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A MODEL-THEORETIC EXPLICATION OF THE THESES
OF KUHN AND WHORF

JOHN A. PAULOS

1 Introduction We wish in this paper* to give a mathematical explication
of the ideas usually associated with the names of Thomas S. Kuhn and
Benjamin L. Whorf. These ideas concern the incommensurability of scien-
tific theories and the effect of language on thought. We also touch on some
related notions and applications. Hopefully our model-theoretic formulation
will also have some interest for logicians and set theorists.

2 Preliminaries We consider several languages and the models asso-
ciated with them; however, we want to characterize the models of our
languages independently of any particular one of them. By taking all our
models to be models of a certain set theory (we take Zermelo-Frankel set
theory, ZF, for the sake of definiteness) and by interpreting the non-logical
constants and relations of our languages to be fixed elements of the uni-
verse, the class of models in which a sentence of a language is true can be
considered to be simply a class of models of ZF.

To be more precise we need the following definition:

Definition 1 A language -C is of the form K U {ε} where K = {c ; , Rj,fj, Q,}
is a finite collection of constant symbols, relation symbols, function sym-
bols, and sort symbols, and where ε is a distinguished binary relation
symbol. Sentences in £ are built in the usual inductive way.

We also deal with languages of the form -C = Afx U Af2 U {ε} where the Ki
are different formal languages. The intention is to think of the languages Ki
as formal scientific languages. The symbol ε is added so that statements
in any Ki as well as extra-linguistic observations can be described in some
neutral formal language. Although we assume the universe to be set-
theoretic, we do not assume that a ^-scient is t thinks in terms of sets, but

*Some of these ideas were first formalized by Randall, from whose work [4] parts of this paper
are adapted.
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only that an all-knowing super-scientist could analyse the /(;-sentences in
set-theoretic terms.

Definition 2 A scientific theory T expressed in a language JQ = K U {ε} is
a set of sentences T = ZF US ΌD where ZF stands for the Zermelo-Frankel
axioms of set theory, S is a set of (scientific) sentences in K, and D is a
finite set of sentences in ^ of the form Wy{y ε R -*y = <zl9.. . ,£«» stating
that the element interpreting R is an w-ary relation. Similar sentences
concerning the interpretation of constant, function, sort, and other relation
symbols also appear in D.

The semantics of a language -C = AT u{ε} is described in the following
definition.

Definition 3 The universe of a model is any set M large enough to con-
tain an element corresponding to each object, relation, function, etc., in the
world. (It may contain extra elements.) That is, we conceive of every ob-
ject, property, etc., in the world as being associated with an element in M.
(Our ontology is intended to be very flexible and for our purpose here
needn't be made more precise.) The interpretation of each c ; , JR//,/; , Qj in ^
is a fixed element in M while the interpretation of ε can be any binary re-
lation on M. Truth of a sentence ψ in a model (M,...) is defined in the
usual inductive way.

Given our definition of theories T and the semantics for any language
<£> we can see that a theory T is going to hold only in those models (M,...)
in which the interpretation of ε is such that: (i) the axioms of ZF hold,
(ii) the sentences in D, stating that the element in M that interprets R is an
n-ary relation, that the element in M that interprets Q is of the appropriate
kind, etc., are all true, and (iii) the sentences S in K which contain the con-
tent of the theory are all true.

To reiterate, our languages -C a r e such that the interpretations of the
symbols in the K\i are fixed elements in M and the sentences D in our
theories ensure that these fixed elements of M are of the appropriate kind:
ra-ary relations, m-ary functions, etc.

The sort symbols are useful since natural languages refer to non-
homogeneous universes composed of elements of different sorts—animate
vs. inanimate, abstract vs. physical, etc. Universal statements thus gener-
ally refer only to those elements in a particular sort. Since we want our
development to reflect this stratified universe we use sort symbols (rather
than extra unary predicates). Randall's development uses ideas from trans-
formational grammar and is more realistic, but less flexible and less ap-
plicable than our model-theoretic approach. Unlike Randall we consider all
our sentences to be meaningful. Meaningless sentences, however, could be
easily accommodated in our formalism by modifying the D sentences in any
theory to allow sort confusions, empty sorts, etc.

The last definition needed to complete our preliminaries follows:

Definition 4 An observation O is of the form <0(#lt , . . X\n)> aly . . . an>
where φ{xly . . . ΛΓ«) is a formula in the language of set theory, ε, and where
a19 . . . am ε M. The at needn't be named by K.
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The definition of an observation O is extra-linguistic, independent of
any particular Af-language. The class of all models of ZF whose universe
is M is denoted simply by SW. All those models associated with any O are
denoted 9W0 and equal {(M,...) I ΦM(#I χn) holds for au...a^\. Not re-
quired is that every observation be true of the "real world", MR. For a
true observation, however, we have MR ε 9W'o The class of all models of a
scientific theory T is denoted by 9Wχ, all models of a sentence γ by 9Wιτ.

Definition 5 (i) O is expressible by a /("-sentence γ if 9W0

 = 9Wγ> (ii) O
verifies γ if 9W0 c SPΪ|Ύ and O falsifies y if 9W0 Π 9Ŵ  = 0, and (iii) γ delimits
0 if O verifies γ.

Theorem 1 Every K -sentence γ in a given formal language J£ expresses
an observation, but not every observation is expressible by some \K-sen-
tence γ. Every observation is, however, expressible by a\Klt-sentence γ in
some formal language^jQr.

