COMPARISON OF SINGULAR AND CECH HOMOLOGY
IN LOCALLY CONNECTED SPACES

Sibe Mardesié

. The main result of this paper is Theorem 1 (see Section 2). It shows that a na-
tural homomorphism v, (v*) of the singular homology (Cech cohomology) theory into
the Cech homology (singular cohomology) theory becomes an isomorphism in dimen-
sions 0 < q < p + 1, provided that we restrict ourselves to the category of paracom-
pact Hausdorff spaces which are lcf and semi-(p + 1)-lc; (for these notations see
Section 2). The proof is carried out in Sections 1 to 5.

In the case of triangulable spaces, the equivalence of singular and Cech theory is
a well-known fact (a consequence of the uniqueness theorem of S. Eilenberg and N.
Steenrod [4]). The same fact has been established more recently for ANR-s (see J.
Dugundji [3], Y. Kodama [9] and S. MardeSi¢ [11]). For metrizable compacta which
are homotopy locally connected, the equivalence has been established by S. Lefschetz
([10], p. 107). A proposition, closely related to the part of Theorem 1 which is con-
cerned with cohomology, can be derived from Cartan’s uniqueness theorem for co-
homology with coefficients in sheaves [1]; this approach is not applicable to homology.
Finally, Theorem 1 generalizes a result obtained by H. B. Griffiths in [6]. (In an un-~
published paper, Griffiths has recently developed a general theory of “locally trivial
homology,” and Theorem 1 is there derived in the framework of that theory.)

Section 7 contains a proof of an analogue of Theorem 1, for Cech homology with
compact carriers. In Section 8, we show that, for locally paracompact spaces,
lcls’ = lcfc’ (for notation see Section 2). In Section 9, an application of Theorem 1
gives a criterion for unicoherence of locally arcwise connected semi-1-lcgs para-
compact Hausdorff spaces in terms of the first singular homology group.

The author wishes to express his gratitude to Dr. H. B. Griffiths for many help-
ful discussions concerning the subject of this paper.

1. NATURAL HOMOMORPHISMS v, AND u*

Let (X, A) be a pair of topological spaces, A C X (A need not be closed).
Hq(X, A; G; S) and HYX, A; G; S) will denote the g-th singular homology group and
the g-th singular cohomology group, both taken with coefficients in a (discrete) group
G. The corresponding Cech groups will be distinguished by a letter C replacing S.
For purposes of this paper, we adopt a definition of Cech homology and cohomology
which naturally generalizes the classical notions of the Vietoris theory, and which
was introduced by E. Spanier in [13] and by C. H. Dowker in [2]. The definition gives
groups which are naturally isomorphic to usual Cech groups for arbitrary pairs
(X, A) (for a proof see [2]). Here is the Spanier-Dowker definition.

Let a = (a,, a,) be an open covering of (X, A). This means that a, is an open
covering of X, that a, C a, and that the union of all the members of @, is a subset
of X which contains A. Let K, 1(X) (Kaz(A)) be the simplicial complex whose ver-

tices are all the points of X (of A); a finite set of vertices forms a simplex of
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Ky 1(X) (of Kaz(A)) if and only if it is contained ina U € a, (U € a,). Clearly,
Ko (X, A) =Ky l(X)/ Ka,(4) is a chain complex, Ky being a subcomplex of Ky .
(K 1(X) and K, 2(A) denote also the corresponding (ordered) chain complexes.)

B = (B,, B, is said to refine a = (a,, a,) (in symbols: @ < B) if one can associate with
each Ve B, some UV) € a , in such a way that U(V) D V and that Ve B, implies
UV) € a,. If a <B, let Moo KB_' Ky be the chain mapping induced by the identity
map of vertices. TyBa and m¥*g, will denote the induced homomorphisms of the cor-
responding homology and cohomology groups. The set £ of all open coverings of

(X, A), ordered by <, is directed. Homology and cohomology groups of Ky (x € Q)
form thus an inverse and a direct system of groups; the corresponding limits are, by
definition, the Cech groups of (X, A). It is clear how to define the homomorphisms

f, and f*, induced by a mapping f: (X, A)— (Y, B), and the boundary homomorphism
8* and o*,

Let S(X) denote the chain complex of singular chains of X. S(A) is a subcomplex
of S(X), and S(X, A) = S(X)/S(A) is the singular chain complex of the pair (X, A). If
s is a singular simplex, we denote by ||s ﬁuits carrier, that is, the image of the unit
simplex under the mapping s. Let S, 1(X) denote the subcomplex of S(X) generated

by singular simplices s which belong to the cover «,, that is, for which one can find
a U€ a, containing ||s||. Let 75, : Sq (X)— S(X) be the natural injection. Simi-
1

larly, we have 1, : Sy (A) — S(A). I Sy(X, A) = S, (X)/Sy (A), we define
a, o, o a, a,

(X, A)— S(X, A) in the natural way. According to a result in [4] (Theorem 8.2,
p 19% Nq is a natural equivalence, that is, there exists a chain mapping
Eq' S(X, A) — Sy(X, A) such that

