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In any geometry satisfying the rudimentary projective incidence axi-
oms an algebra of points can be introduced on any line, with operations de-
fined by incidences, and by this means an "intrinsic" coordinate system
can be introduced. If in this algebra of points, multiplication is commuta-
tive, we say the geometry is commutative. It is well known that the Pappus
theorem, as an incidence relation on lines in the 2-planes of the space, is
a necessary and sufficient condition for the commutativity of the geometry
The question arises whether in dimensions above 2 one can state such a
condition in terms of the proper elements of the geometry--points and
hyperplanes. '

For 3-space it has been shown by Reidemeister and Schonhardt (1)
that the existence of "MUbius configuration" is such a condition--this being
a pair of tetrahedra each of which circumscribes the other. Schonhardt
showed by projection that such a configuration implies the existence of the
Pappus configuration. The theorem of this paper is a generalization of
both the Pappus theorem and a theorem in 3-space (theorem A) equlvalent
to the existence of the Mobius configuration.

Theorem A. Let T be a plane quadrangle in a commutative projec-
tive 3-space, and let a distinct plane be passed through each of the six
sides of T. The vertices of T fall into four triangles; let the planes be
grouped correspondingly todetermine four points--these four points are co-
planar.

It isnotdifficult to see how this theorem is related to the Mobius con-
figuration, but it is susceptible of a simple direct proof, by the Grassman
calculus, which is of interest in itself. (This calculus assumes-commuta-
tivity.)

It can be readily verified that if the six planes are a,b,c,x,y,z so
arranged thatthe vertices of T are the four points [xyz], [xbc], [ayc], [abz]
(outer products) then the points required to be dependent are [abc], [ayz]
[xbz], [xyc], obtainable from the preceding by simply interchanging a and X,
b and y, ¢ and z. By hypothesis the outer product of the vertlces of T van-

ishes; upon expansion this gives the scalar equation "

[xyza][aycb][cbxz] = [abcx][xbzy][zyac].

But one sees that the interchange which would make this equation express
conclusion, in fact merely interchanges the two sides.
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It was the comparison of theorem A with the following restatement of
the Pappus theorem which led to the present paper.

Theorem B. Let H be a line in a commutative plane, and let T be a
triple of distinct points on H. Through each point of T let two lines dis-
tinct from H be passed, and let these lines be paired by considering each
pair of points in T and choosing one line through each point of the pair, in
such a way that each line is used exactly once. These three pairs of lines
determine a new triple of points T', and also determine a second pairing,
made by choosing in each case the alternative line: these pairs determine
a further triple T'". If T' is a collinear-triple, then so is T'".

.Upon comparing theorems A and B one sees that the hypothesis of B
is a lowering of the dimension of that of A,with certain changes. Insteadof
one line through each point of T we have two, and in consequence two new
triples instead of one. We may regard the conclusion as altered tothe as-—
sertion that the dependence of one of these triples implies that of the other.
Our principal result, theorem C, is a direct dimensional generalization of
theorem B; we shall see that in odd dimensional spaces the analogous gen-
eralization of theorem A appears as a special case.

' Theorem C. Let S, be a commutat1ve pro3ect1ve n-space, (n> 1).
In a hyperplane Hg of Sp letT = {tl} (i=1...n+ l)beas_et of n+ 1

points, no proper subset of which are dependent.. Let ‘A{(n = AI:n ‘(k # m)be
the subspace determined by T - tkx - t,, and through each ATQ let there be
passed-two hyperplanes dlstlnct from Hg, to be denoted Hk and H ;. For

each k the n hyperplanes Hk (m=1,2, ... k-1, k+1 ... n+1) deter-
mine a point: let it be pk.  Also, for each m the n - hyperplanes
Hrf?(k =1,2...m-1, m+1 ... n+ 1) determine a point: let itbe qm- If

now the p;'s are dependent, then the qm's are also and the dependenceis
of the same rank.

