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Maximal Three-Valued Clones with the
Gupta-Belnap Fixed-Point Property

José Martínez Fernández

Abstract This paper gives a propositional reformulation of the fixed-point
problem posed by Gupta and Belnap, using the stipulation logic of Visser. After
presenting a solution for clones of three-valued operators that include the con-
stant functions, I determine the maximal three-valued clones with constants that
have the fixed-point property, giving different characterizations of them.

1 Introduction

Consider a first-order language L built with the usual connectives and quantifiers,
interpreted by a scheme on a set of truth values E that includes the values 0 (false)
and 1 (true). Suppose L has a monadic predicate T . A ground model for L is a
pair M = (D, I ), where D is the domain and I a function that interprets all non-
logical symbols of L except T . Any function g from D to E and any ground model
M = (D, I ) yield a model M + g of L, using g as the interpretation of the predi-
cate T . We will call valM+g the function that assigns to each sentence of L its truth
value according to the model M + g. To make the language self-referential, we will
suppose that D includes the sentences of L. We say that T is a truth-predicate for L
in M + g if

g(d) =

{
valM+g(d), if d is a sentence of L

0, otherwise.

Let us define a function, called the jump function and denoted ρM , on the set of
possible interpretations of T (that is, the set of functions from D to E):

ρM (g)(d) =

{
valM+g(d), if d is a sentence of L

0, otherwise.
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It is obvious that T is a truth predicate for L in M + g if and only if g is a fixed
point of ρM . Following Gupta and Belnap’s definition in [2] (Def. 2B.11), we say
that a scheme has the fixed-point property if and only if for every language L (whose
logical connectives are interpreted with that scheme) and ground model M of L the
jump ρM has a fixed point. Intuitively, a scheme has the fixed-point property if any
language interpreted with that scheme can contain its own truth predicate.

Suppose that L is a classical first-order language and a is a constant of L such that
I (a) = ¬T a. Then ¬T a represents in L the Liar sentence: ‘this sentence is false’. If
T were a truth-predicate for L, then valM+g(T a) = g(I (a)) = valM+g(¬T a). This
is impossible if ¬ represents classical negation, proving that the classical scheme
does not have the fixed-point property. The work of Kripke, Martin and Woodruff,
and others1 showed that the three-valued Kleene schemes (weak and strong) have
the fixed-point property. This result is a corollary of the theorem below, which es-
tablishes an important sufficient condition for the fixed-point property.

Given a partial order (E, ≤), a set A ⊆ E is consistent if every pair of elements of
A has an upper bound in (E, ≤). A partial order (E, ≤) is a ccpo (coherent complete
partial order) if and only if every consistent subset of E has a least upper bound.
Then the following fixed-point theorem can be proved.2

Theorem 1.1 (Visser) If (E, ≤) is a ccpo and the logical operators of a scheme are
monotonic on that order, then the scheme has the fixed-point property.

In the Kleene schemes, the set of truth values is E3 = {0, 1, 2}, 0 being the value
‘false’, 1 the value ‘true’ and the value 2 being assigned to sentences that lack a clas-
sical truth-value (paradoxes and other pathological sentences). The relevant ccpo is
the order induced by the degree of information that the values give: 2 ≤ 0, 2 ≤ 1.
This is called the order of knowledge on E3 and will be denoted as Ek

3 . Although
Kleene languages represent a nice generalization of classical connectives, there is
an important difference between the classical scheme and the Kleene schemes. It
is well known that the classical scheme is functionally complete, but the Kleene
schemes are not. That is, classical negation and conjunction suffice to define any
Boolean operator, but there are operators on E3 that cannot be expressed with the
Kleene connectives. One of those operators is the unary connective ↓ p such that
↓ 0 = 0, ↓ 1 = 0, and ↓ 2 = 1. This connective can be interpreted as ‘p lacks
(classical) truth value’ and reflects syntactically the semantic fact that there are sen-
tences lacking classical truth value. Gupta and Belnap showed that the weak Kleene
scheme expanded with this connective has the fixed-point property, although the op-
erators are nonmonotonic on the order of knowledge and Theorem 1.1 cannot be
applied. On the other hand, the strong Kleene scheme expanded with ↓ does not
have the fixed-point property. This poses the question of how many operators can be
added to the Kleene schemes without losing the fixed-point property. Generalizing
we arrive at the (Gupta-Belnap) general fixed-point problem.

Problem 1.2 Given a set E of truth values, characterize the class of truth-functional
first-order schemes on E that satisfy the fixed-point property.3

The next section introduces a propositional version of this problem, using the stipu-
lation logic of Visser;4 then a simple characterization of the fixed-point property in
the three-valued propositional case is provided. In the remaining sections of the pa-
per I will determine explicitly the maximal three-valued propositional schemes that
have the fixed-point property and study some of their properties.
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2 Propositional Version of the Fixed-Point Problem

2.1 Stipulation logic Let us consider, given a fixed set P = {p0, p1, . . .} of
atomic sentences and a set 6 of symbols for logical connectives, a sentential lan-
guage L6(P). A (truth-functional) propositional scheme ρ is a function that assigns
to each connective σ of 6 a function ρ(σ) of the corresponding arity on some set E
of truth values. An interpreted language (on E) is a pair (L6(P), ρ). Given an inter-
preted language (L6(P), ρ) and ϕ ∈ L6(P), (ϕ)ρ represents the function that the
scheme ρ assigns to the sentential formula ϕ. As usual, we use ϕ(pi0 , . . . , pin−1) to
indicate that the only sentences appearing in the formula ϕ are pi0 , . . . , pin−1 . A val-
uation is a function v : P → E . It can be extended in the canonical way to a function
v∗

: L6(P) → E using the propositional scheme: if ϕ(pi0 , . . . , pin−1) ∈ L6(P),
v∗(ϕ) = (ϕ)ρ(v(pi0), . . . , v(pin−1)).

Given P ′
⊆ P , a stipulation is a map s : P ′

→ L6(P). Stipulations are intended
to express self-referential sentences: each atomic sentence p ∈ P ′ refers to the
sentence s(p). For example, let us consider the liar sentence: ‘this sentence is false’.
If we call it `, then ` says ` is false or, by Convention T, ` says ¬`, so the liar sentence
is expressed by the stipulation s(`) = ¬`. Given a stipulation s : P ′

→ L6(P),
a valuation v is s-consistent if for all p ∈ P ′, v(p) = v∗(s(p)). Let us say that
an interpreted language has the fixed-point property if for every stipulation s there
is an s-consistent valuation. The Gupta-Belnap general fixed-point problem can be
specialized as follows.

Problem 2.1 Given a set E of truth values, characterize the interpreted languages
on E that have the fixed-point property.

The solution to this propositional version of the fixed-point problem is a necessary
condition for the solution to the general fixed-point problem, in the sense that if
a first-order scheme has the fixed-point property, then its underlying propositional
interpreted language has the fixed-point property.

2.2 Clones of functions Let us present some definitions from the theory of alge-
bras of functions that will be used to give a semantic reformulation of the fixed-point
property.

Let E be a set, O(n)
E the set of n-ary functions on E , and OE =

⋃
n≥1 O(n)

E the
set of all finitary functions on E . Ek will denote the set {0, 1, . . . , k − 1}. We write
Ok instead of OEk . A clone (of functions on E) is a set of functions of OE which
contains the projections (i.e., the functions en

i (x0, . . . , xn−1) = xi for all n ≥ 1 and
0 ≤ i ≤ n − 1) and is closed under composition of functions. A clone is a clone with
constants if it contains the constant functions: cn

a(x0, . . . , xn−1) = a, for all n ≥ 1
and all a ∈ E . Let X ⊆ OE ; then 〈X〉 represents the clone with constants generated
by X (that is, the least clone that contains X and the constant functions). If F is
a clone, F (n) represents the set of functions of F with n variables. The set F (1) is
closed under composition and is called the transformation monoid of the clone F .

In order to characterize the clones of functions we need the notion of a function
preserving a relation. Let E be a finite set and RE the set of all finitary relations on
E . As a convenient pictorial device, an n-ary relation will be represented as a matrix,
each column of the matrix being an element of the relation. Two matrices represent
the same relation if they have the same columns, irrespective of their order. Given
f ∈ O(n)

E and an m-ary relation R ∈ RE , f preserves R, or R is invariant for f ,
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when for every matrix (ai j )m×n of elements of E , if

(a00, . . . , a(m−1)0), . . . , (a0(n−1), . . . , a(m−1)(n−1)) ∈ R,

then
( f (a00, . . . , a0(n−1)), . . . , f (a(m−1)0, . . . , a(m−1)(n−1))) ∈ R

(that is, if the columns of the matrix are elements of R, then the column made by the
function applied to the rows is also an element of R).

