A GENERALIZATION OF BAGEMIHL’S THEOREM
ON AMBIGUOUS POINTS

G. S. Young

Let f[z] be a function mapping the open unit disk |z| < 1 into the Riemann
sphere. The point p on |z|=1 is an ambiguous point of f (see [4]) if there exist
two arcs A, and A,, each with one end point at p, lying in the open disk except for
p, and such that the limits of f at p along A, and along A, exist and are unequal.
Bagemihl [1] proved a remarkable theorem: even if f is not assumed to be con-
tinuous, it can have at most countably many points of ambiguity. (Bagemihl’s result
was actually stronger; it is the case n = 2 of the Theorem below.) Bagemihl and
Seidel [4] showed that every countable set on the unit circle is contained in the set
of ambiguous points of some meromorphic function of bounded characteristic; and
Lohwater and Piranian [7] have strengthened this by proving that every countable set
on |z| = 1 is exactly the set of ambiguous points for some such function. It follows
immediately from these results (or indeed from the existence of even one ambiguous
point for a function in the unit disk) that if ambiguous points of a function in the
(n - 1)-sphere of n-space are defined in terms of asymptotic behavior on arcs, in
the obvious fashion, then there exist functions in the (n - 1)-sphere which have un-
countably many ambiguous points.

But several other possible generelizations to higher dimensions suggest them-
selves. One might expect, for example, that the ambiguous points can not {ill a cell
on the (n - 1)-sphere. This possibility has been pretty thoroughly demolished by
Bagemihl [2], [3], Piranian[9], and Church [5], who give examples of functions on
the interior of the 2-sphere in E® for which the set of ambiguous points is a 2-cell;
Church’s example is a differentiable homeomorphism. In this note, I give a general-
ization in the spirit of Bagemihl’s theorem.,

I now define a “cell of disjoint cluster sets.” Let D be a domain in Euclidean
n-space ET, and let f: D— S be a function from D into a topological space. A
closed r-cell I in the boundary of D is an r-cell of disjoint cluster sets for {
provided there exist two closed (r + 1)-cells J, and J,, lying in D except for I
(which is in the combinatorial boundary of each), such that the cluster set on I from
J, of f does not meet the cluster set on I from J, of f; in other words, such that if
{px} is a sequence of points in J, - I, converging to a point p of I, and {qx} is a se-
quence of points in J, - I, converging to a point q of I, and lim f(pw), lim f(qx) exist
in S, then they are not equal. (Clearly, this definition can be freed from the concept
of sequences; however, I intend to apply it only where S is a compact metric space).

The examples mentioned in the second paragraph can easily be modified to show
that there exist functions in the interior of the unit (n - 1)-sphere S®-1 in En such
that there are uncountably many disjoint (n - 3)-cells of disjoint cluster sets that
fill an (n - 1)-cell in S®-! (n > 2). The principal theorem of this paper is this, that
there cannot be uncountably many disjoint (n - 2)-cells of disjoint cluster sets.

For completeness, we prove a lemma of a familiar type about the image space
to be used.
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LEMMA 1. Let{H,, K,} be an uncountable collection of pairs of disjoint
closed sets in the compact metvic space M. Then theve exist disjoint open sets U
and V in M such that, for uncountably many values of a, Hy is in U and K, is in
V.

Proof. Let d(x,y) be the metric for M. Setting
d(Ha’ Ka) = inf [d(ha’ Ka); ha € Ha, ka € Ka] 9

we can find an integer n such that d(H,, Ky) > 3/n for uncountably many «; there

is no loss in assuming that the inequality holds for all «. The hyperspace 2 M of all
closed subsets of M has a countable basis [6, p. 120] and so, considering the sets

Hy as points of 2M  we see that one of them, Hg, is a point of condensation of the
rest; hence the spherical neighborhood of Hg of radius 1/n in the hyperspace con-
tains, as points, uncountably many sets H,. The hyperspace metric defined in [6] is
such that this implies that the set U of all points x for which d(x, H ) < 1/n contains
all these Hpy. For these values of ¢, we find that one of the sets Ka, say K,, has the
property that the set V of all points of M at distance less than 1/n from Ky contams
uncountably many of the K,;. Then U and V are the desired sets.

THEOREM. Suppose that f: D— M is a function defined from the intevior D of
the unit (n - 1)-spheve S"-1 in E™ into the compact metvic space M. Then Sn-1
does not contain uncountably many disjoint (n - 2)-cells of disjoint cluster sets of f.

Proof. Let {I,} be a collection of disjoint (n - 2)-cells of disjoint cluster sets
for such a function f. For each «, let J),, Jp4 be the (n - 1)-cells containing the
cell I of the definition. Let C;4, C24 denote the cluster sets at I, from Jjq
and J,, respectively. Suppose {Iy} is uncountable. By means of nine lemmas,
we shall arrive at a contradiction.

LEMMA 2. There is no loss in assuming that, for each a, (J14 - 1) N (J2g - 1)
is empty.

