Notre Dame Journal of Formal Logic Volume XVIII, Number 1, January 1977 NDJFAM

NEGATION, MATERIAL EQUIVALENCE, AND CONDITIONED NONCONJUNCTION: COMPLETENESS AND DUALITY

GERALD J. MASSEY

1 Object of paper The object of this paper is threefold: to prove the functional incompleteness of $\{\sim,\equiv\}$ without appeal to a tedious analysis of cases; to give a proof simpler than the one in [2], p. 284 f., of the non-existence of indigenous Sheffer connectives for $\{\sim,\equiv\}$; and to furnish self-dual (in Church's sense) ternary Sheffer connectives for propositional logic.

2 Functional incompleteness of $\{\sim, \equiv\}$

Lemma 1 Let A be a propositional wff containing no connectives other than \sim and \equiv , and let A' be the wff that results when all occurrences of \sim in A are deleted. Then A is equivalent to A' or to \sim A'.

Proof: Let \Leftrightarrow signify (semantic) equivalence. Since $B \Leftrightarrow \sim \sim B$ and since $\sim (B \equiv C) \Leftrightarrow \sim B \equiv C \Leftrightarrow B \equiv \sim C$, Lemma 1 follows from the substitutivity of equivalents by induction.

Theorem 1 $\{\sim, \equiv\}$ is functionally incomplete.

Proof: We call a truth-value α a fixed point for a wff B just in case the value of B is α when all its variables are assigned the value α , and we say that α is a fixed point for an n-ary connective \otimes just in case α is a fixed point for $\otimes (p_1, \ldots, p_n)$. Notice that \mathbf{t} is a fixed point for Ξ and for any wff that contains no connectives other than Ξ . Suppose that \mathbb{C} is definable from $\{\sim, \Xi\}$. Then by Lemma 1 there is a wff A(p, q) containing no connectives other than Ξ such that p & q is equivalent to A(p, q) or to A(p, q). But since \mathbf{t} is a fixed point for both p & q and A(p, q), p & q cannot be equivalent to A(p, q). So, $p \& q \Leftrightarrow A(p, q)$. Therefore, $p \& \sim q \Leftrightarrow A(p, \sim q)$. By Lemma 1 again, $A(p, \sim q)$ is equivalent to A(p, q) or to A(p, q). Since \mathbf{t} is not a fixed point for $p \& \sim q$, we have $A(p, \sim q) \Leftrightarrow p \& \sim q \Leftrightarrow A(p, q)$. So, $a \sim p \Leftrightarrow A(p, q) \Leftrightarrow p \& q$, which is a contradiction. So $a \sim p \Leftrightarrow A(p, q) \Leftrightarrow A(p, q$

3 Indigenous Sheffer connectives An n-ary connective \otimes is said to be a

Sheffer connective for a set Δ of truth-functional connectives just in case every member of Δ is definable from \otimes . We say that \otimes is *indigenous* to Δ just in case \otimes is definable from Δ . We call \mathbf{t} and \mathbf{f} opposites. Let Σ and Σ' be valuations, i.e., assignments of truth-values to all variables. Then Σ' is said to be opposite to Σ just in case, for every variable v, $\Sigma'(v)$ is opposite to $\Sigma(v)$. A wff A is said to be (semantically) dual to a wff B just in case, for every valuation Σ , $\Sigma(A)$ is opposite to $\Sigma'(A)$, where Σ' is the valuation opposite to Σ . We say that A is (semantically) self-dual just in case A is dual to A.

Lemma 2 Where \otimes is an n-ary connective, if $\otimes(p_1, \ldots, p_n)$ is self-dual, then any wff B containing no connectives other than \otimes is self-dual.

Proof: Induction on the number of occurrences of \otimes in B.

Theorem 2 No connective indigenous to $\{\sim, \equiv\}$ is a Sheffer connective for $\{\sim, \equiv\}$.

Proof: Suppose that ⊗ is an *n*-ary connective indigenous to $\{\sim, \equiv\}$ and that ⊗ is a Sheffer connective for $\{\sim, \equiv\}$. Since ⊗ is indigenous to $\{\sim, \equiv\}$, by Lemma 1 there is a wff $A(p_1, \ldots, p_n)$ containing no connectives other than \equiv such that $\otimes(p_1, \ldots, p_n)$ is equivalent to $A(p_1, \ldots, p_n)$ or to $\sim A(p_1, \ldots, p_n)$. If $\otimes(p_1, \ldots, p_n)$ were equivalent to $A(p_1, \ldots, p_n)$, **t** would be a fixed point for ⊗. Then \sim would not be definable from ⊗, and so ⊗ would not be a Sheffer connective for $\{\sim, \equiv\}$. So $\otimes(p_1, \ldots, p_n)$ must be equivalent to $\sim A(p_1, \ldots, p_n)$. Let **k** be the number of occurrences of variables in $A(p_1, \ldots, p_n)$. Suppose that **k** is odd. Then by Lemma 1, $A(\sim p_1, \ldots, p_n)$ ⇔ $\sim A(p_1, \ldots, p_n)$. But then