(1) Ealla= Nata =1,

~ denoting chain homotopy and 1 denoting the identity mapping. (For the case of ab-
solute homology, an explicit £4 is given in [11].) ¥ @ < B, let '

nﬂa: Sﬁ(xy A) - Sa (X, A)
denote the chain mapping induced by inclusions SBI(X) cC Sal(X), Sﬁz(A) C Sy, (A).
Clearly, 14 Nga =7 and thus
We define now a chain mapping pqy : Sal(X) - Ky 1(X) by assigning to every
(ordered) singular simplex s of Sal(X) the array of its vertices. Since iy maps
Sa 2(A) into K, 2(A), it induces a chain mapping pg: Sy (X, A) — Kg(X, A). I a <8,

then obviously U Nga = Tga KB-
Consider now the composite chain mapping

(3) Vo = La€q >

Vo' S(X, A) — K, (X, A). According to (2), we have

4 Vg = Tga Vg -
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This shows that mappings v, give rise (by a standard procedure) to a homomorphism

Vy'! Hq(X, A; G; S) — Hq(X, A; G; C) = lz_r_n Hq(Ka(X, A); G)

and a homomorphism

v¥: HYX, A; G; C) = lim H¥(Ky (X, A); G) —» HYX, A; G; §).

It is easily verified that v, and v* commute with f,, 9, and f*, 0* respectively.
v, and v* are therefore natural homomorphisms of the corresponding homology
theories over the category of arbitrary pairs of spaces.

2. BASIC DEFINITIONS CONCERNING COVERINGS

Let (M, N) be a pair of spaces, NC M. We denote by Hq(N lM; G; S) the image
of Hy(N; G; 8) in Ho(M; G; S) under the homomorphism induced by the inclusion
N c M. The analogous meaning is given to Hq(Nl M; G; C). Let Z denote the inte-
gers, as usual. A space X is said to be gq-lcs at a point x € X if, for every open
UC X containing X, there is an open V (x € V C U) such that Hq(VlU; Z; S) = 0.
X is said to be 1cE at xe X if itis g-le. at x, for 0 <q <p. X is semi-g-lcg at
x if there is an open V (x € V) such that Hq(le; Z; S) = 0. X is said to be 1ck or

semi-p-lc, if it has these properties at every x € X. If q = 0, we have to use aug-
mented homology. Replacing singular homology by Cech homology we obtain the no-
tions 1c® , and so forth.

We can now state the main result.

THEOREM 1. Let (X, A) be a pair of paracompact Hausdorff spaces. If both X
and A are 1c® and semi-(p+1)-lc,then the homomorphisms

vei HiX, A; G; 8) — Hy(X, A; G; C) and v*: HYX, A; G; C) — HYX, A; G; S)

are isomovphisms (onto), for all q <p + 1.

(In the first draft of1 this paper, Theorem 1 was proved only under the hypothesis
that X and A are lclsﬁ- . The author is indebted to Professor R. L. Wilder for sug-
gesting the weaker conditions which appear in the present form of the theorem.)

The proof is given in the following sections. We first introduce some definitions
concerning coverings.

If o, is a covering of X and V € «,, we shall denote by Stal(V) the star of V

with respect to a,, that is, the union of all V, € @, with VNV, # 9. If a = (o,, &)
is a covering of (X, A), we shall denote by a,N A the covering of A consisting of
sets V,NA (V € a,).

DEFINITION 1. A covering B8 = (8,, 8,) of (X, A) is said to be a p-refinement of
the covering @ = (04, a,) (in symbols: a <p B) if the following conditions are satis-
fied:

(i) For each V, € B, there is a U, € a, such that
' Stg (V)< Uy and  H{(Stg (V})) |Uuy; 25 8) =0,

for all q < p.
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(ii) For each V, € B, there is a U, € a, such that

StﬁzﬂA(VZ NA) C Uz NA and Hq((StﬁznA(VznA))I(UZ NA); Z; 8) =0 ’

for all q <p.

LEMMA 1. If (X, A) is a pair of paracompact Hausdorff spaces which are both
lcg, then every open covering @ of (X, A) admits a p-refinement B.

(A covering 8, is said to star-refine o, (in symbols: a, <4 8,) if for each
V, € B, there is a U, € o, such that Stﬁl(vl) C U;. E. E. Floyd has introduced in [5]

a notion of p-refinement (for closed coverings and Cech homology) which differs
from our concept. In fact, denoting by a; <P 8; the statement that B, p-refines o,
in the sense of Floyd, we can say that a; <, 8); means essentially the existence of a
v, such that a; <Py, <, B;. Note that Floyd’s notion of strong p-refinement corre-
sponds essentially to a; <, v; <P 8) (see (2.2) [5]). Compare also our Lemma 1
with Floyd’s (3.2).)

Proof. For each x€ A, choose a U,(x) € a, containing x, and choose an open set
V,(x) of X such that
x €Vp(x)C Up(x) and Hy((Va(x) NA)| (Ux(x) NA); Z; 8) =0,

for all q < p. This choice is possible, because A is 1cE. Let y} be an open star-

refinement of the covering {V,(x) nA| x € A} of A (A is a paracompact Hausdorff
space). For each element W)€ y) choose an open set W, = W,(W;) of X in such a
way that W,N A = W), Let v, = { W, (WD| Wie yi}.