Proof. For each a, the cluster sets C1y, C2¢ form a pair of disjoint closed
sets in M. By Lemma 1, there exist disjoint open sets U, and U, in M such that,
for uncountably many values of &, Cy, isin U, and C,, is in U,. For each such
o, there exists an open set W, in E™ containing I, such that f[(J;, - Ip) N W]
isin U; (i=1, 2). Replace Jjy, J2o by (n - 1)-cells containing Iy and lying in
Wq. With these new cells as J] o, J24, and for this uncountable subcollection of the
indices «, the conclusion of the lemma holds.

The remainder of the proof of our theorem consists in showing that we can also
assume that J1, N J1g and Jo N J2g are empty (a # B), and in deriving a contra-
diction from this. In the course of the argument, we shall both drop some of the in-
dices o, and replace the remaining cells I, by subcells. Presumably, it would be
possible to keep the original cells I, ; but this would complicate the argument.

LEMMA 3. Let V be an open n-cell in E* (or in S?). Let J be an (n - 1)-
cell which intersects V and whose boundary lies in En - V. Let K be a component
of INV. Then K separates V into exactly two components, each having K as
boundary in V.

Proof. Considered as a space, V is an orientable acyclic n-manifold, and K is
an orientable (n - 1)-manifold; therefore the lemma is an immediate consequence of
a result of Wilder [10, Chap. X, Theorem 3.1].

LEMMA 4. Let {Jy} be an uncountable collection of closed (n - 1)-cells in E®
r S™. Then there exist an open n-cell V and an uncountable subcollection {J 1}
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of {Ju} such that T contains no point of the (combinatorial) boundary of any cell
Jo1, and such thatV is separated by each Jy.

Proof. For each a, let py be a point of J5 which does not lie in the boundary
BJ, of J,. There exists an integer k such that, for uncountably many o,
d(py, BJa) > 2/k. The set of all points py with such indices a has a point of con-
densation, p. Let V be the spherical neighborhood of radius 1/k about p. Then
for uncountably many «, V contains p, while vn BJy is empty. For any of these
values of a, each component of VNJy separates V, by Lemma 3, so that, a fortiori,
VNJy separates V.

We now return to the main proof. Since we are concerned only with the part of
the cell Jj, near gn-1 , there is no loss in assuming that the origin does not lie 1n
any set J;,. Hence we can perform an inversion h: (E” - 0)— (E® - O) about Sn'
with the result that each set h(J;q) = Jiz is a closed (n - 1)-cell, and such that
Jig U J1a is also a closed (n - 1)-cell. (This “reflection” is convenient, but not
really essential.) A double application of Lemma 4 shows that in E™ there exists
an open n-cell V intersecting s2-1in an open {n - 1)-cell V*,  and having the
properties that for an uncountable set of indices a, V is separated by J;, U Jla
but does not meet B(J;, U Jla), and that V* is separated by each Ip. Again sup-
pose that this is true for all a¢. For each o, let Hjy be a component of Jiq U Jia
that meets V*; let Cy be a component of I NV* in H,,; and let Hy, be a com-
ponent of J2qU J 2o containing C,. (It may easily happen that Hj, and Hp, can
intersect V* in other components.)

LEMMA 5. Each set Hyy (i =1, 2) is the union of a component of J;, and its
reflection under h. Furthermove, HigN (Jiy - 1) is connected.

Proof. First, let K = Hjy N Ji, and let K Hia N Jla The symmetry of the
construction assures us that h(K) = K and h(K) = K. For otherwise h(Ku K) would
be connected, would contain Jjy N Iy, and would be larger than H;y, contrary to the
fact that Hia is a component. Now, by local connectivity of I, and J;,, C, is open
and closed in I, N V*, and the union of the closures of components of K - I, that
have limit points in C, is therefore open and closed in J;,N V. This shows that
each component of K - I, N K has limit points in Cy. For otherwise K would not
be connected, and symmetry would imply the same for H;,. Finally, it follows that
K - Iy is connected; for K is an open connected subset of an (n - 1)-cell, and it
cannot be disconnected by a subset of the boundary of the cell.

By Lemma 3, H;, separates V into two connected open sets .A;, and B,
(i=1,2).

LEMMA 6. The set H,, - 1, lies entively in A,, or entively in B,,.

Proof. By Lemma 5, the set Hpy NJ2q - Iy lies entirely in Ajy or entirely in
Biw, say in Ajy. By constructlon h(A1y) = A1y, and it follows that Hpp N T2 - Iy
also lies in Aj 4.

We have a similar lemma for H;, - Iy.

Since there are only two cases in Lemma 6 and uncountably many «, we can sup-
pose that one of the cases occurs for uncountably many «, and therefore we may
also suppose that it occurs for all «. We now assume that for each o the set
Hzy - Iy lies entirely in A,,. The sets A,, and B,, are connected, and therefore
one of them lies in A, y. Suppose, for all a, that A5 CAjy. Then Azy isin Ay,,
and B;, in B;,, and therefore both Hie and Hz2a separate A, from B;,.
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LEMMA 7. Theve exist two points of V* which, for uncountably many a, are
sepavated in V both by H,, and by H,,.