The proof generalizes the following proof for n = 2 (theorem B). In.
S2, lete;(i =1,2,3) be the vertices of a triangle of reference of a homo-
geneous coordinate system; we write e} =(1,0,0) etc. Let Hy be the line
of e] and e, and let T be the following triple:

tl =el. tz 262' t3 =€=e1+e2

The Ak s are in this case individual points; A% = A1 = é, etc. . The Hrll(]'s
are lines; we shall consider them to be determined by the pr's. Since no

Pk is on Hg we can write

"

P (P11 » Pip» 1)
pz = (pzl s PZZ ’ 1)
( 0 ’ 0 » 1) =e3

]

P3

Now HT is the line represented in row k and column m of the following
array: :
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0 pPiE  Ppye
ey 0 eP

' e,e5 €)e '3 0
What must be shown is that if the points determined by the rows (the py's)
are dependent, then so are those determined by the columns (the q.,'s);
and, that the dependence is of the same rank. If one treats the point sym-
bols as Grassman extensives, the q,,'s are readily computed: .. e.g.
q; =[eppesle, - [epyez] e 3» which in coordinates is (0, p21 - P22 - 1). ()1e
finds the matrix of the qm s to be :

/o P217Py2 -1

P,-,-P o -1

(qmi)= 12 ¥11 . T
P11 . P2 . .. 1 N

It may be described as derived from the transpose of (pki)' by replacing
each element in the last row by the corresponding diagonal element, and
then subtracting this row from each of the others. Obvious elementary
transformations make this matrix identical with (pki) and the _t_heore'm fol-

lows. We shall see now that the same result is obtained for arbitrary n.
In Sp let ej(i =1 .:. n + 1) be the basic vectors of a homogeneous
coordinate system. Let rI;IO be the hyperplane [eje, ... epn].  Lett =
. . . .. . . 1
eifi =1 ... n)and thy) = _Z:ei:'E.' '
-o1=1
Let

n .
Py = Z{ Pkiei + eng1 (k< n)
] £ P , |

Pnt¥l = ©n¢l , ,
The hyperplanes H?: are given by the outer products HE = [Arﬁ1 }lk] For
k<n, m<n, we can write HY =[eje; ... ex_1Pkers] - -€m-1€€mel - )

But all the e;'s which appear in € are already present with the exception of

ey and e, hence we can substitute ex + e, for e and get the array:

H?; =[e;- ek-lp.kek+1 co.e _qlek + ey) em+l--- en) (k<n, m ﬁn) -
, Hﬁ“‘[el ©-. ek_1PkCksl -+ eal . ‘ |

n+l =[eq - .- em-1€me¢l - - - e;1+1]
We assert that .

. Am = ig. (Pim - p,ii) e; -enqy1 (m<n) ; .

9n#l = I Pjj ©i t engl
i=1
We shall justify this assertion, and the theorem will then follow, as in the
case n =2, by the evident equivalence of the matrices (py;) and (q ;). It is
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therefore only required to show that in all cases, with qp, as written,
[Hrl? qm] = 0. (That is, q, mustbe shown to be incident witheach hyper-
plane in column m of the array). Let us take first the case k<n, m<n
and consider the term of H?? containing ej. Let us interchange py and
e}, which changes the sign. Since e, has a zero coefficient in q;, the only
non-vanishing term is

[el s e 1Pk m4l - - en+1] = Pxm
We consider next the term of Hrl? containing e .. From the summation

term of q,, we have a non-vanishing product only if i = k. Interchanging
ex and px now puts px in the n + 1 position and gives -1 as the coefficient
of (Pxm - Pkk)- The product with -e_ .y is -pyy. Altogether, for these
values of k and m we have

m
[Hy am) = Pkm - (Pkm - Pxk) -Prx = O-

The product [Hpt14qp,] vanishes trivially. There remains [Htf(+lqn+1].
Arguing as above we find that the summation term of qu4] ‘gives -py i while
the remaining term gives +pxk- Thus the theorem is proved.

It may be remarked that the theorem does not require the hyperplanes
Hli? and H, to be distinct, and the py's can be chosen quite arbitrarily. If
they are so chosenthat the first n-rowed minor of (pki) is skew-symmetric,
then qp = pg, for the transformation of (pki) which gives (q.,;),» has, inthis
case, the effect of simply multiplying each row by -1. This makes Hrlszll;
for all k and m: that is, we have but one hyperplane through each Arl?. In
odd dimensions this skew symmetry also implies the dependence of the points
represented, and thus shows that the configuration is a generalization of
that of theorem A, 1i.e., a generalization of M'dbius. This does not prove
the generalizad theorem, however, which we state as follows.

