LOCALLY CONVEX TOPOLOGICAL VECTOR LATTICES
AND THEIR REPRESENTATIONS

R. G. Kuller

INTRODUCTION

A Banach lattice is defined as a lattice-ordered Banach space, with real scalars,
in which the ordering and the norm are related by the postulate

(4) |x| < |y| implies ||x|| <||yl], where |x|=x C(-x).

It is the purpose of this paper to discuss a generalization of the Banach lattice,
namely, an object which will be called a locally convex vector lattice, and to examine
some of its properties. We also define the locally m-convex vector lattice and the
locally 1l-convex vector lattice, corresponding to the abstract M-space and the ab-
stract L-space, two specializations of the Banach lattice that are due to Kakutani

[3, 41 By means of Kakutani’s concrete representation theorems for these spaces,
and by the use of the projective limit, it is possible to obtain representation theo-
rems on the locally convex vector lattices.

1. PRELIMINARY REMARKS ON VECTOR LATTICES
AND BANACH LATTICES

For the basic definitions and properties of vector lattices, the reader is referred
o [1].

DEFINITION 1.1. Anideal I in the vector lattice E is a linear subspace of E,
with the property that if a e I and le < | a|, then x € I. (Equivalently, if a, b € I and
if aNb<x<auUb, then x € 1.)

LEMMA 1.1. If B is a Banach lattice, and if 1 is a closed ideal in B,then B/I
is a Banach lattice.

Proof. We denote the elements of B/I by letters (or numbers) with bars; B/I is
a Banach space under the norm ||z|| = inftez || t||. Showing that the relation

|x| < |y| implies ||x|| < ||7]| is equivalent to showing that (1) if 0 <x<y, then
Xl <1311 and @ [[%]] = [[|X]]| for anl X € B/1.

To prove (1): If 0 <X and t € X, then |t| € X. Hence, for any x > 0, we have
[|x]| = info<tez || t]|. In ¥, choose any t> 0, and in %, choose any w > 0. Then
wnt=wnt=xny-=x, since x<y Let z = wn t; then z € X, and 0<z<t.
Hence, ||z|| < [|t|| and ||| = infocyex ||2]| < info<tey ||t||— 711
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To prove (2): If z € X, then |z| € [X]; hence, for every element in X, there is one

of the same norm in x|. Therefore

|1%]] = infeez ||t > inf ez Hwll = [ITxI][ = [[IX[]] .

To demonstrate this inequality in the other direction, it suffices to show the follow-
ing: if 0 <t e |x]|, then there exists a w € x such that |W| < t. For we would then

have ||w|| < [|t]], and ||X|| = infyez || w]| < info<ersy It = 11 TXT 1] = || %] ]].
can be verified that the element (x U0O) Nt - [(-x) U 0]N t satisfies these require-
ments for w.

Corollary. If 0 < x, then ||x|| = infy . 4 || t]].

An abstract M-space is a Banach lattice with the property M: If x 0y > 0, then
||XU Y” = maX[HXH, ||y||] In a Banach lattice B, property M is equivalent to the

assertion that the unit sphere is closed under the lattice operation , or, by duality,
under N; this is easily verified. An element e in a Banach lattice is called a strong
unitif e >0, ||e|| =1, and if ||x|| <1 implies x < e. A strong unit is unique, and
its existence implies property M. A subset S of a Banach lattice B is order-
bounded if there exist elements a and b in B such that a<s<Db for all s € S. An
order-bounded set is automatically metrically bounded, but the converse is true if
and only if B can be provided with an equivalent norm under which it has a strong
unit e. An absitract L-Space is a Banach lattice with property L: If xn y > 0, then

||x + y|| = ||x|| + Hy” It is assumed that the reader is familiar with Kakutani’s
representation theorems and with the nature of the closed ideals in the concrete
representations. ‘

2. LOCALLY CONVEX VECTOR LATTICES

DEFINITION 2.1. A locally convex, linear Hausdorff space E which is also a
vector lattice will be called a locally convex vector lattice if the seminorms {py}ty e
corresponding to some fundamental system of neighborhoods {Vy}yey all satisfy the
condition

(a) if |x| < |y|, then py (%) < py ).

