotient field of a Dedekind domain \mathfrak{o} , is given. Here two \mathfrak{o} -orders are put in the same genus if their \mathfrak{p} -adic completions are isomorphic for each prime \mathfrak{p} of \mathfrak{o} .

2. PROOF OF THE THEOREM

We are assuming that $\mathfrak o$ is the valuation ring and $\mathfrak p$ the prime ideal of a field k with a complete discrete valuation. Since the valuation ring $\mathfrak o$ is a principal ideal domain, the $\mathfrak o$ -orders $\mathfrak O$ and $\mathfrak O$ have free $\mathfrak o$ -module bases. Hence an isomorphism $\mathfrak O/\mathfrak p^{2s+1}\mathfrak O \approx \mathfrak O/\mathfrak p^{2s+1}\mathfrak O$ is induced by an $\mathfrak o$ -module isomorphism $\alpha \colon \mathfrak O \approx \mathfrak O$ such that

(1)
$$\alpha(xy) \equiv \alpha(x) \alpha(y) \pmod{\mathfrak{p}^{2s+1}}.$$

Received October 30, 1958.

To construct an \mathfrak{o} -algebra isomorphism of \mathfrak{D} onto \mathfrak{D} , we first construct inductively \mathfrak{o} -module homomorphisms $\alpha_i : \mathfrak{D} \to \mathfrak{D}$ ($i = 1, 2, \cdots$) such that

(2)
$$\alpha_i(xy) \equiv \alpha_i(x) \alpha_i(y) \pmod{\mathfrak{p}^{2s+i}}$$

and

(3)
$$\alpha_{i+1} \equiv \alpha_i \pmod{\mathfrak{p}^{s+i}}.$$

Because of (1), we may take $\alpha_1 = \alpha$. Assume that α_i has been defined for some $i \geq 1$. Since $2s + i \geq s + 1$, (2) implies that α_i induces an $\mathfrak o$ -algebra homomorphism of $\mathfrak D$ into $T = \mathfrak D/\mathfrak p^{s+1} \mathfrak D$. Hence T is a two-sided $\mathfrak D$ -module. Now we define $f \in \operatorname{Hom}_{\mathfrak o}(\mathfrak D \bigotimes_{\mathfrak o} \mathfrak D, \mathfrak D)$ by

(4)
$$f(x \otimes y) = \alpha_i(xy) - \alpha_i(x) \alpha_i(y).$$

The associative law in D gives

$$\alpha_{i}(x) f(y \otimes z) - f(xy \otimes z) + f(x \otimes yz) - f(x \otimes y) \alpha_{i}(z)$$
.

By (2),

$$f = \pi^{2s+i}g,$$

where π is a generator of $\mathfrak p$, and clearly g must satisfy the same identity as f. This means that the $\mathfrak p$ -module homomorphism $g^*\colon \mathfrak D \bigotimes_{\mathfrak p} \mathfrak D \to T$ induced by g is a 2-cocycle. But $I(\mathfrak D) = \mathfrak p^s$ annihilates $H^2(\mathfrak D,T)$, and therefore $\pi^s g^*$ is a coboundary. It follows that there exists an $h \in \text{Hom}_{\mathfrak p}(\mathfrak D,\mathfrak D)$ such that $\pi^s g \equiv \delta_i h \pmod{\mathfrak p^{s+1}}$, where

$$\delta_i h(x \otimes y) = \alpha_i(x) h(y) - h(xy) + h(x) \alpha_i(y)$$
.

Hence by (5),

(6)
$$f \equiv \pi^{s+i} (\delta_i h) \pmod{\mathfrak{p}^{2s+i+1}}.$$

Now let $\alpha_{i+1} = \alpha_i + \pi^{s+i}h$. Since $2(s+1) \ge 2s+i+1$, (4) and (6) give

$$\alpha_{i+1}(xy) = \alpha_{i}(xy) + \pi^{s+i}h(xy)$$

$$= \alpha_{i}(x)\alpha_{i}(y) + f(x \otimes y) + \pi^{s+i}h(xy)$$

$$\equiv \alpha_{i}(x)\alpha_{i}(y) + \pi^{s+i}\{\alpha_{i}(x)h(y) + h(x)\alpha_{i}(y)\}$$

$$\equiv (\alpha_{i}(x) + \pi^{s+i}h(x))(\alpha_{i}(y) + \pi^{s+i}h(y))$$

$$\equiv \alpha_{i+1}(x)\alpha_{i+1}(y) \pmod{\mathfrak{p}^{2s+i+1}}.$$

The inductive definition of the α_i satisfying (2) and (3) is now complete.

Because of (3), we may define an \mathfrak{o} -module homomorphism $\alpha^*: \mathfrak{D} \to \mathfrak{D}$ by

$$\alpha*(x) = \text{Lim } \alpha_i(x)$$
.