Proof. By symmetry, A, and B)g both meet DNV and also h(DN V), and
therefore both meet V*. If X is a countable dense subset of V*, there is a point of
X in A2y, and one in Bjy. Some two of these points, p and q, are separated by H,,
and by Hpy, for uncountably many «. Let p be the one that is in Azy. Then p is
separated from H;, - Iy N Hjy by Hpy for every such «.

Again, suppose that the situation described in Lemma 7 holds for all o. Let o
and B be different indices. By Lemma 2, the sets H,, and Hlﬁ are disjoint, so that
one separates the other from p. Suppose first that H;, separates HIB from p. We
need a more detailed analysis of the separation of V by the several sets involved.

LEMMA 8. The sets BagN AIB and B1yN AZB arve connected; the fivst has as
its boundary in V the set Haq U H1g; and the second has as its boundary in V the set

HlaU Hzﬁ.

Proof. Suppose that the set By N A1g is not connected. Since the set is open,
each of its components is open, and it is therefore the union of a countable collection
{U,} of connected open sets. For each k the set Uy has boundary points in H,y and
in Hj g, since otherwise Uy is either a componentof V - Hp, or of V - Hig, and Uy
cannot contain p or q. This contradicts Lemma 3. Let W be an open set in V con-
taining no point of Bj5 and containing H,,. Using again Lemma 3, we see that
W - Hy, is the union of two disjoint connected open sets W, and W,. One of these
lies in A, and the other, say W,, in Bzy5. But W, intersects both U; and Uj, so
that U; UW, UU; is connected; since this set lies in Bzq N A)g, this contradicts the
fact that U; ancf Uj are components. Hence By N Ajg is connected. An application
of Lemma 3 proves the assertion about its boundaries. We note that we have not
used anything about By N Ajg that is not equally true of BijgN AZB'

LEMMA 9. The set Byjg N Azg is a subsel of Bygn Alg.

Proof. If not, the set intersects A, or B;g. If it intersects A5q, then the set
BygU (Hlﬁnlﬁ) U (B1gN Azp)U Az is connected (since HigN Ig intersects Hzgn In);
it contains p and q, but does not meet Hyy. A similar argument disposes of the
other possibility.

LEMMA 10. The seis HjozN HIB and Hyo N Hpg are both empty.

Proof. Suppose y is a point in Hj,N HlB' Then y is not in I, or IB' The set
Bijguyu (Bia N AZB) UHza U Azy is a connected set, since HzyN Iy contains limit
points of Bjy N Azg; and it is a connected set from q to p that does not intersect
Hzg. The other case is handled similarly.

This proves that all the sets H;j, and H;g (i, j = 1, 2; o # B) are disjoint. The
same, then, is true for the sets K;, and K;g G,i=1,2; a+p.

To complete the proof of the theorem, we need the following generalization [11]
of Moore’s theorem on triods in the plane; E® does not contain uncountably many
disjoint sets each of which is the union of an (n - 1)-cell C and an arc A having in
common with C a point of the (combinatorial) intevior bf C. Such a setisa T, ;-
set. Each of the sets K 15U K2y contains a closed (n - 1)-cell Cy having an
(n - 1)-cell of I, in its (combinatorial) interior. For each «, there exists a recti-
linear interval ¥, which is perpendicular to St-1 ' has one end point in the interior
of C,, and is exterior to sn-1 except for that end point. Then Co UFy isa T,_1-
set, and the collection of all sets C,U Fy is an uncountable collection of disjoint
T,_1-sets in E™, This contradiction shows that there are only a countable number
of disjoint ambiguous (n - 1)-cells in gn-1,
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Two comments on the role of the hypotheses may be worthwhile. First, R. L.
Moore [8] has given an example (which deserves to be better known) of a 2-manifold
S which is a Moore space, and therefore regular, but which is not metric, which has
a countable dense subset, and which satisfies the Jordan curve theorem, so that it is
very close to being the plane. The upper half-plane P is dense in this space, and if
we consider the identity map i: P—S, i(p) = p, then every point on the x-axis is a
point of ambiguity. In fact, on every straight line in the upper half-plane intersect-
ing the x-axis at a point p, there is a unique limit as p is approached, and if two
lines from p have slopes with different absolute values, then the functional values
have different limits.

Second, the reader may notice that Lemma 1 is true if the closed subsets are re-
quired to be compact and the space M is required merely to be separable; for a
separable metric space can be imbedded in a compact metric space. However, our
theorem would not be {rue if we replaced the requirement that the space M be com-
pact by the requirement that the cluster sets along the arcs be compact, or even by
the requirement that the union of all the cluster sets be compact. The reason for
this is that even though the cluster set is compact, it may still happen that along an
arc a sequence of functional values may contain no convergent subsequence. When
the space is imbedded in a compact space, these sequences have limits, and the
cluster sets are no longer disjoint.
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