Given Q ⊆ RE , Pol Q is the set of functions that preserve all the relations in Q
(called the polymorphisms of Q). We write Pol R instead of Pol{R}. Polymorphisms
provide an important characterization of clones:5 F ⊆ OE is a clone of functions if
and only if there is Q ⊆ RE such that F = Pol Q.

2.3 Semantic version of the fixed-point problem Given a clone F ⊆ OE , an
interpreted language (L6(P), ρ) is adequate for F if F = 〈{ρ(σ) : σ ∈ 6}〉. It is
obvious that all interpreted languages adequate for a clone are equivalent with respect
to the fixed-point property. Thus we say that a clone has the fixed-point property if
some adequate interpreted language for it has the fixed-point property. We will be
interested mainly in languages that have connectives that are interpreted as the unary
constants. Constants are added to propositional languages to allow for the expression
of empirical sentences. For example, the sentence ‘this sentence is false or snow is
white’ can be expressed by the stipulation s(p) = ¬p ∨ q, s(q) = c1, where p
stands for the whole sentence, q stands for ‘snow is white’ and c1 is the constant
‘truth’. Every interpreted language (L6(P), ρ) generates the clone with constants
〈{ρ(σ) : σ ∈ 6}〉. Now we can give a propositional semantic version of the fixed-
point problem.

Problem 2.2 Given some set E of truth values, characterize the set of clones with
constants of OE that have the fixed-point property.

We will prove one general lemma that simplifies the solution.
Let us consider an interpreted language (L6(P), ρ) and a stipulation s : Q →

L6(P), Q ⊆ P . A substipulation s′ is the restriction of s to some subset P ′
⊆ Q

(i.e., s′
: P ′

→ L6(P) such that s′(p) = s(p) for all p ∈ P ′).

Lemma 2.3 Let (L6(P), ρ) be an interpreted language defined on a finite set of
truth values and s : P → L6(P) be a stipulation. If for any finite substipulation s′

there is an s′-consistent valuation, then there is an s-consistent valuation.

Proof Let sn denote the substipulation that restricts the stipulation s to the set
{p0, . . . , pn−1}. Let us use Ek as the set of truth values. We build a tree using
the sn-consistent valuations. The nodes of the tree will be sequences (a0, . . . , an−1),
with n ∈ ω, an ∈ Ek . The first node is the empty sequence (). Given one node
(a0, . . . , an−1), its successors are the nodes (a0, . . . , an) such that the partial valua-
tion v(pi ) = ai , for 0 ≤ i ≤ n can be extended to an sn+1-consistent valuation (if
any). Since there is an sn-consistent valuation, for every n ∈ ω, the tree is infinite.
It is also finitely generated, since every node has at most k successors. Applying
König’s Lemma, the tree has an infinite branch, with nodes an

= (an
0 , . . . , an

n−1),
for n ∈ ω. Then the valuation such that v(pn) = an+1

n for all n is an s-consistent
valuation. �
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3 A Solution to the Three-Valued Case

From now on we will follow some conventions to simplify notation: we will use am-
biguously the same symbol for a function of a clone and for its name in an adequate
language for the clone, and use ordinary variables xi , yi , . . . instead of sentence let-
ters p0, p1, . . .. We will use x to denote an n-tuple (x0, . . . , xn−1) where the value n
can be determined by the context (the same convention applies to y, a, etc.). Given
a clone F ⊆ O3, a stipulation s is then a system of equations xi = fi (xi1 , . . . , xiri

)

(i = 0, 1, . . .), with fi ∈ F and i1, . . . , iri , ri ∈ ω, and an s-consistent valuation is a
solution of the system of equations.

The solution to Problem 2.2 in the three-valued case is based on the transforma-
tion monoids, which offer a nice classification of the clones. We say that a trans-
formation monoid is stable (or that it is a stable monoid) if all its functions have a
fixed point. When a clone has a stable monoid, we say that the clone has the unary
fixed-point property. We say that a clone F has the uniform fixed-point property if
for every finite stipulation xi = fi (x, y), fi ∈ F (n+k) (i = 0, . . . , n − 1), there
are functions gi ∈ F (k) such that gi (y) = fi (g(y), y).6 We say that F has the uni-
form unary fixed-point property if for every f ∈ F (n+1) there is g ∈ F (n) such that
g(y) = f (g(y), y).

In order to prove the theorem we need a lemma, due to Smullyan.

Lemma 3.1 (Smullyan) If F ⊆ OE has the uniform unary fixed-point property, then
F has the uniform fixed-point property.

Proof The proof is by induction on the number of stipulations. The case of the
stipulation of one variable is immediate. Consider the stipulation of n + 1 variables
given by the system of equations,

x = f (x, y, z),
yi = gi (x, y, z),

for i = 0, . . . , n − 1. By the uniform unary fixed-point property, we have a function
h such that h(y, z) = f (h(y, z), y, z). Take ki (y, z) := gi (h(y, z), y, z). Consider
the stipulation determined by yi = ki (y, z) (i = 0, . . . , n − 1). Let the functions
ui provide a uniform solution of this last system (that exists by induction hypothe-
sis). Let v(z) := h(u0(z), . . . , un−1(z), z). Then v and the ui constitute a uniform
solution for our original system. �

The solution to the fixed-point problem is given by the following theorem:7 (for the
notation of unary three-valued functions, see the Appendix (Section 9)).

Theorem 3.2 (Visser) A clone with constants F ⊆ O3 has the fixed-point property
if and only if it has the unary fixed-point property.

Proof Let F be a clone with constants in O3. Suppose that F (1) is a stable monoid.
We want to show that F has the uniform fixed-point property. By Lemma 3.1, it is
sufficient to show that F has the uniform unary fixed-point property.

We define ]F as follows. If ¬i ∈ F (i ∈ E3), then ]F := i . If no function ¬i
belongs to F , ]F := 0. Since the composition of two different functions ¬i is a
function without fixed points, ]F is well defined.

We want to show that for any f ∈ F (1), f 2(]F) = f ( f 2(]F)). If ]F is a fixed
point of f ∈ F (1), we are done. If it is not, f (]F) = a 6= ]F . If f (a) = a, then
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f ( f 2(]F)) = a = f 2(]F). Otherwise, there are only two possible cases: either
f (a) = ]F or f (a) = b, with b such that {0, 1, 2} = {]F, a, b} and f (b) = b. The
first case is not possible because f would be ¬b, contradicting the definition of ]F ,
and the second case satisfies the property f ( f 2(]F)) = b = f 2(]F). Therefore,
f 2(]F) = f ( f 2(]F)). Since this equation holds for any f ∈ F and since F has
constants, it follows that, for any n+1-ary g, g(g(]F, y), y) = g(g(g(]F, y), y), y).
Hence, F has uniform fixed points. This implies that any finite stipulation has a
consistent valuation; by Lemma 2.3, F has the fixed-point property. �

To give a philosophical interpretation of this theorem, notice that a unary function
without a fixed point can be considered as a generalization of classical negation (as
far as fixed-point properties are involved). Then the theorem states that a three-
valued propositional scheme has the fixed-point property if and only if it does not
express (a generalized) negation. Notice that Kleene negation ¬2 is not a general-
ized negation in this sense, unlike β2, usually called “strong negation” or “exclusion
negation.”

4 Definition of the Principal Clones

The aim of the remaining sections of this paper is to give different characterizations
of the maximal three-valued clones with constants having the fixed-point property.
The clones will be defined using certain conditions that can be checked very easily
from the truth table of the logical operators. Before we state the definitions, we need
to introduce some new notation. Let f ∈ O3. The derived set of f , denoted der f ,
is the set of all functions which can be obtained from f with some (all, none) of its
variables replaced by constants. I01 is the clone Pol(01), that is, the set of all func-
tions that preserve the set {0, 1}. If f ∈ I01, then the restriction of f , denoted re f ,
is the function re f : E2 → E3 defined as re f (x0, . . . , xn−1) = f (x0, . . . , xn−1),
for all x0, . . . , xn−1 ∈ E2. E t

2 (E t
3) will denote the order of truth on E2 (respec-

tively, E3), determined by 0 ≤ 1 (respectively, 0 ≤ 2 ≤ 1). We recall from Sec-
tion 1 that Ek

3 is the order of knowledge on E3, determined by 2 ≤ 0, 2 ≤ 1. We
will also use the concept of inner automorphism: let σ be a permutation of a set E
and let us define the mapping (−)σ : OE → OE such that, for every f ∈ O(n)

E ,
( f )σ (x0, . . . , xn−1) = σ−1 f (σ x0, . . . , σ xn−1). This mapping is called an inner
automorphism. If F ⊆ OE , let us define Fσ

= {( f )σ : f ∈ F}.

Definition 4.1 We will call principal clones the following twelve clones with con-
stants in O3.

