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C! Immersed Hypersurfaces Separgte

MicHAEL HirscH & CHARLES PUGH

1. Introduction

Clearly animmersed 2-sphere separ@teds evidenced by the papers of Vaccaro,
Feighn, and M. D. Hirsch, this statement is true—but it is less than clear. We sum-
marize the known results for proper immersighsM™ — N" where the codi-
mensiornk = n —m is> landM, N are boundaryless. Recall that a maprgper

if pre-images of compact sets in the target are compact in the domain.

(a) Vaccaro [7]. Iff is merely PL (piecewise linear) then everything fails; the
counterexample is the house with two rooms, which is a nonseparating PL im-
mersion of the 2-sphere [R®. The illustration in Figure 1 is drawn as piece-
wise smooth. See also Rourke and Sanderson [6] or Bing [1].

Figure 1 The house with two rooms

(b) Vaccaro [7]. Iff is C* and if fM is a subcomplex of &* triangulation of
N thenH,,(fM; Z5) # 0, which by Alexander duality implies thgtM sep-
arates whemV = R"+%,

(c) Feighn[2]. If fisC? k=n —m =1, andHy(N; Z5) = 0, then fM sepa-
ratesn.

(d) Hirsch [4]. If f is C? then fM k-separatesV in the sense that theth ho-
mology and thé&th homotopy groups of the paiv, N \ fM) are nontrivial.
The coefficient group for the homology can be eitfiesr Z .

Note thatk-separation is also referred to dsgiercing.”
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In this paper we analyz€?, non-C?, immersions. As the following proposi-
tion shows, (c) is a consequence of (d), and accordingly we concentrate on (d).
Our main result is as follows.

THEOREM A. A properC! immersionf: M™ — N" k-separatesV whenk =

n —m > 1 In particular, aC*! immersion of a compad¥™ in R"*! separates
Rm-kl.

Note, too, that (d) is a local statement whereas (c) concerns the global topology
of N.

ProrosiTioN. If Hi(N;Z;) = 0 thenl-separation implies topological sepa-
ration.

Proof. The set fM separatesv if and only if the reduced homology group
H¥(N \ fM;Z>) is nonzero. The long exact reduced homology sequence of
(N,N\ fM)is

- — Hy(N; Zp) — Hi(N,N\ fM;Zp) — HJ(N \ fM;Z5).

By assumption, the first group is zero and the second is nonzero. Exactness im-
plies that the third is nonzero. O

Vaccaro’s proof relies on simplicial topology, which is why his theorem ignores
immersions like that shown in Figure 2.

Figure 2 Animmersion to which Vaccaro’s method does not apply

Feighn employs standard Morse theory, which is why he assumeg that?.
Feighn is willing to confront infinitely complicated immersions, as in Figure 2, so
his result is topologically more general than Vaccaro’s. Hirsch also employs stan-
dard Morse theory and neegsto be C?. Using smoother analysis and rougher
functions, we show how to lower the differentiability hypotheseg'drom C? to
C*, retaining the other generalities of Feighn and Hirsch.

In Section 2 we review Feighn’s counting argument, in Section 3 we mod-
ify his ideas to suit theC! codimension-1 case, in Section 4 we generalize to
higher codimensions, and in Section 5 we investigate some related but curious
low-differentiability phenomena.
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2. Good Points and Bad Points

To include the possibility tha¥, N have nonempty boundaries, we adopt Feighn’s
assumption that the proper immersign M — N"*+! satisfies

f~XON)=0M and f istransverse toM.

Sincef is a proper immersion, thé-pre-image of any € fM is a finite set of
points,xy, ..., x;. The numbes is themultiplicity of y with respect tof. Feighn
calls a pointy € fM goodif fM does not branch atandbadif it is not good. See
Figure 3. For a good pointthere are neighborhoods, ..., U, of the pre-image
pointsxy, ..., x, such thatf(U;) = f(U;) whenl1<i, j <s.

Figure 3 Good and bad points ofM labeled with their multiplicities

It is standard to see that the set of good pointgMi is open-dense, and the
pre-image is also open-densedih

Feighn’s strategy is to analyze the multiplicity assuming tfigt does not 1-
separatév homotopically. There are four steps.

Step 1.Every multiplicity is even. Feighn then chooses a gegavhose mul-
tiplicity so has the smallest even factoto2 All other multiplicities are divisible
by 2%o,

Step 2.From the assumption thgtV/ fails to 1-separat®/, Feighn constructs a
smooth map of the 2-disc int¥, g: D — N, such thalg andg|,p are transverse
to fM andyg € g(dD). Also there is a uniqueg € D with g(zo) = yo, and this
zo liesinaD.

