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NEGATION, MATERIAL EQUIVALENCE, AND CONDITIONED
NONCONJUNCTION: COMPLETENESS AND DUALITY

GERALD J. MASSEY

1 Object of paper The object of this paper is threefold: to prove the
functional incompleteness of {~, =} without appeal to a tedious analysis of
cases; to give a proof simpler than the one in [2], p. 284 f., of the non-
existence of indigenous Sheffer connectives for {~, E}; and to furnish
self-dual (in Church’s sense) ternary Sheffer connectives for propositional
logic.

2 Functional incompleteness of {~, =}

Lemma 1 Let A be a propositional wff containing no connectives other than
~ and =, and let A' be the wff that vesults when all occurvences of ~ in A
ave deleted. Then A is equivalent to A' or to ~A'.

Proof: Let <> signify (semantic) equivalence. Since B <>~~ B and since
~(B=C)«<~B=C<>B=~C, Lemma 1 follows from the substitutivity of
equivalents by induction.

Theorem 1 {~, =}is functionally incomplete.

Proof: We call a truth-value a a fixed point for a wff B just in case the
value of B is @ when all its variables are assigned the value a, and we say
that a is a fixed point for an n-ary connective ® just in case @ is a fixed
point for ®(py, . . ., p,). Notice that t is a fixed point for = and for any wif
that contains no connectives other than =. Suppose that & is definable from
{~, =}. Then by Lemma 1 there is a wff A(p, q) containing no connectives
other than = such that p & ¢q is equivalent to A(p, ¢) or to ~A(p, ¢q). But
since t is a fixed point for both p & ¢ and A(p, ¢), p & ¢ cannot be equivalent
to ~A(p, q). So, p & g A(p, q). Therefore, p & ~¢g<>A(p, ~q). By
Lemma 1 again, A(p, ~¢q) is equivalent to A(p, q) or to ~A(p, g). Sincet is
not a fixed point for p & ~q, we have A(p, ~q)<>p & ~q<=>~A(p, q). So,
~(p &~q) <A, <D & q, which is a contradiction. So & is not
definable from {~, =}. Theorem 1 follows.

3 Indigenous Sheffer comnectives An m-ary connective ® is said to be a
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Sheffer connective for a set A of truth-functional connectives just in case
every member of A is definable from ®. We say that ® is indigenous to A
just in case ® is definable from A. We call t and f opposites. Let Z and X'
be valuations, i.e., assignments of truth-values to all variables. Then Z'is
said to be opposite to T just in case, for every variable v, Z'(v) is opposite
to Z(v). A wif A is said to be (semantically) dual to a wif B just in case,
for every valuation Z, Z(4) is opposite to Z'(4), where Z'is the valuation
opposite to . We say that A is (semantically) self-dual just in case A is
dual to A.

Lemma 2 Where ® is an n-avy connective, if (p,, . . ., pn) is self-dual,
then any wff B containing no connectives other than ® is self-dual.

Proof: Induction on the number of occurrences of ® in B.

Theorem 2 No comnnective indigenous to {~, =} is a Sheffer connective for
{Na E}'

Proof: Suppose that ® is an n-ary connective indigenous to {~, =} and that
® is a Sheffer connective for {~, =}. Since ® is indigenous to {~, =}, by
Lemma 1 there is a wif A(p,, . . ., p, containing no connectives other than
= such that ®(p,, ..., p,) is equivalent to A(p,, . . ., p,) or to ~A(py, . . ., D).
If ®(py, . . ., pn) were equivalent to A(p,, . . ., p»), t would be a fixed point
for ® Then ~ would not be definable from ®, and so ® would not be a
Sheffer connective for {~,=}. So ®(p,, ..., p) must be equivalent to
~A(p,, ..., D). Let k be the number of occurvences of variables in
A(py, . . ., P»). Suppose that k is odd. Then by Lemma 1, A(~p, .. .,
~p)&E>~Apy, . . ., P). But then

~®(~p17 « ey an)@A(Npl’ o e ey an)‘@"’A(pl, .« ey n)®®(p1’ « e ey pn)-

But ®(py, - . ., po) is self-dual iff Q(py, ..., PP~ (~py, ..., ~p). S0
®(py, . . ., Pw) is self-dual. Hence, by Lemma 2, any wff containing no
connectives other than ® is also self-dual. But p = p is not self-dual. So =
is not definable from ®, which contradicts our assumption that ® is a
Sheffer connective for {~, E}. Therefore, k must be even. So, A(~py, . . .,
~p)<> APy, . . ., D). So f is a fixed point for ~A(p,, . . ., P, and hence
also for ®(py, . . ., P»). But then ~ is not definable from ®, since f is not a
fixed point for ~p. Again, this contradicts our assumption that ® is a
Sheffer connective for {~, =}. Theorem 2 follows by indirect proof.

Several corollaries can be drawn from the above about self-dual
connectives. Let ®, and ®, be m-ary connectives. We say that ®,; is
(semantically) dual to ®, just in case ®,(py, ..., p,) is dual to ®.(py, ..., D).
We call ®, (semantically) self-dual just in case ®, is dual to ®;.

Theorem 3 No self-dual comnective is functionally complete in proposi-
tional logic.