On the other hand, consider for each x€ X a U,(x) € a, containing x, and choose
an open set V,(x) such that x € V,(x) C U,(x) and Hq(V 1(x)]| Ui(x); Z; S) = 0, for all
q<p. Lety, = {W,} be an open star-refinement of the covering {V,(x)| x € X}.

We now define 8 = (8,, B,) by
(5) {32={W10W2|W1€'y1, W, € 75},
(6) B1=71UB;.

It is easily verified that a <, B (note that B, refines both ¥, and v,).

DEFINITION 2. An open covering o = (a,, a;) of (X, A) is said to be a p-cover-
ing if, for each V; € a5, Hp(V1|X; Z; S) = 0 and if, for each V € a3,

H,((V; N A)|A; Z; 8) = 0.

LEMMA 2. If both X and A ave semi-p-lcs, then a p-coveving of (X, A) exists.
Proof. Choose an open covering B, of X such that V, € 8, implies
H,(V;|X; 2; 8) = 0,
and choose an open covering B, of A such that V}€ 8] implies Hp(Vfa_l A; Z; 8) =0,
Furthermore, choose for each V, € 8, an open set V,(V;) of X such that V,nA = V,.
Let 8, = {V,(V)| V! €8}, Now define @ = (a,, @,) by

(7) a2={Van2lV1€Bv Vzeﬁz}:
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(8) a,=p8Ua,.

It is easily verified that @ is a p-covering of (X, A).

DEFINITION 3. A sequence (ai) = a0, al, ... aPtl (p > 0), consisting of p + 2
open coverings al = (a'l, a'z) of (X, A), is said to be a p-sequence if @’*! isa p-
refinement of oi, for 0 <i<p. The coverings a = a® and B8 = aPtl will be referred

to as end-terms of the sequence. A p-sequence (@') is said to 7efine the p-sequence
(@l) (in symbols: (ai) < (@) if o < a' for all 0 <i<p.

LEMMA 3. Let (X, A) be a pair of paracompact Hausdovff spaces which are both

lcg. Then the set of all p-sequences, ovdeved by (al) < (a'l),is a nonempty divected

sel.

Proof Choose an open covering a"? which refines all the coverings
a0, «.., aPtl @0 ... aPtl Apply Lemma 1 (p + 1) times to obtain a p-sequence
(o "1) W1th the ﬁrst term a", Clearly, (@") refines both (ai) and (a'i).

DEFINITION 4. Let (o) be a p-sequence of coverings for (X, A), a = a®,
B = aPtl A chain mapping Agy KE (X, A) — 8,(X, A) (K™ denotes the nth skeleton
of the complex K) is said to be a p*royectzon belongmg to the p-sequence (oi) if there
is a chain mapping hﬁ a, = A KB (X) — 8, (X) such that the following four conditions

are satisfied.

(i) For each 0-simplex v of KEH(X) we have A(v) = v

(ii) For each g-simplex v of KP“(X) (0<q<p+1) thereisa U, € all’“'q
such that (U,> ||v]| ul|av]|. (A s1mp1ex v of Kg (X) is a finite set of pomts of X;

when referring to that set, we use the notation Hv” , to distinguish it from the case
where v is considered as a chain. If x =Z a;s; is a singular chain, then ||x|| de-
notes the union of all ||s;|| with a coefficient a;# 0.)

(iii) For each gq-simplex v of K (A) (0<g<p+1) thereisa U, € agﬂ -4
such that (U, n A):) vl v [lav]|.

(iv) Since )\(K 1(A)) C S (A) (by (iii)), A induces a chain mapping of Kﬁ (X A)
into 8, (X, A). Th1s mapping commdes with Aﬂa

3. PROPERTIES OF PROJECTIONS A’ﬁa

Let L be a subcomplex of Kg:r 1(X), and let A be a chain mapping of L into
Sal(X). When we say that A satisfies (i), (ii) and (iii), we mean the corresponding

conditions with v being a simplex of L. and of L nKP+1(A), respectively.

LEMMA 4. Let (al) be a p-sequence with end-teyms o and B; let L. be a sub-
complex of KPJr (X), and X a chain mapping, x: L —’Sa (X). If x» satisfies (i), (ii)

and (iii), tken zt can be extended to a chain mapping x: KP+I(X) Sy (X) satisfying
1
(i), (ii). and (iii).
We shall prove inductively that A can be extended to a map of LUy K/Sql (X) into
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Sy (X) which satisfies (i), (ii) and (iii) (g=0, 1, .-, p + 1) For g = 0, the extension
is achleved by settmg Av) = v, for all 0-simplexes of K (X) Case q=1: Let v
be a 1-simplex of KB (X) \ (LU K (A)) Choose a Ve 31 contalnmg HVH and a

U € af such that VC U and Hl(VIU Z; ) = 0 (recall that of < 8;). Since Adv = v
is a smgular 0-cycle (with respect to augmented homology), there ex1sts a singular

1-chain Av in U, such that 9(Av) = ov. I v is a 1-simplex of Ké’: (A) \ L, then we

choose V from B,, U from of and xv from AnU.