1. M2 is the clone of the monotonic functions on the order E t
3.

2. K2 is the clone of the monotonic functions on the order Ek
3 .

3. H2 is the clone of all functions f ∈ O3 such that, for every g ∈ der f , if
g 6= c2, then g ∈ I01 and re g is monotonic on the order E t

2.
4. G2 is the clone of all functions f ∈ O3 that satisfy the following conditions:

(a) For every g ∈ der f , if g 6= c2, then g ∈ I01.
(b) If f (a0, . . . , an−1) 6= 2, for some ai ∈ E3 and ai0 = · · · = ai j−1 = 2,

for 0 ≤ j ≤ n − 1 and 0 ≤ i0 ≤ · · · ≤ i j−1 ≤ n − 1, then the function

re f (a0, . . . , ai0−1, x0, ai0+1, . . . , ai j−1−1, x j−1, ai j−1+1, . . . , an−1)

is constant.
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5. For each F ∈ {M, K , H, G}, F0 =(F2)
¬1 and F1 =(F2)

¬0 .

As an illustration of the definition, let us consider the following functions:

f1 0 1 2
0 0 0 0
1 0 1 2
2 0 2 0

f2 0 1 2
0 1 1 1
1 0 1 2
2 2 1 2

f3 0 1 2
0 0 1 0
1 1 1 0
2 0 0 2

f4 0 1 2
0 0 0 1
1 0 0 0
2 1 0 2

If we restrict our attention to the clones M2, K2, H2, and G2, the function f1 belongs
only to M2, f2 (the conditional of the strong Kleene scheme) belongs only to K2, f3
belongs only to H2, and f4 belongs only to G2. For example, f3(2, 0) 6= 2, but the
function re f3(x, 0) is the identity function on E2, so f3 /∈ G2.

The following proposition determines the transformation monoids of the principal
clones and shows that they are precisely the maximal stable monoids.8

Proposition 4.2 O(1)
3 has the following maximal stable monoids (all are supposed

to include e1
0 and the constant unary functions):

M (1)
0 = {α1, α2, α3, β0, β4, β5} M (1)

1 = {α0, α1, α3, γ2, γ4, γ5}

K (1)
0 = {¬0, α0, α1, β0, β1, γ2, γ4} K (1)

1 = {¬1, α2, α3, β0, β5, γ2, γ3}

H (1)
0 = {α3, β5, γ2, γ3, γ4, γ5} H (1)

1 = {α1, γ4, β0, β1, β4, β5}

G(1)
0 = {¬0, γ2, γ3, γ4, γ5} G(1)

1 = {¬1, β0, β1, β4, β5}

M (1)
2 = {β0, β1, β5, γ2, γ3, γ4}

K (1)
2 = {¬2, α1, α3, β4, β5, γ4, γ5}

H (1)
2 = {β0, γ2, α0, α1, α2, α3}

G(1)
2 = {¬2, α0, α1, α2, α3}

The proof of this result is given in the Appendix (Section 9).
The next three sections will analyze more deeply the structure and properties of

the principal clones. In these sections we will
(a) prove that the principal clones are all the clones with constants maximal for

the fixed-point property and characterize the principal clones as the clones of
functions satisfying a certain relation,

(b) give a finite generator system of operators for the principal clones,
(c) locate the principal clones in the lattice of three-valued clones. They are

maximal, submaximal, or subsubmaximal elements in the lattice. In a sense,
this shows that the clones with constants maximal for the fixed-point property
are “big” clones, hosting a great variety of operators.

5 Maximality of the Principal Clones

It is easily shown that, given any set E , for any transformation monoid M ⊆ O(1)
E the

set of clones F such that F (1)
= M is a complete lattice. Consider the function 8

that assigns to each transformation monoid M the greatest element of that lattice (i.e.,
the unique clone that contains any clone with transformation monoid M). In general,
the function 8 is not monotonic: consider N := K (1)

2 \{c0, c1} ⊂ O(1)
3 and the clone

I2 := Pol(2) ⊂ O3. I2 is a clone with the fixed-point property (the valuation that
assigns 2 to all variables is s-consistent, for all stipulations s) and it is easy to see that
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8(N ) = I2 (use Theorem 7.1 below). Lemma 5.2 yields that 8(K (1)
2 ) = K2. Then

N ⊂ K (1)
2 , but 8(N ) * 8(K (1)

2 ) (since c0 /∈ I2). Proposition 5.3 will show that 8 is
monotonic in some special cases: consider M ⊆ O(1)

3 to be a maximal stable monoid
and J the principal clone corresponding to M . Then for every transformation monoid
N ⊆ O(1)

3 , if N ⊆ M , then 8(N ) ⊆ 8(M) = J . This proposition will provide the
key step to prove that the principal clones are all the clones with constants maximal
for the fixed-point property.

Lemma 5.1 Let (E, ≤) be a finite partial order and F ⊆ OE be the clone of
all monotonic functions on ≤, and let us consider a clone G ⊆ OE such that
G(1)

⊆ F (1). Then G ⊆ F.

Proof Let E, F , and G be as given in the hypothesis of the lemma. Consider a
function f ∈ G(n) and elements a, b ∈ En such that ai ≤ bi for 0 ≤ i ≤ n − 1.
Let us consider the functions hi (x) = f (b0, . . . , bi−1, x, ai+1, . . . , an−1), for
0 ≤ i ≤ n − 1. By hypothesis, all hi are monotonic on ≤. Then h0(a0) ≤ h0(b0) =

h1(a1) ≤ h1(b1) = h2(a2) ≤ · · · ≤ hn−2(bn−2) = hn−1(an−1) ≤ hn−1(bn−1),
showing that f (a) ≤ f (b). �

Lemma 5.2 Given M ∈

{
M (1)

2 , K (1)
2 , H (1)

2 , G(1)
2

}
, let F be a clone with constants

such that F (1)
⊆ M, and let J be the principal clone corresponding to M. Then

F ⊆ J .

Proof (Cases of M (1)
2 and K (1)

2 ) By Lemma 5.1, given the definitions of M2 and K2.

Case of H(1)
2 Let us consider a clone F and f ∈ F such that f /∈ H2. By the

definition of H2, there is a function g ∈ der f such that g 6= c2 and either g /∈ I01 or
re g is nonmonotonic on the order E t

2. Let us consider both possibilities in turn.
(1) There are a ∈ En

2 such that g(a) = 2. Since g 6= c2, there are b ∈ En
3 such that

g(b) 6= 2. Let us consider the collection of functions hi (x) := g(b0, . . . , bi−1, x,
ai+1, . . . , an−1), for 0 ≤ i ≤ n − 1. Call k the least i such that, for all j such that
i ≤ j ≤ n − 1, h j (x) 6= c2 (k exists because hn−1(bn−1) 6= 2) and suppose that
hk ∈ I01. If k > 0, then hk−1(bk−1) = hk(ak) ∈ E2; that is, hk−1(x) 6= c2, contra-
dicting the minimality of k. If k = 0, h0 ∈ I01 contradicts that h0(a0) = g(a) = 2.
Therefore, hk /∈ I01 and hk 6= c2. By the definition of H (1)

2 , hk /∈ H (1)
2 .

(2) There are a, b ∈ En
2 such that ai ≤ bi for 0 ≤ i ≤ n − 1 and g(a) = 1,

g(b) = 0. Let us consider the functions hi (x) defined as in case (1). Call
k the least i such that, for all j such that i ≤ j ≤ n − 1, h j (b j ) = 0.
If either ak = bk or hk(ak) = 0, then hk(ak) = hk(bk). If k > 0, then
hk−1(bk−1) = hk(ak) = hk(bk) = 0, contradicting the minimality of k. If k = 0,
h0(a0) = h0(b0) = 0 contradicts that h0(a0) = g(a) = 1. So ak = 0, bk = 1, and
hk(ak) = 1, and by the definition of H (1)

2 , hk /∈ H (1)
2 .

In either case there is hk ∈ F (1) such that hk /∈ H (1)
2 , contradicting that F (1)

⊆ H (1)
2 .