 $\sim \otimes (\sim p_1, \ldots, \sim p_n) \Leftrightarrow A(\sim p_1, \ldots, \sim p_n) \Leftrightarrow \sim A(p_1, \ldots, p_n) \Leftrightarrow \otimes (p_1, \ldots, p_n).$

But $\otimes(p_1,\ldots,p_n)$ is self-dual iff $\otimes(p_1,\ldots,p_n) \Leftrightarrow \sim \otimes(\sim p_1,\ldots,\sim p_n)$. So $\otimes(p_1,\ldots,p_n)$ is self-dual. Hence, by Lemma 2, any wff containing no connectives other than \otimes is also self-dual. But $p\equiv p$ is not self-dual. So \equiv is not definable from \otimes , which contradicts our assumption that \otimes is a Sheffer connective for $\{\sim,\equiv\}$. Therefore, **k** must be even. So, $A(\sim p_1,\ldots,\sim p_n) \Leftrightarrow A(p_1,\ldots,p_n)$. So **f** is a fixed point for $\sim A(p_1,\ldots,p_n)$, and hence also for $\otimes(p_1,\ldots,p_n)$. But then \sim is not definable from \otimes , since **f** is not a fixed point for $\sim p$. Again, this contradicts our assumption that \otimes is a Sheffer connective for $\{\sim,\equiv\}$. Theorem 2 follows by indirect proof.

Several corollaries can be drawn from the above about self-dual connectives. Let \otimes_1 and \otimes_2 be *n*-ary connectives. We say that \otimes_1 is (semantically) dual to \otimes_2 just in case $\otimes_1(p_1, \ldots, p_n)$ is dual to $\otimes_2(p_1, \ldots, p_n)$. We call \otimes_1 (semantically) self-dual just in case \otimes_1 is dual to \otimes_1 .

Theorem 3 No self-dual connective is functionally complete in propositional logic.

Theorem 4 If Δ is a set of self-dual connectives, then Δ is functionally incomplete.

4 Conditioned nonconjunction In his treatment of primitive connectives for propositional logic in [1], pp. 129-139, Church emphasizes the value of a "self-dual" set of functionally complete connectives. Church's notion of "self-duality" is somewhat more liberal than ours. For Church, \otimes is self-dual_C just in case $\otimes(p_1,\ldots,p_n)$ is dual to at least one of the wffs that result when the operands of \otimes are permuted (the identity permutation is not excluded). Church's set of truth, falsity, and conditioned disjunction is a set of self-dual_C independent connectives for propositional logic. A set of self-dual_C primitives allows one to define connectives in such a way that, for any primitive or defined *n*-ary connective \otimes , the dual of $\otimes (A_1, \ldots, A_n)$ is $\otimes'(A_1', \ldots, A_n')$, where \otimes' is the connective dual to \otimes and where A_1', \ldots, A_n' are the respective duals of A_1, \ldots, A_n . Church states that "For certain purposes there are advantages in a complete system of primitive connectives which consists of one connective only, although to obtain such a system it is necessary to make a rather artificial choice of the primitive connective (and also to abandon any requirement of self-duality if the primitive connective is to be no more than binary)," cf. [1], p. 133. The parenthetical statement suggests that there may be $self-dual_C$ single primitives for propositional logic of degree greater than 2. This suggestion is shown to be true by Theorem 5.

Let \oplus be the ternary connective defined by the table below. Note that $\oplus(p,q,r)$ may be read as "not p or not r according as q or not q". Hence we call \oplus conditioned nonconjunction in analogy to Church's conditioned disjunction which we will symbolize by \ominus ; one may read $\ominus(p,q,r)$ as "p or r according as q or not q".

p q r	$\oplus(p, q, r)$	$\oplus(r, q, p)$	$\Theta(p, q, r)$
t t t	f	f	t
t t f	f	t	t
t f t	f	f	t
t f f	t	f	f
f t t	t	f	f
f t f	t	t	f
f f t	f	t	t
f f f	t	t	f

Theorem 5 Conditioned nonconjunction is a self-dual $_{\mathbb{C}}$ functionally complete primitive for propositional logic.