Assume now that A has already been extended to L UK (X) so as to satisfy all

our requlrements, and that 1<q<p+1. Letvbea (q+ 1) ~-simplex of
Kqu (X) \ (LU Kqu (A)), and let 9;v be the qg-faces of v, so that ov = Z -1t 0; V.

Smce o v belongs to Kq(X) there exists a U; € aII)“ 1 with U, DHBIVHUHM}IVH
(0<i<qg+1) (see (11)) Since g + 1> 2, it follows that, for each i > o,

UoNY; 2 |3 vl[n|fa;vil = |13y 3 || # 2.
This implies that all U; (i > 0) belong to Sta(P 2 Up. Hence, there exists a
U e a?9 such that
U> Stal(p+1_q)U0 >U;> |ja;v]| (0<L i'S q+1)
and such that
Hq((Sta(lpH_q) U,)|U; Z;8) =0

Since A0v is a singular cycle of St
a(lp+1 :
such that dAv = Adv and ||Av||c U. Clearly, HVH = U ||aiv”; hence, Haiv“C U
and ||Av|| € U imply (ii). In the case when v is a simplex of K3"YA) \ L, one can

R

)UO, we can choose a (q + 1)-chain Av
-q

select U in such a way as to obtain (iii).

Taking for L the 0-skeleton K° (X) and defining A: L — Sa X) by A(v) =v (v
1 1
any 0-simplex), we obtain from Lemma 4
COROLLARY 1. The set of projections belonging to a p-sequence is not empty.

LEMMA 5. Let (al) and (@) be two p-sequences with end-teyms o, B and
a', B', respectively, and let (al) < (a'l). For each projection A o belongmg to
(a'l) there exists a projection ABO! belonging to (al) and satisfying

(9) na o Aﬁ'a' = A.Ba ﬂﬁ]ﬁ B

Proof. Choose a chain mapping A': KP+1(X) - Sa' (X) in accordance with Defini-
1

3!

tion 4. It suffices to find a mapping A: KEH(X)—-» Sa (X) satisfying conditions (i),
1 1
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(ii) and (iii) and, in addition,
I
(10) naioﬁh - Mrﬁiﬁ1 ’

L= Kp (X) is a subcomplex of Kgﬂ(X), because B, < B}. It is readily verified that
1 1

n ala, A' is a chain mapping of L into S (X) which satisfies (i), (ii) and (iii) (recall
1
i”l 1< a 1Prl-q and ap+1 1< a.p+1 q) Applying Lemma 4, we obtain an exten-
sion A of 7 o'l )U to KPH(X) It is clear that A satisfies (10) (recall that mg1g,
1

an injection).

LEMMA 6. Let y = (vy, v2) be an open (p + 1)—covering of (X, A) (see Def. 2),
let @ be a star-vefinement of v, and (@) =a, al, ..., aP, 8 a p-sequence of cover-
ings. Then, for any two projections Ao and J\ Ba belongmg to (al), we have a
homotopy in S(X, A);

(11) Ny Ao = Na Ay -

Proof. The first step consists in defining a chain homotopy D of the p-skeleton
Kﬁ (X) into Sq (X) in such a way that

(12) D+ DI=A- "

(A: Kgﬂ(x) — Sy (x{) and A' are as in Def. 4). Furthermore, for every g-simplex

v of Kj (X) there has to be a U, € a§™ such that
1

(13) U, o |v||u ||Dvlf,

and for every gq-simplex v of KE(A) there has to be a U, € ag'q such that.

(14) AN G)> ||vi|u ||Dv||.

For 0-simplices v we set D(v) = 0. Let now v be a 1-simplex of Kllgl(x) \Kéz(A).
Choose V and V' from all’ in accordance with (ii), so that (VNV') o ||v]| # 9 and
thus (St PV) D (VU V'). Now choose UE€ oz]‘;’l so that

o
1

St VcU and H,((St V)|U;Z;8)=0
aP aP
1 1

Since Av - A'v is a singular 1-cycle of St pV there exists a singular 2-chain Dv
oy

in U, such that aDv=Av - A'v. I v belongs to K (A) we can choose V and V!

from a , U from al?j -1 and Dv from ANU.

Assume now that D has already been defined on KB (X) 1n accordance with our

1
requirements (1 <q<p). Let v bea (q + 1)- 51mp1ex of K (X) \KP+ (A). Choose
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V and V' from al "4 (by (ii)) such that V2O ||v|| u ||av]] and V' > ||v|| U || xv]].
Furthermore, choose U; € a§~9 such that U; D || alv” U |} D9; v|| (use the induction
hypothesis). Since q + 1 > 2, we have (U; ﬂUo) > ||8g 8;v|| # 9 for 1> 0. Also,

(VAU D ||agv]| #8 and (V' NUp) D ||agv]|# 0.
We conclude thus that all U; and VUV' lie in St UO' Notice that this set con-
oP-
1
tains also the singular (q + 1)-chain Av - A'v - Ddv; this is actually a cycle, accord-
ing to (12). Now choose a U € all"q'l such that

C M '(r =
Stap_q U,CU and Hq+1((Stap_qU0) |u; z5s) =0
1 1

Clearly, we can now choose a (q + 2)-chain Dv from U such that 8Dv = av - A'v - Ddv.

