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COMBINATORIAL OPERATORS AND THEIR
QUASI - INVERSES

VLADETA VUCKOVIC

1. Introduction. Combinatorial operators were introduced by J. Myhill
([1], [2] as a fundamental tool in the study of isols. A systematic exposi-
tion of those operators is given in the monograph [3] of J. Dekker, to which
we refer for the notations. In [3], Dekker proved the following

Theorem 1.1, Let ¢ be a combinatorial operator and ¢>'1 its quasi-inverse.
If ¢ is vecursive, then ¢(g) is a vecursively enumerable set, and theve is a
partial recursive function x, whose domain is ¢(€), such that

(1.1.) 0™ (%) = px(x) for all x € §(e).

In this paper we investigate the measure in which the existence of a
p.r. (partial recursive) function x, such that ¢™'(x) = py(,) for all x e¢(e),
determines the recursive character of the operator ¢.

Besides the notations from [3], we shall use the following ones: (wi),
i=0,1;..... , is the Post-enumeration of all r.e. (recursively enumerable )
sets; Fr denotes the set of all r. (recursive) functions of one variable, and
ﬁR denotes the set of all p.r. functions of one variable.

2. The Fundamental Theovem. Let ¢ be a combinatorial operator and ¢, its
dispersive operator. We shall say that ¢ (resp. ¢,) is sub-effective iff (if
and only if) there is a disjoint r.e. sequence (WegiNiess B0 €FR, Of r.€. sets
such that

(2.1.) #o(pr) C wo () for all nee.

All theorems of this paper are, essentially, strengthenings of the fol-
lowing fundamental

Theorem 2.1. A combinatovial operator ¢ is sub-effective iff theve is a
X € Fp such that

(2.2.) ¢™" (x) = py(yy for all x € ¢(g).
Proof. Let ¢ be sub-effective and ¢ as in (2.1). Then,E = U Wy, is @
r.e. set and ¢(g) = U ¢olp,) CE (where ¢, is the dispersive operator of ¢).
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Define XeF‘R as follows: the domain of X is E and, for every x ¢ E, X(x) is the
unique # such that x ewq(,). We have the obvious implication

(2.3) xed(€) — X €WpuX(x))
By P.7 of [3], we have
(2.4) xe(€) = (x € dolpn) <> ¢~1(x) = py).

Thus, by (2.3) and (2.4)
e g() > (6 €wgyx(my <> $ () = Pye)
which gives‘
¢~ (x) = px(x for all xe¢(c).

Conversely, suppose that ¢ is combinatorial and that there is a xéﬁR
such that ¢~'(%) = py(,for all xe¢(c). Let E be the domain of X. Define the
sets E; by

E; = {xeE|¢7(x) = p;}
= {xGEIPx(x)"‘ p;}
= {xeE|Xx(x) = i} .

The sequence (E;)ie is a disjoint r.e. sequence of r.e. sets. Let ¢o€ Fg be
such that, for all ie€, E; = wyy;). Then, by (2.4)

olpn) C Wy (m for all negle),
i.e. ¢ (resp. ¢o) is a sub-effective combinatorial operator.

In [4] the author has introduced the notions of an almost r. set and of
an almost r.e. set. We show now the relation between almost r.e. sets and
sub-effective combinatorial operators.

Theorvem 2.2. a) Let ¢ be a sub-effective combinatorial opevator and ¢, its
dispersive opevator. If, for every neg, ¢op,) is not empty, then ¢(€) con-
tains an infinite almost r.e. set.

b) For every infinite almost v.e. set A, theve is a sub-effective com-
binatovial operator ¢,such that, for every nec, ¢.lp,) is not empty, and such
that A c ¢(g).

Proof. Define the function a as follows: a(i) is a chosen element of ¢,(p;).
Let X be as in the first part of the proof of Theorem 2.1. Then X(a(i)) =1
for all Zee. Thus, A =the range of a is an almost r.e. set and at = xlA
(“X|A”’ means the restriction of X to A). To prove b), let A be an almost
r.e. set, and let o be a 1-1 function such that A = {a(i)|iec}. Let X eFy be
such that ™' =X |A, and denote by E the domain of X. Define the dispersive
operator ¢o: @ —> Q by ¢o(p,) = {ar)}, where {a(n)} is the singletone whose
unique member is a(n). ¢, defines a combinatorial operator ¢: V — V by