Case of G(1)
2 Consider a clone F and f ∈ F such that f /∈ G2. Let us distinguish

two cases.
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(1) There is a function g ∈ der f such that g 6= c2 and g /∈ I01. An argument
analogous to (1) in the case of H (1)

2 proves that there is a function in F (1) that does
not belong to G(1)

2 .
(2) Without losing generality, we can suppose that for certain numbers m, l

such that m + l = n there are values a0, . . . , al−1 ∈ E2 such that f (a0, . . . , al−1,
2, . . . , 2) 6= 2 and the function re f (a0, . . . , al−1, x0, . . . , xm−1) is not constant.
We define g(x0, . . . , xm−1) = f (a0, . . . , al−1, x0, . . . , xm−1). We can suppose
that g belongs to I01 (otherwise, case (1) applies). Then g(2, . . . , 2) 6= 2 and
there are b0, . . . , bm−1, c0, . . . , cm−1 ∈ E2 such that g(b0, . . . , bm−1) = 1 and
g(c0, . . . , cm−1) = 0. Let us consider the collection of functions of the form
h(x) := g(d0, . . . , di−1, x, di+1, . . . , dm−1), for some d0, . . . , di−1, di+1, . . . ,
dm−1 ∈ E3. We will deduce a contradiction assuming the following property:
(*) for any function h of that form, if h(2) 6= 2, then h(0) = h(1) ∈ E2. Consider
the functions qi (x0, . . . , xi ) = re g(x0, . . . , xi , 2, . . . , 2), for all 0 ≤ i ≤ m − 1
and the functions defined like qi but with a permutation of the variables in re g
(let us say that these functions are similar to qi ). We will prove by induction on
the number of variables that all the functions similar to qi are constant functions
with value in E2. Since g(2, . . . , 2) 6= 2, by the property (*) re g(x0, 2, . . . , 2),
re g(2, x1, 2, . . . , 2), . . . , re g(2, . . . , 2, xm−1) are constant functions with value
in E2. This proves the case i = 0. Now suppose that all the functions sim-
ilar to qi−1 are constant with value in E2, and let us take arbitrary elements
d0, . . . , di , e0, . . . , ei ∈ E2. By induction hypothesis, qi (2, d1, . . . , di ) 6= 2, and by
the property (*) ,

qi (0, d1, . . . , di ) = qi (1, d1, . . . , di );

hence,
qi (d0, . . . , di ) = qi (e0, d1, . . . , di ).

Let us suppose now that

qi (d0, . . . , di ) = qi (e0, . . . , e j−1, d j , . . . , di )

for some 1 ≤ j ≤ i ; then by induction hypothesis again,

qi (e0, . . . , e j−1, 2, d j+1, . . . , di ) 6= 2,

and by the property (*) ,

qi (e0, . . . , e j−1, 0, d j+1, . . . , di ) = qi (e0, . . . , e j−1, 1, d j+1, . . . , di );

hence,
qi (e0, . . . , e j−1, d j , . . . , di ) = qi (e0, . . . , e j , d j+1, . . . , di ).

These identities show that

qi (d0, . . . , di ) = qi (e0, . . . , e j , d j+1, . . . , di ).

We have proved by induction that

qi (d0, . . . , di ) = qi (e0, . . . , ei ).

This shows that qi is a constant function. The argument obviously generalizes to all
functions similar to qi . As a particular case of the induction, we obtain that qm−1 is a
constant function, contradicting that g(b0, . . . , bm−1) 6= 0 and g(c0, . . . , cm−1) 6= 1.
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Since (*) implies a contradiction, there are elements d0, . . . , dm−1 ∈ E3 such that
the function h(x) = g(d0, . . . , di−1, x, di+1, . . . , dm−1) satisfies h(2) 6= 2 and re h
is nonconstant. By the definition of G(1)

2 , h /∈ G(1)
2 . �

The following proposition extends Lemma 5.2 to all maximal stable monoids.

Proposition 5.3 Let M ⊆ O(1)
3 be a maximal stable monoid, J the principal clone

corresponding to M, and let F ⊆ O3 be a clone with constants such that F (1)
⊆ M.

Then F ⊆ J .

Proof Consider M and J as given in the proposition. We know from Definition 4.1
that there is a permutation σ of E3 and a clone G ∈ {M2, K2, H2, G2} such that
J = Gσ . Consider N := G(1). Using Proposition 4.2 it is easy to check that
M = Nσ . Let F be a clone such that F (1)

⊆ M = Nσ . Then it is easy to prove that
(Fσ−1

)(1)
= (F (1))σ

−1
⊆ N . By Lemma 5.2, Fσ−1

⊆ G. Hence F ⊆ Gσ
= J . �

A consequence of this proposition is the characterization of the clones with constants
maximal for the fixed-point property.

Theorem 5.4 The principal clones are all the clones with constants maximal for
the fixed-point property.

Proof That the principal clones have the fixed-point property is a consequence of
Theorem 3.2 and the fact that their transformation monoids are stable. Since no
maximal stable monoid is included in another, it follows that no principal clone is
included in another principal clone. To prove completeness, consider any set A ⊆ O3
such that for every principal clone J there is f ∈ A such that f /∈ J . Our aim is to
prove that 〈A〉 is a clone without the fixed-point property. Suppose there is a principal
clone J such that 〈A〉

(1)
⊆ J (1). By Proposition 5.3, 〈A〉 ⊆ J , contradicting the

definition of A. Hence, for all maximal stable monoids M , 〈A〉
(1) * M . Since any

stable monoid is included in a maximal stable monoid (due to the finiteness of the
lattice of three-valued transformation monoids), it follows that 〈A〉

(1) is not a stable
monoid. Therefore, 〈A〉 does not have the fixed-point property. �

We will now state as a corollary of Proposition 5.3 another characterization of the
principal clones in terms of polymorphisms of certain relations associated with trans-
formation monoids. Consider a transformation monoid M = { f0, . . . , fn−1} ⊆ O(1)

k ,
k ≥ 2. Then let us consider the relation,

0(M) =

 f0(0) . . . fn−1(0)
...

...
f0(k − 1) . . . fn−1(k − 1)

 .

It is easy to prove the following two facts about the relation 0(M).9

Lemma 5.5

1. For any clone F ⊆ Ok , F ⊆ Pol 0(F (1)).
2. For any transformation monoid M ⊆ O(1)

k , (Pol 0(M))(1)
= M (1).

Lemma 5.5 gives a determination of the function 8: for every transformation monoid
M ⊆ O(1)

k , 8(M) = Pol 0(M). It also shows that J ⊆ Pol 0(J (1)), for every princi-
pal clone J . Proposition 5.3 implies that the principal clone J contains every clone
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with transformation monoid J (1). In particular, by Lemma 5.5, Pol 0(J (1)) ⊆ J .
Therefore, for every principal clone J , J = Pol 0(J (1)).10

6 Generator Systems for the Principal Clones

A finite generator system will be given for the principal clones with index 2. Gener-
ators for the rest can then be found analogously. This property has a special interest,
because it gives a basis for the maximal propositional scheme that has the fixed-point
property and contains the nonmonotonic scheme of Gupta and Belnap (notice that the
clone generated by the weak Kleene operators plus ↓ is strictly included in G2).

It is well known that the clone K2 is the clone generated by the strong Kleene
scheme with constants, so it is finitely generated. The following theorem shows that
the clones M2, H2, and G2 are also finitely generated. We will use the following
special binary functions:

∧w 0 1 2
0 0 0 2
1 0 1 2
2 2 2 2

∧s 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

∧o 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

� 0 1 2
0 0 0 0
1 0 0 1
2 0 1 2

� 0 1 2
0 0 0 0
1 0 0 0
2 0 0 2

Considering the values 0, 1, 2 as representing the truth values ‘false’, ‘true’, and ‘nei-
ther true nor false’, respectively, some of these functions have interesting interpreta-
tions. The functions ∧s and ∧w are the conjunction operators of the strong and weak
Kleene schemes, respectively. The operator ∧o can be read, as a mnemonic rule, as a
conjunction operator that incorporates an “overlooking” policy toward pathological
sentences: when one of the conjuncts is a pathological sentence, it just returns the
value of the other sentence.

For each ∧i , i ∈ {w, s, o}, we define as usual x ∨i y := ¬2(¬2x ∧i ¬2 y). Let
f (x0, . . . , xn−1) ∈ O(n)

3 . We say that the variable xi is a contaminant variable if, for
every a0, . . . , an−1 ∈ E3, f (a0, . . . , an−1) = 2 whenever ai = 2.

Generator systems for the principal clones are given by the following theorem.

Theorem 6.1

1. M2 = 〈∧s, ∨s, γ2, β1〉.
2. K2 = 〈¬2, ∧s〉.
3. H2 = 〈∧w, ∨w, ∧o, ∨o〉.
4. G2 = 〈¬2, ∧w, �〉.

Proof (M2) Given f ∈ M (n)
2 ( f /∈ {c0, c1, c2}) and a ∈ En

3 , let us define the
following functions:

ga,i (x) :=


c1 if ai = 0
β0(xi ) if ai = 1
γ2(xi ) if ai = 2
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ha,i (x) :=


c1 if ai = 0
β1(xi ) if ai = 1
γ4(xi ) if ai = 2

ga(x) := ga,0(x) ∧s · · · ∧s ga,n−1(x).
If some ai 6= 0, then ha(x) := ha,0(x)∧s · · ·∧s ha,n−1(x); otherwise, h0(x) := c2.

m(x) :=
∨

a: f (a)=1
ga(x) ∨s

∨
a: f (a)=2

ha(x). By construction, m ∈ 〈∧s, ∨s, γ2, β1〉

(notice that β0 = γ2 ◦β1 and γ4 = β1 ◦γ2). We claim that f = m. Consider b ∈ En
3 .