Theorem 4 If A is a set of self-dual connectives, then A is functionally
incomplete.
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4 Conditioned nonconjunction In his treatment of primitive connectives for
propositional logic in [1], pp. 129-139, Church emphasizes the value of a
‘‘self-dual’’ set of functionally complete connectives. Church’s notion of
‘self-duality’’ is somewhat more liberal than ours. For Church, ® is
self-dualc just in case ®(p;, . . ., p,) is dual to at least one of the wffs that
result when the operands of ® are permuted (the identity permutation is not
excluded). Church’s set of truth, falsity, and conditioned disjunction is a
set of self-dualc independent connectives for propositional logic. A set of
self-dualc primitives allows one to define connectives in such a way that,

for any primitive or defined n-ary connective ®, the dual of ®(4,, . . ., 4,)
is ®'(A!, ..., A)), where ®' is the connective dual to ® and where A!,...,A,
are the respective duals of A, ..., A,. Church states that ‘‘For certain

purposes there are advantages in a complete system of primitive connec-
tives which consists of one connective only, although to obtain such a
system it is necessary to make a rather artificial choice of the primitive
connective (and also to abandon any requirement of self-duality if the
primitive connective is to be no more than binary),”’ ¢f. [1], p. 133. The
parenthetical statement suggests that there may be self-dualc single
primitives for propositional logic of degree greater than 2. This suggestion
is shown to be true by Theorem 5.

Let @ be the ternary connective defined by the table below. Note that
@(p, ¢, v) may be read as ‘‘not p or not » according as ¢ or not ¢’>. Hence
we call @ conditioned nonconjunction in analogy to Church’s conditioned
disjunction which we will symbolize by ©; one may read ©(p, q, 7) as “p or
7 according as q or not g”’.

par Opgqrv) Orqp OO q7
ttt f f t
t ot f f t t
t £t f f t
t f f t f f
£ttt t f f
ftf t t f
fft f t t
fff t t f

Theorem 5 Conditioned nonconjunction is a self-dualc functionally complete
primitive for propositional logic.

Proof: That @ is self-dualc is evident from the table above since O(p, ¢q, *)
is (semantically) dual to O(, q, p). And O is functionally complete since
o(p, ¢, @) is equivalent to plg (nonconjunction). Actually, it takes only a
glance at the above table to recognize that © is a Sheffer connective for
propositional logic, since O satisfies Post’s criterion for Sheffer connec-
tives. Let @ be the truth-table for a connective ®(p,, . . ., p,) such that the
value assignment portions of the rows of ® are ordered lexicographically,
with t before f, as in the table above. (Note that when its rows are so
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ordered, the value assignment to the variables given by the i’th row from
the top of ¥ is dual to the value assignment given by the i’th row from the
bottom, 1 < i< 2""'.) Post’s criterion is this: ® is a Sheffer connective for
propositional logic iff, in the table ®, (a) the top and bottom entries under ®
are respectively f and t, and (b) for at least one positive integer i,
1 <i< 2", the i’th entry from the top under ® is the same truth-value as
the i’th entry from the bottom under ®. Clearly the table above satisfies
Post’s criterion, showing that @ is a Sheffer connective. Here, incidentally,
is an especially simple proof that Post’s criterion works. The criterion is
obviously necessary, for if the top entry under ® were t or the bottom entry
were f, ® would have fixed points. And if (a) is satisfied but (b) is not, then
® is (semantically) self-dual, and so not functionally complete. To see that
Post’s criterion is sufficient, suppose it is satisfied by a truth-table ¥ for
®, and let i be an integer satisfying (b). Let a be the truth-value that occurs

beneath ® on the i’th row (from top or bottom). Let a, .. ., a, be the
values assigned to p,, ..., p, respectively on row i. Let v, be p or ¢
according as a; is t or f. Then ®(v,, . . ., v,) is equivalent to p|qor p}q

(nondisjunction) according as @ is t or f. Hence ® is a Sheffer connective.

Like {t, f, ©}, the set {®} makes possible a simple and elegant treat-
ment of duality: for any x-ary connective ®, one can so define ® that the
dual of ®(A4,, . . ., A,) is ®"(A], .. ., A,), where A, . . ., A} are the respec-
tive duals of A,, ..., A, and where ®' is the connective dual to ®.
Furthermore, extremely simple definitions of all the singulary and binary
connectives can be given: each such connective can be defined by using
only one occurrence of O in addition to non-prenex tildes. The following
list provides such definitions for negation and for the non-degenerate
binary connectives; dual connectives are paired.

~A =D/ (D(A, A, A)
Al B =p; 04, A, B)

A | B =p; O(B, A, A)
AvB =p; O(~A, A, ~B)
A & B =p; O(~B, A, ~A)
A SZ: B =Df @(A, A, NB)
A D B=p;O(~B, A, A)
A C B =p;O(~A, B, B)
AP B=p;O(B, B, ~A)
A = B =p; O(~B, A, B)
A #B=p;O(B, A, ~B)

Sobocinski [3] has proved that there are quaternary connectives ®, but
no connectives of smaller degree, such that all the singulary and binary
connectives can be defined from {®, t, f} using just one occurrence of ®.
Thus we know that the singularly and binary connectives cannot all be so
defined from {0, t, f}, although many of them can be. The only four that
cannot be so defined are &, v, =, and £."

1. I am indebted to John Tinnon for calling Post’s criterion to my attention.
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