000 = U oulon) = U fa
I E; = {xe ElX(x) =14}, then a(z)eE for all zes Thus, if ¢o€ Fp is suchthat
E; = wy ;) for all €€, then ¢o(p,) C Wyy(n for all nee, and, as easily checked,
¢ (%) = py,, for all xe (e,
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3. Strengthening of the Fundamental Theorem. We impose now more
stringent conditions on a combinatorial operator, in order to obtain neces-
sary and sufficient conditions for Theorem 1.1. Let us call a combinatorial
operator ¢ effective iff there is a disjoint r.e. sequence Wq,(;));en Of finite
r.e. sets such that

(3.1) ¢olpn) = wey(m for all nee,
where ¢, is the dispersive operator of ¢. (¢o€ F).

Theovem 3.1. A combinatorial operator ¢ is effective iff theve is a XefR
such that ¢(c) is the domain of X and

(3.2) 971 (x) = py,y for all x € ¢(e).
Proof. Let ¢ be effective and ¢, as in (3.1). Then, E = ¢(€) = U Wao(n) iS @

r.e. set. Define XeFg by X(x) = the only % such that xewgy(n), for all xe E.
Then, as in the proof of Theorem 2.1, we obtain (3.2). Conversely, if (3.2)
holds, define @y by wg,(;) = {x€ domain of X|X(x) = i}. Then, by (2.4), for all
xe = () woun

i=0

2€Polpn) <> 971 (%) = ppe> X(x) =
Thus, each we() is finite and ¢o(p,) = Wy, for all nee.

Corollary 3.1.1. a) Let ¢ be an effective combinatorial operator and ¢, its
dispersive operator. If, for every mec, ¢olp,) @, then ¢(c) contains an
infinite 7.e. sel.

b). For every infinite v.e. set A theve is an effective combinatorial oper-
ator ¢, such that, for every nee, ¢olpn) =@, wheve ¢ois the dispersive oper-
ator of ¢, and A C ¢(¢).

Proof. Similar to the proof of Theorem 2.2.

A combinatorial operator ¢ is recursive iff its dispersive operator ¢,
is recursive. Thus, ¢ is recursive iff there is a ¢q€ Fr such that {0y, ());ee
is a disjoint sequence of finite sets satisfying

(3.3) ¢o(pn) = pyy(n) for all nee.

The difference between (3.1) and (3.3) is well-known: for every nee,
we can find effectively the maximal member and the cardinality of pey,(.)s
but not of we, () (although each wqy,) is finite).

_Theovem 3.2. A combinatorial opevator ¢ is vecursive iff theve is a
X e F such that §(e) = the domain of X,
(3.4) 071 ®) = px(, for all x € ¢(€)

and there is a Po€ ] Fr such that (Poy (i)Y ies ts @ disjoint sequence of finite sets,
satisfying ¢(€) = U Pooti) and

i=0

Pootiy = & €9(e) X (x) = 4}.

Proof. If the conditions of the theorem are satisfied, then, as easily
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checked, ¢o(p,) = Ppy(n). Conversely, if dolpn) = Py(») for some @eFg, defining
X by

00
X(x) = the only z such that x €py(,), for all xe U L),
n=0
we obtain easily (3.4) with ¢, = ¢.

Let ¢ be a combinatorial operator. I there is a @,€ Fgp such that
(Wey(i)iee 1S a disjoint r.e. sequence of finite sets and

(8.5) ¢o(pn) C wyy(n) for all nee,
we shall say that ¢ is finitely sub-effective.

If there is a @y€ Fr such that <p<p0(i))i£e is a disjoint r.e. sequence of
finite sets, satisfying

(3.6) 9olpn)  pyy(n) for all nee,
we shall say that ¢ is sub-recursive.
Similarly to previous theorems we can prove

Theovem 3.3. A combinatorial operator ¢ is finitely sub-effective iff theve
is a X¢Fr such that each set E;= {xe domain of X|x(x)=i} is finite,

ole) c U E; and
i=0

$71(%) = py,, for all xeg(e).

Theorem 3.4. A combinatorial opevator ¢ is sub-vecursive iff theve is a
XeFg and a po€Fr such that p, (,) = {xe domain XX(x) =n}, ¢ () C domain of
X and '

¢7H(x) = py,, for all xe¢(c).
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