Case 1: f (b) = 0. Suppose f (a) = 1. If ai ≤ bi for all i , then, by definition of
M2, f (b) = 1, contradicting the hypothesis. Thus there is an i , 1 ≤ i ≤ n, such that
ai � bi . Three pairs of values are possible for ai and bi :

1. if ai = 2 and bi = 0, then ga,i (b) = γ2(0) = 0;
2. if ai = 1 and bi = 2, then ga,i (b) = β0(2) = 0;
3. if ai = 1 and bi = 0, then ga,i (b) = β0(0) = 0.

Therefore, ga,i (b) = 0 and this implies ga(b) = 0. It follows that
∨

a: f (a)=1
ga(b) = 0.

Now suppose f (a) = 2. Applying a reasoning analogous to the case f (a) = 1 we
find that there is i , 0 ≤ i ≤ n − 1, such that ha,i (b) = 0. This implies ha(b) = 0 and∨
a: f (a)=1

ha(b) = 0. Therefore, m(b) = 0.

Case 2: f (b) = 1. If bi = 1, then gb,i (b) = β0(1) = 1; if bi = 2, then
gb,i (b) = γ2(2) = 1. Therefore, gb,i (b) = 1 and, by the definition of the strong
Kleene disjunction, m(b) = 1.

Case 3: f (b) = 2. With an argument analogous to the one used in case 1 it is easy
to prove that if f (a) = 1, then ga(b) = 0, and so

∨
a: f (a)=1

ga(b) = 0. If f (a) = 2,

then by definition of h the value of ha(b) has to be either 0 or 2. But hb(b) = 2.
Therefore,

∨
a: f (a)=2

ha(b) = 2 and m(b) = 2.

(K2) See [1], Section 4.1.

(H2) The proof is by induction on the number of variables of f ∈ H2. It is easy
to verify that H (1)

2 = 〈∧w, ∨w, ∧o, ∨o〉
(1). We will use the following auxiliary

functions:
σ0 0 1 2
0 0 0 0
1 0 0 0
2 0 1 2

σ1 0 1 2
0 0 0 0
1 0 1 0
2 0 0 0

σ2 0 1 2
0 0 1 0
1 1 1 0
2 0 0 0

All belong to H2, as it is shown by the definitions,
σ0(x, y) = α1(x) ∧o y,
σ1(x, y) = β0(x) ∧w β0(y),
σ2(x, y) = (α2(x) ∧w β0(y)) ∨w (β0(x) ∧w α2(y)).

Let f ∈ H (n)
2 , f 6= c2. By the definition of H2, f ∈ I01 and re f is monotonic

on E t
2. Since f ∈ I01, let us consider the function re f as a function re f ∈ O2.

The theorem of characterization of all two-valued clones, due to Post,11 implies that
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re f ∈ 〈∧c, ∨c〉, where ∧c and ∨c are the usual classical operators of conjunction and
disjunction. Therefore, there is a construction of the function re f using projections,
the constant functions, and the functions ∧c and ∨c. Let us define recursively the
function (re f )∗ ∈ O3 as

(c0)
∗

:= c0, (c1)
∗

:= α2,

(en
i )∗(x) := α2(x0)∧w· · ·∧wα2(xi−1)∧wβ0(xi )∧wα2(xi+1)∧w· · ·∧wα2(xn−1);

if h = h1 ∧c h2, then h∗
:= σ1(h∗

1, h∗

2), and if h = h1 ∨c h2, then h∗
:= σ2(h∗

1, h∗

2).
It is easy to prove by induction that re(re f )∗ = re f and that (re f )∗(a) = 0, if

some ai = 2. Moreover, (re f )∗ ∈ H2. Let us define m ∈ O(n)
3 :

m(x) := (re f )∗ ∨w σ0(x0, f (2, x1, . . . , xn−1)) ∨w · · ·

∨w σ0(xn−1, f (x0, . . . , xn−2, 2)).

By induction hypothesis, m ∈ H2. Consider a ∈ En
3 . By construction, if ai = 2,

then σ0(ai , f (a0, . . . , ai−1, 2, ai+1, . . . , an−1)) = f (a), and if ai ∈ E2, then
σ0(ai , f (a0, . . . , ai−1, 2, ai+1, . . . , an−1)) = 0 . Therefore, if some ai = 2,
(re f )∗(a) = 0 and m(a) = f (a). If all ai ∈ E2, then m(a) = (re f )∗(a) = f (a).

(G2) By induction on the number of variables. It is easy to check that G(1)
2 =

〈¬2, ∧w, �〉
(1). Let f ∈ G(n)

2 . Suppose that f has a contaminant variable, say
x0; then we define g ∈ O(n)

3 :

g(x) := (x0 ∧w f (1, x1, . . . , xn−1)) ∨w (¬2x0 ∧w f (0, x1, . . . , xn−1)).

Consider a ∈ En
3 . If a0 = 2, then f (2, a1, . . . , an−1) = 2, because x0 is a

contaminant variable, and g(a) = 2. If a0 ∈ E2, f (0, a1, . . . , an−1) 6= 2 and
f (1, a1, . . . , an−1) 6= 2, then, by the definition of g, g(a) = f (a). If either
f (1, a1, . . . , an−1) = 2 or f (0, a1, . . . , an−1) = 2, then f (x, a1, . . . , an−1) /∈ I01,
and by the definition of G2, f (x, a1, . . . , an−1) = c2. In particular, f (a) = 2.
Hence f (a) = g(a) = 2.

If f has no contaminant variable, the result is a consequence of these three claims.

Claim 1: For every i , 0 ≤ i ≤ n − 1, and every element a0, . . . , an−2 ∈ E2,
f (a0, . . . , ai−1, 2, ai , . . . , an−2) ∈ E2.

Proof: If f (a0, . . . , ai−1, 2, ai , . . . , an−2) = 2, with a0, . . . , an−2 ∈ E2, then
the function f (x0, . . . , xi−1, 2, xi , . . . , xn−2) /∈ I01 and, by the definition of G2,
f (x0, . . . , xi−1, 2, xi , . . . , xn−2) = c2; that is, the variable xi is contaminant, con-
tradicting the hypothesis.

Claim 2: Either re f = c0 or re f = c1.

Proof: Consider elements a, b ∈ En
2 . Let us prove by induction that f (a) = f (b).

Consider the functions hi (x) := f (b0, . . . , bi−1, x, ai+1, . . . , an−1). Suppose that
for some i , 0 ≤ i ≤ n − 1, f (a) = hi (ai ). By hypothesis, f 6= c2, and by definition
of G2, f ∈ I01; therefore, hi (ai ) ∈ E2. By Claim 1, hi (2) ∈ E2. By definition of
G2, re hi (x) is a constant function, and then f (a) = hi (ai ) = hi (bi ) = hi+1(ai+1).
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Claim 3: Let us define the functions gi , g, h ∈ O(n)
3 :

gi (x) := (xi ∧w ¬2(xi )) � f (x0, . . . , xi−1, 2, xi+1, . . . , xn−1),

g(x) := g0(x) ∨w · · · ∨w gn−1(x),

h(x) := g(x) ∨w (α2(x0) ∧w · · · ∧w α2(xn−1)).

If re f = c0, then f = g and if re f = c1, then f = h.

Proof: Consider a ∈ En
3 . By the definitions of the functions, if ai ∈ E2, then

gi (a) = 0 and if ai = 2, then gi (a) = f (a). If some ai = 2, then g(a) = f (a) and
if all ai ∈ E2, then g(a) = 0. Therefore, if re f = c0, then f = g. In a similar way
it can be shown that if re f = c1, then f = h. �

7 The Principal Clones in the Lattice of Three-Valued Clones

The aim of this section is to determine the position of the principal clones in the
lattice of three-valued clones. Although the lattice of two-valued clones is denumer-
able and was completely determined by Post, a complete description of the lattice of
clones on a set of k elements, k > 2, is not to be expected, because the cardinality of
the set of k-valued clones is 2ℵ0 when 2 < k < ω. One of the important problems
concerning the structure of the lattice of clones that has been solved is the deter-
mination of all the maximal clones. The description was given by Yablonskiı̆ for
the three-valued clones and was generalized by Rosenberg for all k-valued clones.12

Lau determined the set of all submaximal clones of O3, that is, the set of all clones
that are maximal in the maximal three-valued clones. Let us state the results which
will be used later.

Theorem 7.1 (Yablonskiı̆) Let {i, j, k} = {0, 1, 2}. O3 has exactly the following 18
maximal clones:

1–3 Ii = Pol(i)

4–6 Ii j = Pol(i j)

7–9 Mi = Pol
(

0 1 2 j j i
0 1 2 i k k

)
10–12 Ui = Pol

(
0 1 2 j k
0 1 2 k j

)
13–15 Ci = Pol

(
0 1 2 i j i k
0 1 2 j i k i

)
16 T = Pol({(a, b, c) ∈ E3

3 : card({a, b, c}) ≤ 2})

17 L = Pol({(a, b, c, d) ∈ E4
3 : a + b = c + d mod 3)})

18 S = Pol
(

0 1 2
1 2 0

)
.