The condition (a) guarantees the continuity of the lattice operations in E, just as
postulate (A) performs that service in Banach lattices. Whenever a fundamental sys-
tem of neighborhoods is referred to, it will be understood to satisfy (a).

DEFINITION 2.2. A vector lattice E is said to be Archimedean if the condition
that u > 0 and x < Au, for all scalars A > 0, implies that x < 0.

LEMMA 2.1. A locally convex vector lattice is Arvchimedean.
Proof. If, for some u > 0, it is true that x < au for all A > 0, then

0<xu0<AMUyo0 = Au,

and py(x U 0) < py(Au) = Apy (u) for all A > 0. Hence, py(x U0) = 0 for all o.
Since E is a Hausdorff space, we have x U0 =0 and x < 0.
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Examples of locally convex vector lattices.

(1) Normed vector lattices. Vector sublattices of locally convex vector lattices
in the subspace topology. Cartesian products of locally convex vector lattices in the
product space topology. Quotients of locally convex vector lattices by closed ideals,
in the quotient space topology.

(2) The set of all real-valued continuous functions on a completely regular
topological space. In the compact-open topology, this locally convex vector lattice
is complete.

(3) Let u be a Radon measure on a locally compact Hausdorff space S, and let
L£1(S) be the set of real-valued locally integrable functions on S. The sets of the
form V(K,)) = {x(t)]fo(t) dpu < A}, where K is a compact subset of S and A > 0,
are a base for a complete locally convex topology on g£(S).

Let E be a locally convex vector lattice; some notations and remarks follow:
{Va }a€ 7 denotes a fundamental system of neighborhoods of 0 in E.
{Py} wey denotes the corresponding set of seminorms.

N, =1{x| py® = 0} ; N, is an ideal in E.
Ey = E/Ny; E, is a normed vector lattice.
f)a denotes the norm on Ey; D,(X) = py(x) for any x € x.

7, stands for the natural lattice homomorphism of E onto Eg; it is both
continuous and open.

xy designates m,(x), the component of x in E,.
If E is complete, then the Ey are Banach lattices.

LEMMA 2.2. A topological vector lattice is a locally convex vector lattice if and
only if it is isomovphic to a vector sublattice of a Cartesian product of normed vector
lattices. A complete, locally convex vector lattice is the projective limit of the
Banach lattices {Ey},. ;-

The proof of this lemma follows immediately from the definition of the projective
limit [8]. An ordering of J is obtained by setting @ < g if and only if VgC Vq; for
a < B, let myp be the canonical homomorphism which maps Eg onto Ey. Then, de-
noting the Cartesian product of the E, by Py Ey, we have

E={x € Py Eqy|mapxg) = xa}-

There exist vector lattices with a Hausdorff topology (under which all of the alge-
braic operations are continuous) that are not locally convex vector lattices. For
example, in the Banach space of all continuous functions of bounded variation on the

unit interval, where
||£]] = supgeiey |£(D)] + (the total variation of f),

and where f < g means f(t) < g(t) for all t in the unit interval, the lattice operations
are continuous, but (A) does not hold. Moreover, there is no equivalent norm under
which this space is a Banach lattice.

A theorem of G. Birkhoff [1] implies that in any Banach lattice the topology is
uniquely determined by the algebraic structure. This is not true for complete locally
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convex vector lattices. The space of all continuous functions on the unit interval can
be equipped with two inequivalent locally convex topologies: the usual norm topology,
and the topology of uniform convergence on the countable, compact subsets of the unit
interval.

3. REPRESENTATION OF LOCALLY CONVEX VECTOR LATTICES
BY SPACES OF CONTINUOUS FUNCTIONS

Let E be a complete, locally convex vector lattice, and let E* be the set of all
continuous linear functionals on E.

DEFINITION 3.1. An element x* € E* is an h-functional if it satisfies the fol-
lowing two conditions: if x> 0, then x*(x) > 0, and if x N y = 0, then either x*(x) = 0
or x*(y) = 0.