If v belongs to KP+1(A), we can make our choices in such a way as to satisfy (14).

B2

Kp+1

To complete the proof we extend D to (X) by an analogous procedure. In the

1
case p= 0 and for v from Kél(X) N Kfi (A), we choose U € y, such that UD St 1(V)

(note that @, is a star-refinement of y,). Ny 7 AV -1, 7 A'v is a cycle of U. Using

the fact that y is a 1-covering, we can fmd a singular chain Dv in X such that
oDv = "a Av - ’?a A'v. If v belongs to K (A) we apply obvious modifications. Now

1
suppose that p>0,andlet v be a (p + 1) sxmplex of KP 1(X) N K§+ (A). The same
2

argument as in the case dim v < p shows that av - h'v - Dov is a cycle of Stal(Uo).
Choose now U € y, such that UD St (Uo). Since 7 is a (p + 1)-covering of (X, A),
one can find a singular chain Dv in X such that dDv = 77a AV - "a A'v - Dov. One pro-

ceeds in a similar way for (p + 1)-simplexes v of Kg (A) obtalnmg
DKS () < S(A).

Hence D induces a homotopy of Kp+ (X, A) into S(X, A) connecting 74 Aﬁa and
"a Ba

LEMMA 7. Let (X, A) be a pair of paracompact Hausdorff spaces which ave both
1cE, and let v be a (p + 1)-covering (p > 0). Furthermore, let (i) and (@'') be any
two p-sequences with end-terms a, B and o', B', vespectively, and let a and o' be
star-refinements of y. Then there exists a common rvefinement T of 8 and B' such
that
(15) Tla Aﬁa "TB‘: nailﬁlarﬂ.’-ﬁl ’

for any pair of projections \,. and X, ., belonging to (a1) and (@'l), respectively.
Ba o

Proof. Let (@"') be a p-sequence refining both (el) and (@'') (Lemma 3), and
let its end-terms be ¢ and 7. Choose an arbitrary projection A , belonging to
(") (Corollary 1). According to Lemma 5, there exist projections A, and 20, o'

B Bl
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belonging to (ol) and (a’i), respectively, and satisfying
0

(16) nca A'rcr = Aﬁa ﬂ'rB
and

_ 30
(17) Mya: A—rc - AB'(I'HTB '

On the other hand, by Lemma 6,

0
(18) Mo g = Mg My
and
(19) nal)"ﬁralz nalkglal .

From these relations we readily infer that both sides in (15) are homotopic to Ng X 1o

4, THE COMPOSITE CHAIN MAPPINGS Xﬁa“ﬁ AND “alﬁa

LEMMA 8, Let v be a (p + 1)-covering of (X, A), let (al) be a p-sequence of
coverings with end-teyms @ and B, and let o be a star-refinement of v. If ug and

ng are restricted to Sg +1(X, A), then the homotopy

(20) Mo g0 s = Mg

holds in S(X, A), for every projection Aﬁa belonging to (ad),

The proof parallels closely the proof of Lemma 6, and details are omitted. The
first step consists in defining (by induction) a chain homotopy D of SE (X) into S, (xX)
1 1

in such a way that

(21) oD + Dd = A,uBl —‘nﬁlal

(A being as in Def. 4). Furthermore, for each g-simplex s of sgl(x), there must
exist a Uy € al™ such that

(22) U, o|ls]lu |Ips]],

and for each 2-simplex s of ng(A) there must exista U, € ag'q such that
23) (Anu)> ||s]| u |ips||.

+1
The second step consists in an extension of D to Sll;; (X) with values in S(X); D has
1
to send Sg: (A) into S(A), so that a passage to the quotients is possible. Observe
that, for each singular simplex s, || Hg s||c || sl|.
1
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LEMMA 9. Let (a‘) be a p-sequence with end-teyms a and B, andlet hBa be
any projection belonging to (ai). Then

(24) “ahﬁa: ‘lTBa .

Pyroof. It suffices to define a homotopy D: Kp 1 x) — I:‘H(X) connecting 4 )\
and ﬂﬁﬂl and satisfying
(25) D(KP+1(A))C kL) .

For each simplex v of KB (X) AN Kp+1(A) (dim v < p + 1), choose a U(v) € a,
such that
(26) U o |[vi] v {|avl],

and for each simplex v of KEZI(A) (dim v < p + 1), choose a U(v) € a, such that

27 | ANUW) D ||v]| vl]av]].

Furthermore, choose a point x(v) from U(v) and from AN U(v), respectively. De-
fine D by

(28) Dv = (X(V))(ualkv - 3.0 1‘v) )

where the expression on the right side denotes the join of (ua AV - wB a, v) and

x(v). (If v=(ao, ***, ag) and x € X, then the join xv is the s1mp1ex (x, ag, ***, a
If xe Uand ||v]|c U then obv1ously l|xv|| c U.) We conclude from (26) that

q).

(29) ||pv|| € UMW),

and from (27) that

(30) l|pv]|c Uw)nA,

for ve Kgfl(A), so that D satisfies (25). It follows from (28) that D is indeed a
2

homotopy connecting ual)\ and nﬁlal.