Step 3.Feighn next examines the joint pullback

P={(x,2)eM x D : fx = gz}.
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Itis a compact 1-manifold whose boundary lieginx zg. It consists ofg/2 arcs
(and some Jordan curves that are irrelevant). THUW = so/2, which implies
that 2*° does not divide((P).

Step 4.Feighn then constructs a functien D — R such that the composite
wi(x,z) =z 1(2)

is a Morse function orP that has noncritical maxima at the boundary point#® of
The Euler characteristic @ is the sum of the Morse indices at the critical points
of u. Becauseu is a composite, its critical points occur not singly and indepen-
dently but rather in whole fibers,

P(y)={(x,2) € P f(x) =y},

where all points in the fiber share the same Morse index. The multiplicifyi®f
the cardinality of the fiber, and all multiplicities are divisible b$?2hence the
Morse-theoretic Euler characteristic is divisible 8§ 2which contradicts Step 3.

Feighn’s construction ot uses the distance function in the ambient
spaceN, and this is where he uses tli& hypothesis. In Section 3 we
produce such a Morse function by different means.

Here are some details about Steps 1-3. The standing assumptionyidftfeits
to 1-separat&y homotopically.

Step 1.For anyy* € fM, draw a short arg that crossegM transversely at
y*. Since fM does not 1-separafé homotopically, there is a second argho-
motopic toyg (the homotopy keeps the endpointsNin, fM fixed) that is disjoint
from fM. Rounding off corners and smoothing the homotopy leads to a smooth
map of the 2-disc intav, h: D — N, such that:

(a) h andh|,p are transverse tg;
(b) h embedssD and sends a unique poifit € 9D to y*;
(c) h(@D) N fM = {y*}; and
(d) R(dD) N AN = @.
This construction is standard (see Figure 4). Transversality impliesfthat::
M x D — N x N is transverse to the diagonaly. The pre-image is the joint
pullback
P =P, =(f xh)HAy) ={(x,2): fx = hz}.

The diagram

/\
\/

commutes, and is a compact 1-dimensional submanifoldiéi D whose bound-
ary necessarily liesinf x 9D. Commutativity implies that the only points #fthat
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branch points

Figure 4 A smooth disc transverse &V at a good poing*

map toy* are inM x z*. The fiber ofP overy € fM, P(y) = {(x,2) : fx =hz =
v}, either is empty or consists precisely of the set of pofots, z), ..., (x;, 2)},
where{xy, ..., x,} is the f-pre-image ofy. Thus, P(y) has cardinality O or car-
dinality s.

Observe thaP(y*) is simultaneously (a) the boundary pointsfofind (b) the
product f ~(y*) x z*. The boundary points of a compact 1-manifold have even
cardinality. Therefore, the multiplicity of eveny* with respect tof is even. See
Figure 5.

z*

&

Figure 5 The joint pullbackP and its boundary points (the manifald appears to
be 1-dimensional in the figure)

Step P'. Choose a good pointy € fM with least even multiplicityo among
good points. Theny = 2%°¢, ¢ is odd, and all multiplicities of good points are
divisible by 2¥o,

Steps 2 and 3The preceding construction was made for a general pdirt
fM. Repeating it for the special point produces: D — N, and Figure 5 is
valid for P = P,. Thusx(P) = so/2.
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ReMark. The even multiplicity condition is often fulfilled by an immersion. For
example, Boy’s surface is an immersed 2-sphe@3rall of whose good points
have multiplicity 2. It is also easy to immerse the toru®Rso that all its points
have multiplicity a power of 2.

3. C!' Immersions in Codimension 1

Consider a spac®# and a continuous function defined &) saywq: W — R.
As explained in [5], atrong(or “Whitney”) C° neighborhood ofvo consists of all
functionsw: W — R for which |w(x) — wo(x)| < &(x), wheree is a given pos-
itive continuous function defined di. If W is compact, them is bounded away
from 0 and the strong-neighborhood ofug is just an ordinary uniform neighbor-
hood. If, howeverWV is noncompact, then the functiercan have arbitrarily fast
decay toward the frontier d¥; consequently, the behavior af near the frontier
is extremely like that ofvg. For example, ifW = (0, 1) andwo(x) = e Y~ then,
for the correct choice of: (0,1) — (0, c0), any strongC? e-approximation to
wo satisfies lim_ow(x)x™ = 0 for alln e N. If W is a manifold andvg is C”
(r = 1), thenitis natural to define corresponding str@igneighborhoods oivo.
This leads to thetrongC" topologyon the set ofC” maps from one manifold to
another. See [5].