Theorem A'. Let S, be a commutative projective n-space with n odd.
In a hyperplane H, of Splet T ={t;} (i=1... n+ 1)be a set of n + 1 points
no proper subset of which are dependent. Let AR be the subspace deter-
mined by T - .tk - t, (k # m), Through each AP let a hyperplane H™, dis-
tince from Hg be passed, and let 9m be the intersection of then hyperplanes
HP(k=1... m-1m+1... n+1). The dy,'s are dependent.

The proof is suggested by the remark above; that is, we have only to
prove that however the H?Q are chosen the matrix of the points determined
has the form described, with the required skew-symmetric minor. In the
terminology of theorem C, we mayuse n of the p' s to determine the Hll;n's and
then compute the q's. We shall have what we want if we let Hli? be defined
as in theorem C when m £ k; and for m > k, put p, . for py. The array then

becomes symmetric. We display it for n = 3.
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o’ —_
0 [p,%es] [p3e,8]  [egeses]]
[ep2es] 0 [e1p3E] [e1eqe3]
[€ezp3] [e;eps] 0 lejeyeyl
k[e4eze3] [ejeqes] [eiepeyq] 0 J
For m >k and m € n, k< n, we have
m
Hig = [e] - .e_1Pm®ky -~ e -1{lexte)e i1 --- eyl
and
n+1 k

Ho  =H ;= fe; - ¢ ex_1®np1€Ke1 - - e ]
In q, we now put py, for p; when m > i. That is, for justification by com-

putation, we write
m

= Y + Zn:- (Pim "pii)ei'en{-l(msn)'

9Im = 221 Pom™Pmi) ¥ 1554
9n+1 = ©n+l-

This makes the matrix (q.,i) take the required form. It remains to show
that with these values, [HJf qm] =0.

For q,4; this is trivial. For m < k the computation is identical with
that in theorem C. For m>k we get a non-zero result from the first sum-
mation term of q,, with i =k, taken with the terms of Hrl? containing em .
The interchange of ey and p, shows the coefficient of (Pmam-Pmk) to be -1.
Since the only other non-vanishing term, the product with -epg], gives
Pmm-Pmk> the theorem is proved.

It remains to show that commutativity is necessary for theorem C.
For this purpose let the py; be elements of a division ring, and consider
the special case

pk = pn+l = en+l (k < n - l)
Pn-1 = aen_l + cen + epngl
Pn =  €p-1 + be, + ejyqg

Using the left dependence only, it can be verified that the qm'S have the
form given in the proof of the theorem. That is,

9m entl1 (m<n - 1), and
An-1 = (1 -ble, - ey
dp = (c—a)en__l— €nsl

dn41 = a€n_1 tbheyteny

One sees that this is essentiallythe case n =2 transferred tc the plane of
€n-1s€ns>€eng]- Thus, for example, q, must be shown to be left dependent
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with p_ _ and €. This reduces to showing the left dependence of the vec-
tors (a,c, 1), (1,1,0) and (c-a, 0, -1), which is a simple matter. Similarly
for the other combinations which can be read off from the array for n = 2.
We assume now, in accordance with the theorem, that the left dependence
of the p)'s implies that of the q,,'s.-" This amounts to the assertion of the
Pappus theorem in this plane, and our conclusion follows. However, a
few more sentences will make the discussion complete. The pjs are left

dependent if there exist elements x,y such that xa + y =0 and xc + yb =0.

This gives xc = xabwhence ¢ = ab. For the qup's we must find x,y,z such
that y(c - a) +za =0, x(1 ~b)+2zb=0andx+y -z =0. Eliminating zwe
have y ¢ = -xa and x = -yb, whence c = ba and therefore ab = ba.

Finally, it should be remarked that theorem C is not all that one.
would wish, since it is not self-dual. In four-space for example, it in-
volves 15 points and 23 hyperplanes. One feels that there shouldbe a self-
dual theorem of this type.
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Note: The restatement of the Mgbius theorem (Theorem A above) which -
led to this paper is to be found.in Baker, PRINCIPLES OF GEOMETRY,
Vol. 1, 1922, p. 62. It was arrived at independently by Mr. Wassel Al-Dhahir,
a graduate student at the University of Michigan. As this paper goes to
press, Mr. Al-Dhahir informs me that he has a promising n-dimensional
self-dual generalization which specializes togive Theorem Cof this paper,
but he is not yet ready to announce a proof.