5. PROOF OF THEOREM 1

Choose a (p + 1)-covering v of (X, A) (Lemma 2), a star-refinement ¢ of
y ((X, A) is a pair of paracompact Hausdorff spaces) and a p-sequence (ab) with
end-terms o and g (Lemma 1). Let h, € Hq(X A; G; S) (q<p+ 1) be such that
vyehy = 0. In other words, for each open covering w of (X, A), ,

(31) Vi P = By Exo P = 05
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in particular Vag h, = 0. Applying (1), (3) and Lemma 8, we obtain

(32) hy = Nyg exghy = Nya A eBa Hxg Exg hy = Nye Aega Vg h, =0,

proving that v, is a monomorphism in dimensions up to p + 1. Using the same
facts, we deduce that for every h*e HA(X, A; G; S) (q <p+ 1),
h*),

* = gk pk Q¥ = g* * = p*x (2\k
(33) h 8,3’7311 £ h vB(A

* ok * *
s* M gaMa ga™ o
proving that v* is an epimorphism.

To prove that v, is an epimorphism, take a (p + 1)-covering of (X, A), and con-
sider the set P of all p-sequences (o) with end-terms @ and 8 which have the
property that o star-refines 7. Let Il be the set of all @, where (ai) € P. The set
II is cofinal in the set & of all open coverings of (X, A) (Lemma 1). Let h, = {hy}
(w € §) be an arbitrary element of H{X, A; G; C) (g <p+1). For every (ai) € P
define an h({aY)) € Hq(H, A; G; S) by

(34) h((al)) = "‘l*a A*ﬁa hB s
where Agy is any projection belonging to (@i). According to Lemma 6, h((ed)) is
well-defined by (34). I (¢!) € P and (a'l) € P, choose a common refinement 7 of B8

and B' in accordance with Lemma 7. Since hg = m 7gh7 and hﬁi = Ty7g! h, (defini-
tion of h as a “thread” in an inverse system), we obtain (Lemma 7)

(35) h((@) = Tyq A Txrg N = Nyqt Aupra Tyrpi My = h((@')).
In other words,
(36) h=h(}) (@) eP),

is a uniquely determined element of Hq(X, A; G; S) (independent of the choice of
(a*) € P). To prove that v, (h) = h,, apply (1) and Lemma 9. Then, for all a € II,

(37) Vial = Lia ExaMxa Axpa B = Hxaregalg = Tagahg = hy.

The conclusion follows now from the fact that II is cofinal in Q.

Pyoof that v* is a monomovphism. Let h*e€ HYX, A; G; C) q <p+ 1, and
v*h* = 0. Let h” be a representative of h* in Hi(Ky (X, A); G). By supposition,
v¥, h® = g%, u*, h® = 0, so that (1) yields

(38) p*oh® =0,

Let (al) be a p-sequence starting with @ and ending with 8 (Lemma 1), and let Aga
be a projection belonging to (ai) (Corollary 1). By Lemma 9 and (38), we obtain

(39) ﬂ*ﬁa ha = A.*ﬁa ”-*aha =0.

Since 7*gy h® is merely another representative of h*, we conclude that h* = 0.
This completes the proof of Theorem 1.

Examining the proof of the monomorphism of v*, we find that the supposition that
X and A are semi-(p + 1)-lcg is not needed. Therefore, we have
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COROLLARY 2, L’ (X, A) is a pair of {)a'racompact Hausdovff spaces which are
both 1cB, then v*: gPt! (X, A; G; C) — gHPt (X, A; G; S) is a monomorphism.

It is natural to ask the corresponding question for v,, which reads as follows.

Let (X, A) be a pair of paracompact Hausdorff spaces which are both lcp Is
Vy: H 1(X A; G;S)— 1X, A; G; C) necessarily an epimorphism? (ThlS ques-
tion Was raised by E. R. f‘adell durmg a discussion with the author.) In the next
section we answer the question negatively by producing a counter-example.

Note that in the case of cohomology, the proof of Theorem 1 is considerably
simpler than in the case of homology (most of Section 3 is not needed). Moreover,
singular and Cech cohomology are both exact, and therefore the theorem for the case
of absolute cohomology would imply the result in the relative case.

6. AN lcg—COMPACT SPACE FOR WHICH v, IS NOT AN EPIMORPHISM
IN DIMENSION 1

Let w, be the first uncountable ordinal, and let £ be the set of all ordinals
a < w,. For each @ € 2 \ {wl} choose a copy I, of the open interval (0, 1) of
reals, and order the set L = U(Ua <w Io) as follows. In @ and I,, preserve
1

the natural orderings; consider o as preceding all points of l,, and consider
I as preceding @+ 1. & and L are compact Hausdorff spaces under the
order topology (see|[8], L, p. 164). Let X = L/Q, the topology being the quotient
topology (see [8], p. 94). We shall prove the following proposition:

(i) X is a compact Hausdovff space which is lcg. The homomovphism
vy: H)(X; Z; 8) = H (X; Z; C) is not an epimorphism,

That X is a compact Hausdorff space is immediate. Let f: L, = X denote the
natural quotient mapping, and let & = £().