Lemma 1. Any properC?! immersion isC* diffeomorphic to a prope€?* immer-
sion that isC* on its good set.

Proof. Let fo: M™ — N" be a propec! immersion. Its good s&kq C foM C
N is an open embedded! m-submanifold ofN. (It is not closed in general, but
it does not accumulate on itself.) L6% be the same point set &4, but with an
abstract, artificiaC > structure that i€'* compatible with itsC* structure as &*
submanifold ofNV. See [5, Chap. 2] for the existence of such smoothingsCBy
compatibility, the inclusion

ip: Go— N
defines aC* embeddingGo — N. Any C* embedding can be strongiy* approx-
imated by &€ > embedding; sai : Go — N is such an embedding. A strodt
perturbation of aC* embedding extends to an ambient diffeomorphism, say
i: N — N, wherei|g, = io. Infact, we can makethe identity map off a sharply
tapered neighborhood of Go; see Figure 6. The image 6f, underig is aC*®
submanifold ofN.

Defineamapf: M — N asf =i o fo. Then f is a properCt immersion
whose good se6 is a C*™ submanifold ofN, G = io(Go). By construction,
f7G = f3XGo) is an open seV ¢ M. The mapf|y is aC* submersion ot/
ontoG. Since anyC! map from one smooth manifold to another can be strongly
C* approximated by @ > map, we stronglyC* approximatef |, by aC> map
f: U—G.

By the implicit function theorem and the global rank theorem, every sténg
small perturbation of a submersight U — G is a submersio® — G of the
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Figure 6 i is the identity map off/

form f o j, wherej is aC* diffeomorphismU — U that stronglyC* approxi-
mates the identity map — U. Thus extends to aC* diffeomorphismM —
M, still called j, such thatj(x) = x forallx e M \ U. DefineF: M — N as
F = foj. ItisaproperCt immersion that! approximategy, and sinceF |, =
fis C*, itfollows that F is C* on its good set. Commutativity of the diagram

M—Ls=N

Il

M—N

idi ) l

M —N
now shows thaf is C? diffeomorphic tofo. O

LeEmMMA 2. Let f be aC'immersionM — N and letG be any open-dense sub-
set of fM. Then, for any smooth manifol, the generic smooth map: W —
N is transverse tof, and g ~'G is open-dense ig~X(fM).

Proof. Sincef is aC* immersion,fM consists of a countable collection of over-
lapping embedded* m-discsD;. The generic smooth mag: W — N (or the
genericC" map, 1< r < oo) is transverse td;. (Note that this fact does not
rely on high smoothness @¥,.) SinceW is second countable, the generic smooth
mapg: W — N is transverse to all th®;; that is,g is transverse tq. (If f is
merely a smooth map, not an immersion, the question of whether the generic
transverse tg is a three-star problem in [5, p. 84].)
By continuity,¢g~'G is an open subset @f*( fM). The proof that it is generi-
cally dense irg~( fM) has nothing to do with smoothnessfi#l. Letgy: W —
N be given, and take any > 0 and any compact s&& C W. Choose points
wy, ..., w € go (fM) that ares/2-dense ink N gy (fM). Their imagesy; =
go(w;) are “independently mobile” in the sense that small perturbatioofgg
exist that simultaneously move theto any prescribed points neary;, g(w;) =
y!. SinceG is dense infM, this means that we can pertygbpto g so thatg(w;) €
G. Thereforeg G includes{ws, ..., w,}, which iss/2-dense ik N ggl(fM).
On the other hand, compactnesskbimplies that the sekK N g~1(fM) is not
much larger thark N ggl(fM). In fact, for g near enough tg@g, the former
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lies in thes/2-neighborhood of the latter. It follows thgt(G) is §-dense in
K N g7X(fM). This condition ofs-density is open in the space of mapseven
under a weaker topology like the compact open topology. Thus

GG, K) ={g:¢7'G is 5-dense ink N g~ X(fM)}

is open-dense id (W, N). Taking the intersection & (§;, K;) asK; 1+ W and
8; | 0 we see that, for the genetc ¢ —1G is dense irgX(fM). O

THEOREM A (in codimension 1). If f: M™ — N™*Lis a properC! immersion
then fM 1-separatesy.