This theorem classifies the clones Mi as maximal clones in O3. One of Lau’s theo-
rems13 classifies each clone Ki as maximal in the clone Ci , hence as submaximal of
O3. In order to classify the clones Hi and Gi we will use another theorem of Lau,
which we quote here.14

Theorem 7.2 (Lau) Let {i, j, k} = {0, 1, 2}. Ui has exactly the following 13 maxi-
mal clones:
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L1
i = U2 ∩ Ii

L2
i = U2 ∩ I jk

L3
i = U2 ∩ Ii j

L4
i = U2 ∩ Iik

L5
i = U2 ∩ Pol

(
0 1 2 j k j i
0 1 2 k j i j

)
L6

i = U2 ∩ Pol
(

0 1 2 k j k i
0 1 2 j k i k

)
L7

i = Pol
(

0 1 2 j
0 1 2 k

)
L8

i = Pol
(

j i k i
i j i k

)
L9

i = Pol
(

0 1 2 j j k k
0 1 2 k i j i

)

L10
i = Pol

0 1 2 j j k k i i j k
0 1 2 j j k k i i k j
0 1 2 k i j i j k i i


L11

i = Pol

 j j j j k k k k j k i i i
j j k k j j k k j k i i i
j k j k j k j k i i j k i



L12
i = Pol


j j j k k j k k i
j j k k j k j k i
j k j j k k j k i
j k k j j j k k i


L13

i = Pol E4
2 ∪

j j k k j j k k j j k k i i i i i i i i i i i i i
j k j k i i i i i i i i j j k k j j k k i i i i i
i i i i j k j k i i i i j k j k i i i i j j k k i
i i i i i i i i j k j k i i i i j k j k j k j k i


Before giving the characterizations of the clones Hi and Gi we need to characterize
the functions belonging to the clones L7

2 and L9
2.

Lemma 7.3 Let f ∈ O3. Then f ∈ L7
2 if and only if for all g ∈ der f , if re g 6= c2,

then g ∈ I01 and re g is monotonic on the order E t
2.

Proof (⇒) Consider f ∈ L7
2 = Pol

(
0 1 2 0
0 1 2 1

)
=: Pol R7 such that re f 6= c2; that is,

there are a ∈ En
2 such that f (a) ∈ E2. Consider b ∈ En

2 . Without losing generality,
we can suppose that a = (0101) and b = (0110). Considering d = (0111), we see
that

(
a
d

)
∈ R7 and

(
b
d

)
∈ R7. That implies that

(
f (a)

f (d)

)
∈ R7 and

(
f (b)

f (d)

)
∈ R7.

Since f (a) ∈ E2, it follows that f (d) ∈ E2 and f (b) ∈ E2, proving that f ∈ I01.
The monotonicity of re f is trivial.
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(⇐) Let us consider f ∈ O3 satisfying the condition and elements a ∈ En
3 and

b ∈ En
3 such that

(
a
b

)
∈ R7. Substituting c2 for variables, we can guarantee that a,

b ∈ E2. If re f = c2, then
(

f (a)

f (b)

)
=

(
2
2
)

∈ R7 . If f ∈ I01 and re f is monotonic

on the order E t
2, then f (a) ≤ f (b) and f (a), f (b) ∈ E2; that is,

(
f (a)

f (b)

)
∈ R7. �

Lemma 7.4 L7
2 = 〈∧w, ∨w, ∧o, ∨o, α4〉.

Proof Consider f ∈ L7
2, f 6= c2. The proof is similar to the one used in Theo-

rem 6.1, in the case of H2, but using the following functions instead:

g(x) :=

{
(re f )∗ if f ∈ I01 and re f is monotonic on E t

2
α4(x0) ∧o · · · ∧o α4(xn−1) if re f = c2.

m(x) := g(x) ∨w σ0(x0, f (2, x1, . . . , xn−1)) ∨w . . .

∨w σ0(xn−1, f (x0, . . . , xn−2, 2)).

Notice that g satisfies re g = re f and that g(a) = 0, if some ai = 2. Con-
sider a ∈ En

3 . If re f = c2, then if all ai ∈ E2, then g(a) = 2. Hence
m(a) = 2 = f (a). If re f = c2 and some ai = 2, then g(a) = 0 and
σ0(ai , f (a0, . . . , ai−1, 2, ai+1, . . . , an−1)) = f (a); hence m(a) = f (a). If
re f 6= c2, then, by Lemma 7.3, f ∈ I01 and re f is monotonic on the order E t

2.
Therefore, if some ai = 2, (re f )∗(a) = 0 and m(a) = f (a). If all ai ∈ E2, then
all σ0(ai , f (a0, . . . , ai−1, 2, ai+1, . . . , an−1)) = 0 and m(a) = (re f )∗(a) = f (a).

�

Lemma 7.5 Let f ∈ O3. Then f ∈ L9
2 if and only if for all g ∈ der f , if g 6= c2,

then g ∈ I01.

Proof Similar to Lemma 7.3. �

Lemma 7.6 L9
2 = 〈¬2, ∧w, �, γ0〉.

Proof Consider f ∈ L9
2, f 6= c2. The proof is similar to the one used in Theo-

rem 6.1, in the case of H2. Let us define the following functions:

ga(x) := α1(xi0) � · · · � α1(xir−1), if ai0 = · · · = air−1 = 2.

If f 6= c0,

ha,i (x) :=


γ0(xi ) if ai = 0
β0(xi ) if ai = 1
α0(xi ) if ai = 2

ha(x) := ha,0(x) ∧w · · · ∧w ha,n−1(x)

m(x) :=

∨
a: f (a)=2

ga(x) ∨w

∨
a: f (a)=1

ha(x) .

We claim that f = m. Consider a ∈ En
3 . If f (a) = 2, then ga(a) = 2 and

m(a) = 2 (notice that ga is defined, since otherwise a ∈ En
2 , contradicting that

f ∈ L9
2 and f 6= c2). If f (a) = 1, then let us consider any b ∈ En

3 such
that f (b) = 2. Suppose that ai = 2 whenever bi = 2. Then, without losing
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generality, a = (a0, . . . , ak−1, 2, . . . , 2) and b = (b0, . . . , bk−1, 2, . . . , 2), with
a0, . . . , ak−1, b0, . . . , bk−1 ∈ E2. Since f (a) = 1, f (x0, . . . , xk−1, 2, . . . , 2) 6= c2,
and applying Lemma 7.5 it follows that f (x0, . . . , xk−1, 2, . . . , 2) ∈ I01, contra-
dicting that f (b) = 2. Therefore, there is bi = 2 such that ai ∈ E2. This im-
plies gb(a) = 0. Moreover, ha(a) = 1 and hb(a) ∈ E2 by definition of h; hence
m(a) = 1.

If f (a) = 0, a similar argument to the case f (a) = 1 shows that gb(a) = 0
when f (b) = 2. Consider now any b such that f (b) = 1. Since f (a) = 0, a 6= b;
that is, there is ai 6= bi and then hb,i (ai ) = 0. Therefore, hb(a) = 0 and finally
m(a) = 0. �

The characterization of the clones Hi and Gi is given by the following propositions.

Proposition 7.7 The clones Hi (i ∈ E3) are the intersection of two maximal clones
of Ui , namely,

Hi = L7
i ∩ L9

i ,

and they are maximal in those maximal clones.

Proof In order to simplify notation, let us suppose i = 2. The other cases can
be characterized similarly. It is trivial to prove that H2 = L7

2 ∩ L9
2 , given the

characterizations of the clones involved.
To prove that H2 is maximal in L7

2, we must prove that for every f ∈ L7
2\H2,

〈H2 ∪ { f }〉 = L7
2. Since f ∈ L7

2 and f /∈ H2, using the characterization lem-
mas we find that there is g ∈ der f such that g 6= c2 and re g = c2. With-
out losing generality, we can suppose that there are elements a ∈ En

3 such that
a0 = · · · = ai−1 = 2, ai , . . . , an−1 ∈ E2, 0 ≤ i ≤ n − 1, and g(a) 6= 2. Consider
the function h(x) := g(x, . . . , x, ai , . . . , an−1). Since re g = c2, h ∈ {α4, α5} and
then (by Theorem 6.1 and Lemma 7.4) 〈H2 ∪ { f }〉 = 〈H2 ∪ {h}〉 = L7

2.
To prove that H2 is maximal in L9

2, consider f ∈ L9
2\H2. Since f ∈ L9

2 and
f /∈ H2, by the definitions of the clones we find that there is g ∈ der f such that
g 6= c2, g ∈ I01 and re g is not monotonic on E t

2. That means that there are elements
a, b ∈ En

2 such that ai ≤ bi and g(a) = 1 and g(b) = 0. Without losing gen-
erality, we can suppose that a0 = · · · = ai−1 = 0 and b0 = · · · = bi−1 = 1
and ai = bi , . . . , an−1 = bn−1, 0 ≤ i ≤ n − 1. Consider the function
h(x) = g(x, . . . , x, ai , . . . , an−1). Then h ∈ {¬2, γ0, β2}. Given that ¬2(x) =

γ0(x) ∧w (c1 ∨w x) = β2(x) ∧w (c1 ∨w x), x � y = (¬2(x) ∧o y) ∧o (x ∧o ¬2(y))
and γ0(x) = ¬2(x ∧o c1), it follows that 〈H2 ∪ { f }〉 = 〈H2 ∪ {¬2}〉 = L9

2. �

Proposition 7.8 The clones Gi (i ∈ E3) are maximal in L9
i and they are not

included in any other submaximal of O3.