The set H of all h-functionals is easily seen to be identical with the set of all
continuous linear lattice homomorphisms of E into R, the set of real numbers. The
kernel of any h-functional is a maximal lattice ideal in E.

Henceforth it is also assumed that E satisfies the following condition:

(V) There exists in E an element e > 0, and a base {Va]»&€J such that
Py(€) > 0 for all o, and such that if py(x) < py(e), then x4 < ey.

Clearly, if py (x) < py(e) for all @, then x < e. The element e is the generaliza-
tion, to the locally convex case, of the strong unit in the Banach lattice. In fact,
eqy/Pa(€e) is a strong unit in E,. The following question (whose analogue for normed
lattices is affirmatively answered) is left open. In the special case where order-
boundedness and boundedness are equivalent for subsets of E, does E satisfy (U)?

(A subset T of E is bounded if, for each V,, there exists a Ay such that A4 T C Vy.) .

Let M = {x* e H| x*(e) = 1}. The following lemma establishes a one-to-one corre-
spondence between the elements of M and the maximal ideals of E.

LEMMA 3.1. If x*€ H and x*(e) = 0, then x* = 0%,

Proof. For any x*e€ H, there exists an a such that |x*(x)| < kpgy (%), where k is
independent of x. From this it follows that if x € Ny, then x*(x) = 0; hence, there is
in E§ an element xj} defined by the equation x§[ny (x)] = x*(x). (Since 7y is an onto
map, every element of E, appears as a 7y (x), for some x. Moreover, if 7y(x) = 14(y),
then x*(x) = x*(y).) It is easily verified that x§ is an h-functional in Ej. Now suppose
that x*(e) = 0; then x§(eq/pa(e)) = 0. Since E, is a Banach lattice with the strong unit
eo/ Py (€), it is, by the representation theorem of Kakutani, the space of all continuous
real-valued functions on a compact Hausdorff space S; from this it follows that
x} = 0, and therefore that x* = 0%,

Give E* the o(E, E*)-topology [2], and let M have the relative topology induced
on it; then M is completely regular. Let C(M) be the space of all real-valued con-
tinuous functions on M. Define the mapping & of E into C(M) in the usual way:
®: x — x(x*). Clearly, ® is a vector lattice homomorphism of E into C{(M). The fol-
lowing lemma shows that & is an isomorphism (into).

LEMMA 3.2. If x*(x) = 0 for all x*€ M, then x = 0.

Proof. Let x, be any component of x, andlet zy be any h-functional in E&.
The composite map z o, is in H, and (z; o my)(x) = 0. Hence zz (xy) = 0 for any



LOCALLY CONVEX TOPOLOGICAL VECTOR LATTICES 87

any h-functional z} € E},. By the nature of Ey, we have x4 = 04, for any a, and
hence x= 0.

The following theorem has now been proved.

THEOREM 3.1. A complete, locally convex vector lattice which salisfies the con-
dition (U) is algebraically isomovphic to a vector sublattice of the space of all con-
tinuous veal-valued functions on a completely vegular topological space.

The topological correspondence is the same as in the locally m-convex algebra
representation. (See [6] for the details.) The topology of uniform convergence on the
compact, equicontinuous subsets of M is the same as the topology of uniform converg-
ence on the equicontinuous subsets of M (see [2] for the definition of equicontinuity).
If this topology is called 7,, and if 7 is the original topology of E, then the following
theorem holds.

THEOREM 3.2. The topology T 1is finev than the topology T7,. Movreover, if M
satisfies the condition that evevy compaci subsetl is equicontinuous, then T is finer
than the compact-open topology, and ® is a continuous mapping. (The condition
automatically holds if E is metrizable, or if E is a t-space [2].).

LEMMA 3.3. Let S be a topological space, and let C(S) be the vector lattice of
all continuous real-valued functions on S, in the compact-open topology. If E is a
vector sublattice of C(S) which contains the constant functions, together with enough
other functions to separvate each paiv of points of S, then E is dense in C(S).