Given any B € £, let Lﬁ denote the set {x | xe L, x< B}, and let LB denote the
set {x| xeL, x> B} It'is easy to see that Lg is an arc, for all 8 < w, (apply for
instance Theorem 1 2.8, p. 168 of [ 7]). With the help of this fact, it is readily seen
that X is locally arcwise connected, that is, lcg. The space X can be considered as

a “transfinite bouquet” of circles attached at a common base point &£.

Let Y4 denote the space L/(R ULB)’ and let ig: X — Y/3 be the corresponding na-
fural projection. We shall prove first the following proposition:

(ii) Given any singular homology class h,€ H,(X; Z; S), theve is a B < w, such
that (£g),h, =

Proof of (ii). Consider any path ¢: I— X. Let U= {x| xe€ I, ¢(x) # £}. Then U
consists of at most countably many open intervals V. Clearly, for each such V there
exists a unique @ < w, such that ¢(V) c £(I5). The least upper bound of these o is a
B < w, such that ¢(I) C f(L ). Now take any singular l-cycle z representing the class
h,. The preceding argurnent proves the existence of a 8 < w,; such that z lies in
f(LB) Passing thus to Yﬁ, we see that z is mapped into a point of YB

An immediate consequence of (ii) and of the naturality of v, is the following
proposition:

(iii) For every Cech homology class h € v,(H,(X; Z; S)) c H,(X; Z; C), there is
a B <w, such that (fB) h=0.
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In order to prove (i) it now suffices to show the following:

(iv) There exists a Cech homology class he€ H,(X; Z; C) such that (fB)*h + 0,
Jorall 8 < w,.

Let X, denote the space L/(QUL®Y (¢ € ), and let ga: L — X, be the corre-
sponding natural CProjection. We define maps 71yt X — Xg (@ < a') as follows.
I £, = g% (QULY), then my1y(£y1) = £y. For x =g (y) and y € L\ (QULY, we
distinguish two cases: if y < @, then 7y (g (y)) = g¥(y); if @ <y < a', then
T a(8® (¥)) = £y. It is readily verified that { Xy; 7a'q} (@ < p) is an inverse
system of compact Hausdorff spaces for all g8 € £ which have no immediate prede-
cessor, and that Xj is the inverse limit of that system with mappings Tga: Xg — Xo
as corresponding natural projections. This is true in particular for g = w, and
Xp, = X=1lim Xy (@ < wy).

! -
We shall now define (by transfinite induction) a Cech homology class

for every B€ . Since X, is a point, hy, has to be the trivial class 0. Suppose now
that hy has been defined for all @ < 8 in such a way that (7y'g),bha' = ha, for all
a <a'<B. Indefining hg, we distinguish two cases.

First case: B has an immediate predecessor B', that is, 8 =8'+ 1. Here, X
consists obviously of Xgt and a 1-sphere (image of Igr) having only the point &3 in
common with Xgi. Therefore, HI(XB; Z; C) is the direct sum of Hl(Xﬁu; Z; C) and
a free cyclic group. We define h, as the direct sum of hp: and a nontrivial element
of this free cyclic group. Observe the following property of h/g: if

Zgi grar = LAQULAIU Ly )

(Zﬁ',B’H is homeomorphic to a 1-sphere) and we pass from XB'+1 to Zﬁ' B +1 by
the natural projection, hgry1 is mapped into a nonzero element.

Second case: B has no immediate predecessor. Here Xp=1lim Xy (o < B8). The
hg (@ < B) form by supposition an element of lim,, <8 Hj;(Xy; Z; C), and they deter-
mine an element hg € H (X3; Z; C) such that (’Tﬁa)*h = hy (apply the continuity
theorem for Cech homology, p. 261 of [4]).

Now let h=hy, € H 1(X; Z; C), and denote m,, 18 by mg. Then (‘lTB)*h = hﬁ’ for all

B < w,. Note further that, for all 8 < w,, the following diagram of mappings is com-
mutative:

TR+ 1

X > Z

B+1 B,B+1

All the mappings in the diagram are natural projections. Since (mg, )*h =hg,; and
hg; 1 is mapped into a nonzero element after being projected in ZB,3+1 , it follows
at (fﬁ)* h can not be zero.
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7. COMPARISON OF SINGULAR HOMOLOGY AND CECH HOMOLOGY
WITH COMPACT CARRIERS

Let (X, A) be a pair of Hausdorff spaces (A C X). We consider the family & of
all pairs (F,, F,) (F,c X, F, c F,NA) such that both F, and F, .are compact. The
family &, ordered by inclusion, is obviously a directed set. The Cech homology
group of (X, A) with compact carriers is defined as the direct limit of

Hq(Fl’ FZ; G; C):

and it will be denoted by H‘I’(X A; G; C). There is a natural homomorphism v of
Hy(X, A; G; §) into HE(X, A; G; C), defined as follows. Let h € H,(X, A; G; §), and
let z be a singular cycle of X mod A belonging to the class h. Then ||z|| is a com-
pact subset of X, while ||2z]| is a compact subset of A. Consider the pair

(Fy, F,) = (]| z||, || 2z])) € . The cycle z determines a singular homology class

h' € H(F ), F3 G; S). Now take v, h' € H q(F1, F2; G; C), where v, is the homo-
morphism defined in Section 1. Finally, take for vh the element of H‘I’(X A; G; C)

determined by v, h'. It is not difficult to see that vh is independent of the choices
involved in this description, and that v is actually a natural homomorphism.