Proof Let us fix i = 2, the other cases requiring an analogous treatment. It is trivial
to prove that G2 ⊆ L9

2, considering the characterizations of the clones.
Let us show that G2 is not included either in any other maximal clone of O3

distinct from U2 or in any maximal clone of U2 distinct from L9
2. The clones Ii ,

Ii j , and S cannot contain G2 because they do not contain all constant functions.
The function ¬2, which belongs to G2, is a counterexample to the inclusion in the
clones Mi , U0, U1, C0, and C1. The function α0 is a counterexample to the clones
C2 and L (the clone L can be characterized as the clone of all functions that have a



466 José Martínez Fernández

representation as a lineal polynomial in the field (Z3, +, · ), and the expression of α0
as a polynomial of Z3 of minimal degree is 2x2

+ x) and ∧w is a counterexample to
T .

With respect to the other maximal clones of U2, the clones L1
2, L2

2, L3
2, L4

2, and L8
2

do not have all constant functions. The function ¬2 is a counterexample to the clones
L5

2, L6
2, and L7

2. The function � belongs to G2, but not to the clone L10. Finally, ∧w

is a counterexample to the clones L11
2 , L12

2 , and L13
2 . Note that the inclusion of G2

in L9
2 is strict, because the function β0 belongs to L9

2, but not to G2.
In order to prove the maximality of G2 in L9

2, consider f ∈ (L9
2)

(n), f /∈ G2.
Without losing generality, f satisfies that there are a ∈ En−i

2 such that f (2, . . . , 2, a)

6= 2 and re f (x0, . . . , xi−1, a) /∈ {c0, c1}. Therefore, there are b, d ∈ E i
2 such that

f (b, a) = 0 and f (d, a) = 1. Let us consider the functions g j (x) := f (d0, . . . ,
d j−1, x, b j+1, . . ., bi−1, a), 0 ≤ j ≤ i − 1. For at least one of those functions, say
gk , it is true that gk(bk) 6= gk(dk), because otherwise f (b, a) = f (d, a). Moreover,
gk(2) ∈ E2, because if gk(2) = 2, then the function f (x0, . . . , x j−1, 2, x j+1, . . . ,
xn−1) /∈ I01 and, by Lemma 7.5, this implies f (x0, . . . , x j−1, 2, x j+1, . . . ,
xn−1) = c2, contradicting the fact that f (2, . . . , 2, a) 6= 2. We have found
a function gk ∈ {γ0, γ2, β0, β2}. Since each of those functions generates γ0
(γ0 = ¬2 ◦ γ2 = β0 ◦ ¬2 = ¬2 ◦ β2 ◦ ¬2), it follows that γ0 ∈ 〈G2 ∪ { f }〉. �

8 Generalizations and Open Problems

Let us consider another theorem by Visser that gives a propositional version of The-
orem 1.1.15

Theorem 8.1 (Visser) If (E, ≤) is a ccpo and all the functions in a clone F ⊆ OE
are monotonic on that order, then F has the fixed-point property.

This result can be generalized to partial orders that are not ccpos using a theorem
proved by Roddy. Given a partial order (E, ≤), Pol ≤ is the clone of all func-
tions monotonic on ≤. Let us say that a partial order (E, ≤) is stable if all mono-
tonic functions from E to E have a fixed point, that is, if (Pol ≤)(1) is a stable
monoid.16 Given two partial orders (E, ≤) and (E ′, ≤′) the Cartesian product is
given by the pointwise order on the Cartesian product of the sets and will be repre-
sented as (E × E ′, ≤ × ≤

′).

Theorem 8.2 (Roddy17) Let (E, ≤) and (E ′, ≤′) be two finite stable partial orders.
Then the Cartesian product (E × E ′, ≤ × ≤

′) is a stable partial order.

Now we can give the generalization of Theorem 8.1.

Theorem 8.3 Let (Ek, ≤) (k ≥ 2) be a stable partial order and F ⊆ Ok a clone
such that F (1)

⊆ (Pol ≤)(1). Then F has the fixed-point property.

Proof Consider a partial order (Ek, ≤) (k ≥ 2) such that (Pol ≤)(1) is stable and a
clone F ⊆ Ok such that F (1)

⊆ (Pol ≤)(1). By Lemma 5.1, F ⊆ Pol ≤. We will
prove that Pol ≤ has the fixed-point property and a fortiori that F has the fixed-point
property. Let us consider a finite stipulation s : xi = fi (x) (i = 0, . . . , n − 1)
( fi ∈ (Pol ≤)(n)). Consider the function ρs : En

k → En
k defined as

ρs(a) = ( f0(a), . . . , fn−1(a))
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(the jump function). It is obvious that there is an s-consistent valuation if and only if
ρs has a fixed point. By Theorem 8.2, the partial order (En

k , ≤n) := (Ek × · · · × Ek,
≤ × · · ·× ≤) is stable. It is easy to check that ρs is monotonic on the order (En

k , ≤n).
Hence ρs has a fixed point and there is an s-consistent valuation. By Lemma 2.3,
Pol ≤ has the fixed-point property. �

Another simple application of Theorem 8.1 gives a solution to the fixed-point prob-
lem in the two-valued case.

Theorem 8.4 Let F ⊆ O2 be a clone with constants. Then the following three
conditions are equivalent:

1. F has the fixed-point property;
2. F has the unary fixed-point property;
3. All the functions in F are monotonic on the order of truth.

Proof It is easy to prove that if a function f ∈ O2 is not monotonic on the order of
truth, then classical negation belongs to 〈 f 〉. This shows that (2) implies (3). That
(3) implies (1) is a consequence of Theorem 8.1. �

It is natural to ask whether the characterization given by Theorem 3.2 is valid for
sets of truth values of cardinality different from two or three. We do not know if
the characterization is valid for other finite sets of truth values, but the following
counterexample shows that it is not valid when the set of truth values is infinite.
Let us consider the clone with constants generated by the following functions on
the natural numbers: for all n, m ∈ ω, fn(m) = n, if m ≤ n and fn(m) = m,
if m > n. It is obvious that the transformation monoid of the clone is stable, yet
it does not have the fixed-point property. Consider the stipulation s given by the
system xn = fn(xn+1). Suppose that there is an s-consistent valuation v and consider
l := v(x0) + 1. As v is s-consistent, v(xn) = fn(v(xn+1)), for all n ∈ ω. Then
v(x0) = f0( f1(. . . fl(v(xl+1)) . . .)). By the definition of fn , it is true that for all
n, m ∈ ω, fn(m) ≥ n and fn−1 ◦ fn = fn . Therefore, v(x0) = fl(v(xl+1)) ≥ l,
contradicting the definition of l.

Finally we want to explore this situation: if for some set of k truth values a gener-
alization of Theorem 3.2 holds, what can be said about the clones with constants in
Ok maximal for the fixed-point property? Consider the following two hypotheses.

Hypothesis 1: For every clone with constants F ⊆ Ok , F has the fixed-point prop-
erty if and only if F (1) is a stable monoid.

Hypothesis 2: Let M ⊆ O(1)
k be a maximal stable monoid and let F ⊆ Ok be a

clone with constants such that F (1)
⊆ M . Then F ⊆ Pol 0(M).18

With the help of Lemma 5.5, it is trivial to prove the following proposition, which
gives a strategy for the classification of the clones with constants maximal for the
fixed-point property.

Proposition 8.5

1. If Hypothesis 1 is true, then
(a) if M ⊆ O(1)

k is a maximal stable monoid, then Pol 0(M) is a clone
maximal for the fixed-point property;
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(b) if J ⊆ Ok is a clone with constants maximal for the fixed-point property,
then there is a stable monoid M ⊆ O(1)

k such that J = Pol 0(M).
2. If both Hypotheses 1 and 2 are true, then if J ⊆ Ok is a clone with constants

maximal for the fixed-point property, then there is a maximal stable monoid
M ⊆ O(1)

k such that J = Pol 0(M).