Proof. Consider the functions of C(S), restricted to a compact subset K of S.
Apply the well-known theorem concerning the case where the space is compact [3].

THEOREM 3.3. If the compact-open topology is put on C(M), then ¥E) is dense
in C(M).

The theorem follows at once from the preceeding lemma.

Finally, if E is the space C(S) of all real-valued continuous functions on a com-
pletely regular topological space S, and if the compact-open topology is put on E,
then S is homeomorphic to M. The demonstration follows the argument given for
the case of a locally m-convex algebra [6]. '

If the postulate (U) is not satisfied, then the situation is best handled in another
way. Let E be a complete, locally convex vector lattice satisfying the following con-
dition:
there exists a fundamental system of neighborhoods {Va} such that

€J
for all e, if xn y > 0, then py(x U y) = max[py (%), py (¥),

(M')

or, equivalently,

. there exists a fundamental system of neighborhoods each of which is
(M") : )
closed under the lattice operations.
Such a system of neighborhoods is called an m-base, and E is called alocally
m-convex vecloy lattice.

It is clear from Lemma 2.2 that a complete, locally m-convex vector lattice is
the projective limit of the M-spaces Ey = C(Sq). Moreover, Sy, a subset of E’&, is
a compact Hausdorff space for each @, and C(Sq) is a closed linear subspace of
C(Sq) which consists of all continuous real-valued functions f(x*) defined on Sy and
satisfying a certain set of relations of the form f(x}) = Af(x}¥). (See [3].) Let S' be
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the disjoint union of all of the S, with the obvious locally compact topology. Let

C(S ) be the set of all real-valued continuous functions f defined on S' which satisfy
the followmg two conditions: (i) when restricted to any of the Sy, f is an element

xq of Eg = C(Sq), and (i) if @ < B, and if x5 and xg are the corresponding restric-
tions of f, then Tog (%5 (x3) = Xa- Finally, let S be the space obtained from S' by iden-
tifying all pairs y; and y} of points of S' which satisfy the relation f(y¥) = £(y¥) for
each f in €(S"). Then define €(S) in terms of C(S') in the obvious way. It is clear
from the discussion above that E is algebraically isomorphic to a subset of €(S).
Remarks similar to those which were made in connection with Theorem 3.2 apply to
the topology of E and the topologies of €(S). Finally, by extending in a direct way
some results of M. and S. Krein [5], it can be shown that if ¢(S) is given the compact-
open topology, then E is isomorphic to a dense subset of C(S).

4. REPRESENTATION OF LOCALLY CONVEX VECTOR LATTICES
BY SPACES OF LOCALLY INTEGRABLE FUNCTIONS

Let E be a complete, locally convex vector lattice satisfying the following con-
dition. :

) There exists a base {V,}yes such that if xN y > 0, then

Pa(x + y) = pa(®) + pg(y) for all .
Such a base is called an 1-base, and E is called a locally l-convex vector lattice.
Moreover, it is assumed that E satisfies the following additional condition.

V) There exists in E an e > 0 such that py(e) > 0 for all «,
and if py(x N e) = 0, then py(x) = 0
It follows that if e N x = 0, then x = 0; that is, e is a weak unit of E. If a locally
1-convex vector lattice does not satisfy (V), then it can be shown, exactly as in [4],
that E is a direct sum of locally 1-convex vector lattices each of which satisfies (V).
The following statements on locally 1-convex vector lattices with units are proved
exactly as their analogues for normed vector lattices. (The algebraic details are
identical; the topological arguments simply replace norm convergence by converg-
ence in the locally convex topology.) Let B={b ¢ EI bn(e-b)=0};then B isa
Boolean algebra which 1s closed in E, and every x> 0 in E can be written as an
integral as follows: x = [ g Adb(A). In this representation, {b(\)} is a resolution of
the unit e (see [4]). By means of the decomposition y = y+ - y-, the representation
can be extended to all elements of E. It remains to be shown how this abstract
representation can be replaced by a concrete one.