Proof. By Lemma 1it is no loss of generality to assume tfias C*>° on its good

set. Suppose the theorem is false and ifidtdoes not 1-separaté homologi-
cally. Following Feighn’s construction, we find a smooth map of a compact sur-
faceW into N, g: W — N, which is transverse tg such tha embed$W onto

a smooth loopy meeting fM only at the pointyg. (The difference between not
1-separating homologically versus homotopically boils down to whelfheran
have handles or is the disc.) We choose a gegdavith least even multiplicity

so = 2*°¢, wheret is odd and the minimization is done over the good points. The
immersionf has multiplicity divisible by 2° at all the good points.

By Lemma 2, we may assume thats transverse tgf and thatg G is open-
dense ing~X(fM). Now g~%( fM) is the immersed image @, the joint pullback,
under the immersiomry : P — W that projects(x, w) to w. As in Step 3 of
Feighn’s proof (explained in Section 2)(P) = so/2.

Nearwo, g~X(fM) is an arcy C W that ends atvg. For yg is a good point of
fM andgD meetsfM at yo transversely, as shown in Figure 4. lgt W —

R be a smooth function such thag|, has a noncritical maximum ato. Any c?
small perturbation ot still has a noncritical local maximum alongat to. The

rest ofg~1(fM) is a finite collection ofC* arcsA; in W, i =1, ..., L. The good
setA; = A; Ng~1G is open-dense id; and it is smooth. Each; has aC* tubu-

lar neighborhoodv; in which it appears to be a line segment. Take 1 and
changerg in V; so that (a) it becomes an apparerdl§® function t; defined on

V1 and (b) on the apparently*> arc A1, 71 is Morse. Only finitely many critical
points occur oMy, and we push them into the good st Small enough subse-
guent perturbations do not destroy the fact that the critical points lie in the good
setsA;, although Morseness may be loStee Section 5.

After L progressively smaller modifications we obtain a functipthat is really
just C%, but the critical points ot; o my, are in the good set and this fact is per-
manent unde€! small changes of; . Let r be a generic smooth perturbation of
7;,. By genericity oft and smoothness of;, the restriction ofr to A; is Morse,

1 <i < L. All critical points of t o 7y are good. That is; satisfies the condi-
tions in Step 4 of Feighn’s proof, as outlined in Section 2. The rest of the proof of
Theorem A is the same as tli€ case:u = 1 o Ty is a Morse function orP and

the Euler characteristic calculated usjnds divisible by 20, which contradicts

the fact that it equalsy/ 2. O



C' Immersed Hypersurfaces Separ&te 191

It is interesting to see how the preceding proof fails whens? — R3 is the
house with two rooms. Each sheetffl has multiplicity 2 at good points; at bad
points, itis 3. Even so, we might draw a digb as shown in Figure 7, transverse
to f at atypical pointyg. Then we could consider the pullbagkand compute its
Euler characteristic in two ways. Singehas multiplicity 2 atyg, there are two
endpoints inf ~1(yg) and hence there is just one arcRnso x(P) = 1.

gD

Y2

y1

Yo

Figure 7 The mapg: D — R® embeds the disc acrogi? and meets it in the
curve shown, where; is the tee-junction point

Piecewise linear Morse theory on 1-dimensional manifolds is easy. A paint
noncritical foru if u is monotone in a neighborhood pfand is critical otherwise.
If « achieves a local minimum or a local maximum at each of its critical points,
then it is Morse. Suppose that= t o 7p is Morse onP and that it increases
towardoP.

Considerr and the rectangular loop of £S2 N gD at y; shown in Figure 7.
The perturbatiorr must have a minimum or a maximum @n and one of the
critical values must be different from(y;). Let y, be such a critical point. For
simplicity suppose there are no other critical points. In partical@ecreases on
the segmentyo, yi1].

If t(y1) < t(y2) thent achieves a minimum along all three brancheg &f
that pass through;. Thusy; accounts for three minima @f on P, while y, ac-
counts for two maxima. This agrees with the previous calculation

X(P)=1=3—-2.

On the other hand, i (y2) < t(y1) thent is noncritical along two of the three
branches through; but achieves a local maximum along theshaped branch.
Thusy; accounts for one maximum pfwhile y, accounts for two minima. Again,

x(P) =1=2-1 Inany case, both calculations of the Euler characteristic agree
and we have no contradiction. When there are more critical points, the same type
of reasoning carries through.
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It may be worth mentioning explicitly what we noticed about an arbitrary con-
tinuous functiorr : T — R, whereT is the letterT. It explains why the bad point
y1 inevitably pulls back to a critical point Qf.