9 Appendix

We use the following notation for unary three-valued functions:

Permutations

e1
0 ∼1 ∼2 ¬0 ¬1 ¬2

0 0 1 2 0 2 1
1 1 2 0 2 1 0
2 2 0 1 1 0 2

Non-bijective functions

α0 α1 α2 α3 α4 α5
0 0 0 1 1 2 2
1 0 0 1 1 2 2
2 1 2 0 2 0 1

β0 β1 β2 β3 β4 β5
0 0 0 1 1 2 2
1 1 2 0 2 0 1
2 0 0 1 1 2 2

γ0 γ1 γ2 γ3 γ4 γ5
0 1 2 0 2 0 1
1 0 0 1 1 2 2
2 0 0 1 1 2 2

c0 c1 c2
0 0 1 2
1 0 1 2
2 0 1 2

The following matrix represents the elements of the twelve maximal stable monoids,
as defined in Proposition 4.2. The element of row F and column f is 1 when f ∈ F
and is 0 when f /∈ F .

α0 α1 α2 α3 β0 β1 β4 β5 γ2 γ3 γ4 γ5 ¬0 ¬1 ¬2

M (1)
0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0

M (1)
1 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0

M (1)
2 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0

K (1)
0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0

K (1)
1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 0

K (1)
2 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1

H (1)
0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0

H (1)
1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 0

H (1)
2 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0

G(1)
0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

G(1)
1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0

G(1)
2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1
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Now we can give a proof of Proposition 4.2, which we state again.

Proposition 9.1 O(1)
3 has exactly the twelve maximal stable monoids M (1)

i , K (1)
i ,

H (1)
i , G(1)

i (i ∈ E3), with the elements defined in the previous matrix (plus e1
0 and

the constant functions).

Proof It can be checked easily that all these sets are stable monoids and that
they are all different. Proving that they are maximal stable monoids and that they
are the only maximal stable monoids reduces to proving the following claim:
every set of functions J ⊆ O(1)

3 such that, for every transformation monoid

M ∈

{
M (1)

i , K (1)
i , H (1)

i , G(1)
i

}
(i ∈ E3) there is h ∈ J such that h /∈ M , gen-

erates a function without fixed points. We will determine the sets J with this
property that are minimal for inclusion. Notice that the composition of two func-
tions ¬i , ¬ j (i 6= j) is a function without fixed points. Hence we can suppose that
J has at most one function ¬i .

We will consider first the case in which ¬i /∈ J for all i ∈ E3. Looking at the
row of G(1)

0 in the matrix it is evident that all functions in J cannot be of the type γi .
Let us suppose that J only contains functions from βi and γi . Then considering the
row of M (1)

2 we see that either γ5 ∈ J or β4 ∈ J . If γ5 ∈ J and β4 /∈ J , attending
to the rows of K (1)

2 and H (1)
0 we see that J should include one of the sets, {β0, γ5},

{β1, γ5}, which are minimal and generate a function without fixed points. If β4 ∈ J
and γ5 /∈ J , considering the rows of K (1)

2 and H (1)
1 we discover two new minimal

sets, {β4, γ2}, {β4, γ3}. If γ5 ∈ J and β4 ∈ J , we need to add some other function
that does not belong to K (1)

2 , and so these sets are never minimal. The same type
of argument can be used to find the minimal sets J only with functions αi and βi
and the ones with functions αi and γi . They are {α0, γ3}, {α1, γ3}, {α2, γ4}, {α2, γ5},
{α2, β1}, {α3, β1}, {α0, β4}, {α0, β5}.

Every set J that contains at least one function of each type (αi , βi , and γi ) cannot
be included in any stable monoid M (1)

i , G(1)
i . To determine the minimal sets in this

case, let us classify the functions according to their range of values ({0, 1}, {0, 2},
{1, 2}) (see the matrix at the end of the proof). All the functions in J cannot have
values in {0, 1} (in this case J ⊆ H (1)

2 , as it is obvious from the matrix). Let us
consider the case in which all functions in J have values in {0, 1} or {0, 2}. Looking
at the K (1)

0 -row we see that either α2 ∈ J or β4 ∈ J . If α2 ∈ J , then, since we
are supposing that some function γi ∈ J , it is necessary that γ4 ∈ J , but {α2, γ4}

is a minimal set, so we cannot find any new minimal set. If β4 ∈ J , then γ2 ∈ J ,
but {γ2, β4} is a minimal set. By an analogous argument we can check that no new
minimal sets can be found unless in J there is at least one function with values in
{0, 1}, another one with values in {0, 2}, a third one with values in {1, 2} and at least
one function of each type (αi , βi , and γi ). The three-element sets J that satisfy
this condition and do not include any of the two-element minimals are {α1, β5, γ2}

and {α3, β0, γ4}. A bit of calculation allows to show that every four-element set J
with the previous condition includes some already determined two- or three-element
minimal set. This completes the list of all minimal sets J without functions ¬i :
{β0, γ5}, {β1, γ5}, {β4, γ2}, {β4, γ3}, {α0, γ3}, {α1, γ3}, {α2, γ4}, {α2, γ5}, {α2, β1},
{α3, β1}, {α0, β4}, {α0, β5}, {α1, β5, γ2}, {α3, β0, γ4}.
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Let us suppose now that ¬0 ∈ J . Considering that ¬0 only belongs to the
transformation monoids K 1

0 and G1
0, J must include one of these subsets: {β0, γ3},

{β1, γ3}, {α0, γ3}, {α1, γ3}, {β0, γ5}, {β1, γ5}, {α0, γ5}, {α1, γ5}, {β4}, {β5}, {α2},
{α3}. Some of them are minimal sets J on their own, so the new minimal sets
are {¬0, β4}, {¬0, β5}, {¬0, α2}, {¬0, α3}, {¬0, β0, γ3}, {¬0, β1, γ3}, {¬0, α0, γ5},
{¬0, α1, γ5}. In the same way it can be shown that the minimal sets that include the
permutation ¬1 are {¬1, γ4}, {¬1, γ5}, {¬1, α0}, {¬1, α1}, {¬1, β1, γ2}, {¬1, β1, γ3},
{¬1, α2, β4}, {¬1, α3, β4}. And the minimal sets with ¬2 are {¬2, γ2}, {¬2, γ3},
{¬2, β0}, {¬2, β1}, {¬2, α0, γ4, }, {¬2, α0, γ5, }, {¬2, α2, β4}, {¬2, α2, β5}. It is easy
to check that all the minimal sets generate a function without fixed points. �

Below is the matrix of elements of the maximal stable monoids K (1)
i and H (1)

i , with
the functions grouped according to their range. The element of row F and column f
is 1 when f ∈ F and is 0 when f /∈ F .

α0 α2 β0 γ2 α1 β1 β4 γ4 α3 β5 γ3 γ5

K (1)
0 1 0 1 1 1 1 0 1 0 0 0 0

K (1)
1 0 1 1 1 0 0 0 0 1 1 1 0

K (1)
2 0 0 0 0 1 0 1 1 1 1 0 1

H (1)
0 0 0 0 1 0 0 0 1 1 1 1 1

H (1)
1 0 0 1 0 1 1 1 1 0 1 0 0

H (1)
2 1 1 1 1 1 0 0 0 1 0 0 0

Notes

1. See [3], [5].

2. See [14] and [2], Ch. 2.

3. [2], Problem 2B15. The original problem was restricted to three and four-valued
schemes, because the most important many-valued logics proposed as solutions to
paradoxes have three or four truth values.

4. See [14].

5. See [7], Section 1.1 or [11]. Rosenberg generalized this characterization for E infinite
using infinitary relations. See [13], Chapter 1.

6. Notice that the strict form of these stipulations is not a real restriction of generality, since
clones contain the projection functions.

7. My original proof of this theorem was very long, since I was not aware of Smullyan’s
lemma. The strategy of that proof was presented in [6]. I am greatly indebted to Visser
who, acting as a referee for this paper, discovered this proof and communicated it to me.
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8. We do not know whether in general the transformation monoids of the k-valued clones
with constants maximal for the fixed-point property are always maximal stable monoids.
More about this in Section 8.

9. The relation 0(F(1)) is a particular application of the operator 0F defined in [7], 1.1.16.
For more properties of this relation, see [7], 1.1.16–20. A generalization for infinite sets,
due to Rosenberg, can be found in [13], Ch. 1.

10. It is not difficult to give a direct proof of this result in the style of Lemma 7.3.

11. See [8]. The theorem can be found in modern notation in [12] and in [13], pp. 36–39.

12. See [10]. The theorems are stated without proof in [7], 4.3 and [13], pp. 29–30.

13. In [4], p. 230, Proposition 6, the clone (5) is Ki .

14. [4], Proposition 7, p. 230.

15. See [14].

16. This property is called the fixed-point property in the literature on orders. We have
changed the name to prevent confusion with the (Gupta-Belnap) fixed-point property.

17. See [9].

18. Notice that Hypothesis 2 is equivalent to this property of monotonicity: Let M, N ⊆ Ok
be stable monoids such that N is maximal stable and M ⊆ N . Then Pol 0(M)
⊆ Pol 0(N ).
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