THEOREM 2. Let (X, A) be a pair of locally compact Hausdovff spaces which
are both 1cp Then v: H (X A;G;S) — H‘I’(X A; G; C) is an isomorphism (onto)
Sfor q <p.

(In this form, the theorem is actually due to H. B. Griffiths (unpubhshed), the
author proved it originally under the additional supposition that both X and A are
paracompact. Only later did he find the present proof, which reduces the theorem
to an easy consequence of Theorem 1.)

The proof is based on the following

LEMMA 10. Let X be a paracompact Hausdorff space. Let C be a closed and
U an open subset of X (C C U C X). Then there exists an open subset V of X such
that CC VC U and V is paracompact.

Proof. The space X is necessarily normal. Therefore, one can construct suc-
cessively a sequence of sets V,, V,, ---, open in X, and such that

(40) CcVv,cV,cv,cV,c--cU.
Let
(41) v-=Uv_.

n=1

V is open in X, and it clearly sat1sf1es C C VC TU. On the other hand, V = U n

and is thus an Fg. A theorem of E. Michael ([12], p. 835) asserts that every Fo- of a
paracompact Hausdorff space is itself paracompact. This proves the lemma. Notice !
that open sets of paracompact Hausdorff spaces are not necessarily paracompact.
However, according to Lemma 10 there exists a basis of open sets consisting only of

paracompact members.

Proof of Theorvem 2. Given any compact pair (F,, F,) € &, one can find an open
set U, of X such that U, is compact and F, C U, (X is locally compact). Moreover,
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one can find a set U, C A, open in A and such that the closure f_i_l_z (taken with respect
to A) is compact and such that F,C U, C U,. Clearly, U, and U, are paracompact
spaces, and we can apply Lemma 10 to obtain paracompact spaces V; and V, which
satisfy F,C V,C U,, F,C V,C U,, and are open in U, and U,, respectively. Conse-
quently, V, and V, are open in X and A, respectively, and are thus ICISJ.

Let us now prove that v is an epimorphism. Let he Hq(Fl, F;; G; C) be a
representative of an element h, of H%(X, A; G; C) (g <p). Let h!' be its image
under the homomorphism induced by inclusion (F,, F,) & (V,, V,). Applying Theorem
1to (V,, V,), we find that h' is the v, -image of a class h" € Hq(Vl, V,; G; 8). Pass-
ing from (V,, V,) to the compact pair (U,, U,), we get the same element h, of
H‘g(X, A; G; C), which is now obtained as the v-image of the singular class h".

Proof that v is a monomovphism. Let z be a cycle of X mod A representing a
singular class h € Hq(X, A; G; S) (@< p), and let h' € Hq(HzH, H BzH; G; S) be the
class determined by z. Then vh = 0 means that there is a compact pair (F,, F,)
such that (F,, F,) D (Hz” , “ BZH) and such that v, h' goes into 0 under the homo-
morphism induced by this inclusion. Imbedding further (F,, F,) into (V,, V;) and
applying Theorem 1, we conclude that h' goes into 0 when mapped into

Hq(Vy, V2; G; S).

This ends the proof of Theorem 2.

8. THE IMPLICATION 1cP = 1cP

A Hausdorif space X is said to be locally paracompact if for each x € X there is
an open set U (x € U) such that U is paracompact. Clearly, locally compact spaces
as well as paracompact spaces are special cases of locally paracompact spaces. An
equivalent definition is the following. A Hausdorff space is locally paracompact if for
each x € X there is an open set V (x € V) which is paracompact. The equivalence is
an immediate consequence of Lemma 10, and of the fact that a closed subset of a para-
compact Hausdorff space is itself paracompact.

THEOREM 3. If X is a locally paracompact Hausdorff space and is 1ck, then X
is also 1cb.

Proof. Let x € X, and let U be an open set of X (x € U). Choose an open para-
compact set U' around x (by local paracompactness) and choose an open set
VIc U'NU (x € V') such that HV' |U; Z;S) =0 (q <p). Finally, choose a para-
compact open set V C V' (x € V) (apply Lemma 10 to U'). Clearly,

(42) H,(V|U;2;8)=0 (q<p).

V is a paracompact lcg Hausdorff space, and Theorem 1 is applicable. Using the
naturality of »,, we conclude from (42) that

(43) Hy(V|0;Z2;0)=0 (@< p.
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9. A HOMOLOGY CRITERION FOR UNICOHERENCE

In a previous paper [11], the author has derived a criterion for unicoherence of
ANR-s, using the fact that singular and Cech cohomology coincide for ANR-s. Using
Theorem 1, one now obtains the following improved criterion.

THEOREM 4. Let X be a paracompact Hausdorff space which is connected, lo-
cally arcwise connected and semi-1-lcs. Then X is unicohevent if and only if
Hom(H,(X; Z; S), Z) = 0, that is, if and only if H,(X; Z; S) does not admit Z as a
divect summand.
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