ProrosiTiON. Along at least one of the three maximal arcsZin(two are L-
shaped and one is straightr is critical atz, the tee-junction point. It is Morse
thent is critical at ¢ along one or three of these arcs, but not just two.

4. C* Immersions in Higher Codimension

The extension from codimension 1 to codimensids a straightforward modifi-
cation of what appears in [4]. Let: M™ — N"** be a propeC! immersion.

The situation with good and bad points is the same in all codimensions: the good
points form open-dense sets 6§/ and M. Let D be a small smootk-disc in

N that meetsfM transversely at a good point of minimal least-even multi-
plicity so = 2%°¢. Here,y, is at the center oD, not in the image of its bound-

ary, and in fact transversality implies that the boundary is disjoint fya The

pair (D, aD) defines a homology clagse H, (N, N \ fM;Z) and a homotopy
classp € n (N, N \ fM). They could be called the homology and homotopy
k-separating classesf fM.

THEOREM A (in codimensior> 2). Bothh and p are nontrivial. Furthermore,
h is not of odd order, nor is it divisible bg. The same is true fop; it is not of
odd order and does not have a square root.

Proof. As in the codimension-1 case,ifis trivial then D is homotopic (relative
to its boundary) to a dis®’ in N \ fM, and the unionD U D’ bounds a singu-
lar (k + 1)-discg: B — N, whereB is the(k + 1)-ball andg sends the northern
hemisphere of* = 3B to D and the southern hemisphere®. Following the
proof of Feighn’s theorem in Section 2, we modifso that:

(a) g is smooth and in general position with respecfto

(b) gBNAN = @, andg sends the northern hemispherésfto D and the south-
ern hemisphere int&¥ \ fM; and

(c) g7 X(yo) N B is a single point.

Thusg(dB) crossesfM at yo with multiplicity s.

Exactly as before, the pullbagkr, z) : fx = gz} isal-manifoldP ¢ M x B.
On one hand its Euler characteristic is half the number of pre-images ndmely
so/2, while on the other hand itis the sum of the Morse indices ef T o . The
latter sum is divisible by 2 since critical points occur along whole good fibers
P(y), as all critical points in a given fiber are of the same type, aftdd¥ides
the cardinality of each good fiber, which contradicts the fact g&) = so/2, so
p is nontrivial after all.

The proofs of the other assertions in Theorem A in codimensighare also
the same as those in [4], once the existence of a Morse function lkaccepted.
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The only obstruction in the homology case is the need for a transversality pertur-
bation whenW is no longer gk + 1)-disc but is ak + 1)-dimensional simplicial
complex. A result of Fenn [3] that “ani**! supports aC*> structure off its

(k — 1)-skeleton” permits this, and then the previous homotopy analysis carries
over to homology. O

5. Low Differentiability Phenomena

When looking for a proof of Feighn’s theorem in tGé category, there is a natural
trick to try: given aC* immersion, make€* changes of variables in the domain and
target space so that the new immersio@s If the trick can be done, Feighn(s?
theorem implies Theorem A at once. In our proof of Theorem A, we skirted this
issue by making the immersion smooth on its good points rather than everywhere.

THEOREM. There areC! immersions that are not equivalent & immersions
by C* changes of variables.

Proof. The example is simple. Take animmersjpnS* — R?with two branches
through the origin. One branch contaikis= [—1, 1] x 0 on thex-axis, and the
other contains the curvg

12,

y=|x -1<x<L1

We show there is n@'! equivalence off to aC? immersion. In fact, we show
there is no Lipeomorphic (i.e., bi-Lipschitz) equivalence.