Then (2) implies that α^* is a ring homomorphism. Since by (3) $\alpha^* \equiv \alpha_1 \pmod{\mathfrak{p}}$, and since $\alpha_1 = \alpha$ is an \mathfrak{p} -module isomorphism onto, it follows that α^* is one-to-one and onto.

The converse is immediate, and therefore the theorem is proved.

3. AN APPLICATION

Given a prime ideal $\mathfrak p$ of a Dedekind domain $\mathfrak o$ with quotient field k, we shall denote by $\mathfrak o_{\mathfrak p}$ the valuation ring in the $\mathfrak p$ -adic completion $k_{\mathfrak p}$ of k. We shall call two $\mathfrak o$ -orders $\mathfrak O$ and $\mathfrak O$ isomorphic at $\mathfrak p$ if the $\mathfrak o_{\mathfrak p}$ -orders $\mathfrak O_{\mathfrak p}=\mathfrak O\bigotimes_{\mathfrak o}\mathfrak o_{\mathfrak p}$ and $\mathfrak O_{\mathfrak o}=\mathfrak O\bigotimes_{\mathfrak o}\mathfrak o_{\mathfrak p}$ are isomorphic. We shall put $\mathfrak O$ and $\mathfrak O$ in the same genus if they are isomorphic at every prime $\mathfrak p$ of $\mathfrak o$.

If $\mathfrak D$ is a separable $\mathfrak o$ -order, the discriminant $\Delta(\mathfrak D)$ is a non-zero ideal of $\mathfrak o$ [3]. An $\mathfrak o$ -order having a k-algebra A as k-hull is called an $\mathfrak o$ -order in A.

COROLLARY 2. Let A be a separable algebra over the quotient field k of a Dedekind domain $\mathfrak o$ having finite residue class rings. Let $\mathfrak a$ be a non-zero ideal of $\mathfrak o$. Then there are only a finite number of genera of $\mathfrak o$ -orders $\mathfrak O$ in A such that $I(\mathfrak O) \cap (\mathfrak O) = \mathfrak a$.

Proof. Since $\triangle(\mathfrak{D}_{\mathfrak{P}})$ is the \mathfrak{P} -component of $\triangle(\mathfrak{D})$ [3], $\triangle(\mathfrak{D}_{\mathfrak{P}}) = \mathfrak{o}_{\mathfrak{P}}$ for every prime \mathfrak{p} of \mathfrak{o} not dividing $\triangle(\mathfrak{D})$, and in particular for every \mathfrak{p} not dividing \mathfrak{o} . Hence $\mathfrak{D}_{\mathfrak{p}}$ is a maximal $\mathfrak{o}_{\mathfrak{P}}$ -order in $A_{\mathfrak{p}} = A \bigotimes_{k} k_{\mathfrak{p}}$ for every \mathfrak{p} not dividing \mathfrak{o} [3]. But any two maximal $\mathfrak{o}_{\mathfrak{P}}$ -orders in $A_{\mathfrak{p}}$ are isomorphic. Hence, if $h_{\mathfrak{p}}$ is the number of classes under isomorphism at \mathfrak{p} of \mathfrak{o} -orders \mathfrak{D} in A such that $I(\mathfrak{D}) \cap (\mathfrak{D}) = \mathfrak{o}$, then $h_{\mathfrak{p}} = 1$ when \mathfrak{p} does not divide \mathfrak{o} .

Since $I(\mathfrak{D}_{\mathfrak{p}})$ is easily seen [2] to be the \mathfrak{p} -component of $I(\mathfrak{D})$, the depth of $\mathfrak{D}_{\mathfrak{p}}$ is the exponent of the highest power of \mathfrak{p} dividing $I(\mathfrak{D})$, and so is no larger than the exponent of the highest power of \mathfrak{p} dividing \mathfrak{a} . Hence by Corollary 1, $h_{\mathfrak{p}}$ is finite for every \mathfrak{p} , under our assumption that \mathfrak{o} has finite residue class rings. The number g of genera of \mathfrak{o} -orders \mathfrak{D} in A such that $I(\mathfrak{D}) \cap (\mathfrak{D}) = \mathfrak{a}$ is given by $g = \prod_{\mathfrak{p}} h_{\mathfrak{p}}$. Hence g is finite.

REFERENCES

- 1. H. Cartan and S. Eilenberg, Homological algebra, Princeton, 1956.
- 2. D. G. Higman, On orders in separable algebras, Canadian J. Math. 7 (1955), 509-515.
- 3. W. E. Jenner, *Block ideals and arithmetics of algebras*, Compositio Math. 11 (1953), 187-203.

The University of Michigan