The space E is the projective limit of the abstract L-spaces Ey, and hence it
can be considered as a subset of the Cartesian product of the E,’s. Since each E,
is isometric and lattice-isomorphic to a space 'Ll(Sa), where S, is a totally dis-
connected, compact Hausdorff space, we can use the following two facts: every
metrically bounded set in Eq, which is directed under the lattice ordering, con-
verges metrically; and every order-bounded set in E, has a supremum and an in-
fimum in E,.

LEMMA 4.1. The Boolean algebra B is closed under the lattice operation of
union.

Proof Let {b¥} be any collection of elements of B; then 0 <P/ <e and
0q < by < ey for all a. The set {b}} is an order- bounded subset of By, and
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hence Uvbg exists in By; call it b°a. Then b° = {--¢, by, -»-} is the supremum of
{b¥}; 0 = U, bv

In particular, B contains, with every countable set of pairwise disjoint elements,
the lattice union of the elements of that set.

In order to define a measure on B, proceed as follows. Let {VB} ey be an l-base
with the property that there exists an a € J such that @ < 8 for all 8 €dJ. For any
B € J, define xg = sup {1 | AVg C Vq}; it can be assumed that AgVg is in the original
system of neigﬁborhoods Then the set of all \gVg can be written {Vy}, ¢, where
Ic J. Itis easy to show that I is a directed set under the ordering wh1ch it inherits
from J.

DEFINITION 4.1. Let the measure u(b) of an element b € B be defined by the

equation u(b) = limit pg(b).
del

If a > B, then py(b) > pB(b); hence the quantity u(b) must exist for all be B
(possibly as +w). Clearly, p is finitely additive, nonnegative, and different from
zero except on the zero element of B.

LEMMA 4.2. The measure |1(b) is countably additive.

Proof. Let b =231°<°=1 bk, where bXNbi=0 if k#i. If i(b) = o, then, for any
number M, there exists a y such that py(b) > M. Then

T ue9 > 3% (6" = Dy(b)>M
k=1 k=1

Since M is arbitrary, Zy=; w(bX) = . On the other hand, if u(b) < «, then, for any
g > 0, there exists a y such that p,(b) > u(b) - €. Then

> a9 > ¥ B9 = By > ) - .
k=1 k=1

Since ¢ is arbitrary, we must have Tr=1 (0¥ > p(b). Finally, for any n, we have
Tpeq 1Y) = p(ZEo1 b9 < pb). It follows that zi-; u(b¥) < u(b).

DEFINITION 4.2. B' = {be B| p(b) < «},
B" = {be B| p(b) = pgb) for some 5}.

Note that B"c B' c B. If u(b) = ps(b), then bg determines b. Indeed, suppose
that one of the components bg of b is known, and that pu(b) = B (b ). If a <B, then
by is determined by the mapping nyg. If o > 8, then there is a umque by € ‘.'T'ga (b'g)
such that B, (by) = (b ) = n(b). This follows from the representations of Ey and
Eg. Therefore all components of b are known, and b is determined.

LEMMA 4.3. Every b€ B is a union of elements of B".

Proof. Let b= { s Doy o* .}. From above, an element b® € B" can be constructed
so that its ath component is by, and so that u(ba ) = Pg(by). If this is done for all

components of b, then b® <b for all «, and Ua b = b,
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Apply the generalized Stone representation theorem to B"; then B" is isomorphic
to 8", the ring of all compact-open subsets of a totally disconnected, locally compact
Hausdorff space S. In such a space, every open set is the union of compact open sets.
By virtue of Lemma 4.3, the correspondence between B" and $B" can be extended to a
correspondence between B and the set ¥ of all open sets in S. This extended map-
ping preserves the lattice operation of union. Note that ¥ is not a Boolean ring.

Let o(3") be the smallest o-ring in S which contains 8". Extend the measure
i from B" to o(B"), by the standard method; the measurable subsets of S are the
elements of 9B, modulo sets of measure zero; measurable sets not in o(B") have
measure +°,

THEOREM 4.1. Every complele, locally 1-convex vector laltice which satisfies
condition (V) is lattice-isomorphic and topologically homeomorphic to a space 2X(8S).
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