Proof: That \oplus is self-dual_C is evident from the table above since $\oplus(p,q,r)$ is (semantically) dual to $\oplus(r,q,p)$. And \oplus is functionally complete since $\oplus(p,q,q)$ is equivalent to p|q (nonconjunction). Actually, it takes only a glance at the above table to recognize that \oplus is a Sheffer connective for propositional logic, since \oplus satisfies Post's criterion for Sheffer connectives. Let $\mathfrak Z$ be the truth-table for a connective $\otimes(p_1,\ldots,p_n)$ such that the value assignment portions of the rows of $\mathfrak Z$ are ordered lexicographically, with $\mathfrak Z$ before $\mathfrak Z$, as in the table above. (Note that when its rows are so

NEGATION 143

ordered, the value assignment to the variables given by the i'th row from the top of \mathfrak{T} is dual to the value assignment given by the i'th row from the bottom, $1 \le i \le 2^{n-1}$.) Post's criterion is this; \otimes is a Sheffer connective for propositional logic iff, in the table \mathfrak{T} , (a) the top and bottom entries under \otimes are respectively f and t, and (b) for at least one positive integer i, $1 < i < 2^{n-1}$, the i'th entry from the top under \otimes is the same truth-value as the i'th entry from the bottom under \otimes . Clearly the table above satisfies Post's criterion, showing that \oplus is a Sheffer connective. Here, incidentally, is an especially simple proof that Post's criterion works. The criterion is obviously necessary, for if the top entry under & were t or the bottom entry were f, \otimes would have fixed points. And if (a) is satisfied but (b) is not, then ⊗ is (semantically) self-dual, and so not functionally complete. To see that Post's criterion is sufficient, suppose it is satisfied by a truth-table 2 for \otimes , and let i be an integer satisfying (b). Let α be the truth-value that occurs beneath \otimes on the i'th row (from top or bottom). Let $\alpha_1, \ldots, \alpha_n$ be the values assigned to p_1, \ldots, p_n respectively on row i. Let v_k be p or qaccording as α_k is t or f. Then $\otimes (v_1, \ldots, v_n)$ is equivalent to $p \mid q$ or $p \nmid q$ (nondisjunction) according as α is t or f. Hence \otimes is a Sheffer connective.

Like $\{\mathbf{t}, \mathbf{f}, \ominus\}$, the set $\{\Phi\}$ makes possible a simple and elegant treatment of duality: for any n-ary connective \otimes , one can so define \otimes that the dual of $\otimes(A_1, \ldots, A_n)$ is $\otimes'(A_1', \ldots, A_n')$, where A_1', \ldots, A_n' are the respective duals of A_1, \ldots, A_n and where \otimes' is the connective dual to \otimes . Furthermore, extremely simple definitions of all the singulary and binary connectives can be given: each such connective can be defined by using only one occurrence of Φ in addition to non-prenex tildes. The following list provides such definitions for negation and for the non-degenerate binary connectives; dual connectives are paired.

$$\begin{array}{lll} \sim A & =_{Df} \oplus (A,\,A,\,A) \\ A \downarrow B & =_{Df} \oplus (A,\,A,\,B) \\ A \mid B & =_{Df} \oplus (B,\,A,\,A) \\ A \vee B & =_{Df} \oplus (\sim A,\,A,\,\sim B) \\ A \& B =_{Df} \oplus (\sim B,\,A,\,\sim A) \\ A \not\subset B =_{Df} \oplus (A,\,A,\,\sim B) \\ A \supset B =_{Df} \oplus (\sim B,\,A,\,A) \\ A \subseteq B =_{Df} \oplus (\sim A,\,B,\,B) \\ A \not\supset B =_{Df} \oplus (B,\,B,\,\sim A) \\ A \equiv B =_{Df} \oplus (\sim B,\,A,\,B) \\ A \not\equiv B =_{Df} \oplus (\sim B,\,A,\,B) \\ A \not\equiv B =_{Df} \oplus (B,\,A,\,\sim B) \end{array}$$

Sobociński [3] has proved that there are quaternary connectives \otimes , but no connectives of smaller degree, such that all the singulary and binary connectives can be defined from $\{\emptyset, t, f\}$ using just one occurrence of \otimes . Thus we know that the singularly and binary connectives cannot all be so defined from $\{0, t, f\}$, although many of them can be. The only four that cannot be so defined are &, \lor , \equiv , and $\not\equiv$.

^{1.} I am indebted to John Tinnon for calling Post's criterion to my attention.

REFERENCES

- [1] Church, Alonzo, *Introduction to Mathematical Logic*, Vol. I, Princeton University Press, Princeton (1956).
- [2] Hendry, H. E., and G. J. Massey, "On the concepts of Sheffer functions," in J. K. Lambert, ed., The Logical Way of Doing Things, Yale University Press, New Haven (1969), pp. 279-293.
- [3] Sobociński, Bolesław, "On a universal decision element," The Journal of Computing Systems, vol. 1 (1953), pp. 71-80.

University of Pittsburgh Pittsburgh, Pennsylvania