Suppose there is ong;: St — S!is a Lipeomorphismg: R? — R?is a
Lipeomorphism, an@ o f o ¥ : ST — R? is C2. The mapy is irrelevant; the
Lipeomorphismp carries the curveX, Y to a pair ofC? curvesX’, Y'. A Lipeo-
morphism cannot carry a pair of tangéHtcurves to a pair of transvergg curves.
ThusX’, Y’ are tangent ap (0). A subsequen€? diffeomorphismy : R? — R?
carriesX’ to X and carriest’ to the graph of aC? functioni: [-1,1] — R.
Hencel = ¢ o ¢ is a Lipeomorphism that carries the pair Y to the pairX, H,
whereH = graphi. Sinceh is C? andi(0) = 0 = /1/(0), there is a constark
such that

|hx| < K|x|*.
Let 11 be the inverse Lipeomorphism,= A7, and write it in coordinates as

u(x, y) = (nalx, y), pa(x, y)).
Thenu(H) = Y. Write
p(x, hx) = (xg, |x1|¥?),
wherex; = ui(x, hx). Let L be the Lipschitz constant ¢f. Then, for smallx,
|xa] = [pa(x, hx)| = [pa(x, hx) — pa(x, 0) + pa(x, 0) — p14(0, 0)|
lna(x, 0) — (0, 0)] — [pa(x, hx) — pax, 0)

v

v

1 1 1
—lxl = Llhx| = | — = KL|x[ |[x] = o= |xl;
L L 2L
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that is,
[x] < 2L|xq].

Sinceus(x, 0) = 0, we also have

3/2

lxa]”* = |pa(x, hx) — p2(x, 0)] < Lihx]|

< LK|x|? < LK(2L|x1))* = 4L3K | x1)?,

which impliesthatl< 4L3K | x1|Y2, animpossibility for smalty (i.e., for smalkv).

O
The same phenomenon appears to persist in higher dimensions and higher degrees
of differentiability—aC" change of variables can not always convert’aim-
mersion to aC"*!immersion. In contrast, here is a theorem whose proof is easy
enough once you remember that every closed sub&etsthe zero locus of some
smooth function.

THEOREM. If h: R — R is continuousH is its graph, andX is thex-axis, then
there is a homeomorphism of the plane to itself that carkiesH to X U G, where
G is the graph of a smooth function.

In the same vein, it is interesting to note that, in the proof of Theorem A, we made
a generic smooth perturbation of in a specialC! coordinate system wheng
appears to be smooth, even thouglis intrinsically justCL. The resulting criti-

cal points oft occur only at good points and are of Morse type (strict maxima and
minima). Had we made the perturbation in coordinates wheie@merelyC! and

the perturbation is merelg® generic, then degenerate critical points would have
appeared. In fact, it is also easy to prove the following theorem.

THEOREM. The critical points of the generik € CY(R, R) are all degenerate,
and they form a Cantor set of Hausdorff dimension zero.

We close by posing a question that arose in the course of our initial attempts to
prove aC! Feighn’s theorem. Recall that Whitney [8] constructedafunction

w: R? — R thatis nonconstant on a connected set of critical points. (His example
shows that the differentiability hypothesis in the Morse—Sard theorem is sharp.)
The graph ofw over a path in the critical set is like a mountain road with so many
switchbacks that its tangent is everywhere horizontal although it climbs steadily.
We ask whether this Whitney phenomenon can occur simultaneously in many di-
rections, not merely in the vertical direction. More precisely, we ask whether there
exists aC! embedded surfad® c R3 such that, for every directionin R3, there

is a nontrivial pathy : [0, 1] — W along which all the tangent spacesWbare
perpendicular te, (v, T, W) = 0.

References
[1] R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré

conjecture Lectures on modern mathematics, vol. 2 (T. Saaty, ed.), pp. 93-128,
Wiley, New York, 1964.



C' Immersed Hypersurfaces Separ&te 195

[2] M. E. Feighn,Separation properties of codimension-1 immersidrepology 27
(1988), 319-321.

[3] R. A. Fenn,Techniques of geometric topolodypndon Mathematical Soc. Lecture
Note Ser., 57, Cambridge University Press, Cambridge, U.K., 1983.

[4] M. D. Hirsch, The complement of a codimension-k immersidath. Proc.
Cambridge Philos. Soc. 107 (1990), 103-107.

[5] M. W. Hirsch, Differential topology,Springer-Verlag, New York, 1976.

[6] C. P. Rourke and B. J. Sandersdntroduction to piecewise-linear topology,
Springerderlag, Berlin, 1972.

[7] M. Vaccaro, Proprieta topologiche delle rappresentazioni localemente biunivoche,
Math. Ann. 133 (1957), 173-184.

[8] H. Whitney, A function not constant on a connected set of critical poibBiske
Math. J. 1 (1935), 51417.

M. D. Hirsch C. Pugh

ZapMedig Mathematics Department
1355 Peachtree Street NE University of California
Atlanta, GA 30309 Berkeley, CA 94720

michael.hirsch@zapmedia.com pugh@math.berkeley.edu