Proof: The /^-sentence γ expresses an observation since it can be trans-
lated into a sentence φ(xu . . ,xn) in the language consisting of just {ε}.
φ(xl9.. ,xn) is satisfied by the an since the interpretations of the constant,
relation, function, and sort symbols in γ are the α* in M. The sentences in
D ensure that the αz are of the right sort. Thus, for example, we have
(M, . . . ) N {V\zlyR{z, y, c)) if (M, al9 a2,...) N Φ(*i, x2) where φ{xlf x2) =

(VlzlyiZyytXx) ε x2) and aγ and a2 are the interpretations of c and R respec-
tively.

An observation can fail to be expressible in K because the elements
observed are not named in K or because the relationship among them is not
the interpretation of any relation symbol in K. If an observation 0 is not
expressible in K, any language K' which contains (i) names for the elements
observed, and (ii) relation, function, and sort symbols whose interpretations
are the relations, functions, and sorts observed does express O.

The following two corollaries are easily demonstrated in the same
general sort of way. They are used implicitly in Section 4 where formal
analogues to the theses of Whorf and Kuhn are presented.

Corollary 1 For any language -C there are observations 0 which verify
no Λf-sentence γ.

Corollary 2 For any observation or set of observations O and any theory
Tx in JQU if aWιTl c SW0, then there is a theory T2 in an j£2 such that 3W 2̂ Q,9W/0>
and neither 9W,T2 Ξ2,9WTl nor 9WTl 2 3WT2.

3 Pictorial representation Before we get to the actual explication of
Whorf and Kuhn, let's pause to develop a pictorial representation of the no-
tions just introduced. This representation will make the task of exposition
much easier.

9W, the class of all models of ZF whose universe is M, is denoted pic-
torially by a rectangle. Sentences γ in any K/i partition 9W into two regions
(three if we allow meaningless sentences): the models of ZF in which γ is
true and those in which.it is false, as in Figure 1.
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γtrue /

/ y false

Figure 1

An observation O is represented (in Figures 2-4) by 9Wι0, the class of
models in which the observation holds.

ί O holds J

Figure 2

/ O holds \
\ /

Figure 3

O holds /

/ ( y true J

y false \ ^ >/
Z

Figure 4

Consider now Figure 5, where we see that if those models of 9W in
which γι and y2 are true are to the left of the lines marked γλ and y2, re-
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Figure 5

spectively, then γι is true of Ox (Ox verifies γλ) while y2 is true of some
models of SWOi and false of others. Moreover y2 is false of O2 (O2 falsifies
γ2) while yx is true of some models of 9Wθ2 and false of others. Given ob-
servations Oi and O2, i.e., SWOi Π 9Wθ2, we can conclude that γλ is true and
γ2 is false.

More common than (conclusive) verification and falsification of sen-
tences and theories is their (relative) confirmation and disconfirmation.

Definition 6 0 confirms y if P(γ \ O) > P(γ).

That is, O confirms γ if the conditional probability of γ given O is greater
than the probability of y. How the probability function P is obtained,
whether on frequentist, subjectivist, or logical grounds, need not concern
us here.

To illustrate properties of the notion of confirmation we assume that
the area of a region, 3WQ or 9WT say, is proportional to its probability. Thus
in Figure 6, a-d, we have that O verifies y, confirms y, disconfirms y, and
falsifies y, respectively.

y Ύ

o/ c/
y true / /

a b
y Ύ

JO IΓ/Ό
c d

Figure 6
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Finally, consider Figure 7 where an observation Oi confirms sentences
γλ and γ2 and neither confirms nor disconfirms Y3(P(y3\O]) =P(γ3)). O2,
however, confirms y3. Thus if the scientist can devise an experiment whose
outcome is O2, then the new observation O2 together with Ox confirm γl9 y2,
and y3.

Ύ2 Ύι

X \y2 true QT ^ ^

\ /^^f Ol : CirClΘ

v̂ / / ^ ŷ O 2 : triangle

y3 true ^ ^ > < 1 j\

^^ yγ true ^ ^

Figure 7

4 Whorf and Kuhn Now we are able to give a formal explication of the
ideas mentioned in the introduction. Roughly stated, Whorf's thesis says
that one's language "shapes" one's thoughts. Our explication of it uses an
example from Randall's thesis [4].

Assume that a /f-scientist has made observations corresponding to O.
Assume further that the structural properties of K are such that the sen-
tences of K cut up the model space 9W in a certain manner. For pictorial
clarity we assume that all the sentences of K cut across 9W in a horizontal
direction, as in Figure 8. Here a and β are sentences of K already con-
firmed by 0 and y has not yet been confirmed or disconfirmed.

/ a true Q \

i holds \
y JO

t γ true ,'

βtrue /

Figure 8

Now assume that the Af-scientist can perform two experiments €ι and
C2, both of which divide SW into two observable (but not necessarily
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/C-expressible) outcomes. Note that we are here considering an experiment
to be a partition of 3W into disjoint subclasses—the possible results of the
experiment (two in our case). If he performs ίγ he may be able to confirm
or disconfirm γ depending on the experiment's outcome. In Figure 9 γ is
verified by ίι where 3Mt£i is the observation which corresponds to the re-
gion below ix.

ft

/ \
/ \

/ \
/ \

ε,no ί I
_ _ /

^ £>i \//////////////////////////7J/7/. ''
v W/7r/////////////////////////, y

Figure 9

If, however, he performs £2 neither of its (observable, but not
/(-expressible) outcomes confirms or disconfirms γ or any other ^hori-
zontal" Af-sentence. If, however, there were a sentence δ in K expressing
C2, then if the observation 9W,£ were made (in Figure 10 the region to the
left of ε2), α> β> and δ would be confirmed by 9W0 Π 9W,£2. Moreover, the
class of models 9Wα Π 9Wβ ΓΊ 9Wδ may be a less probable class than 9W£χ U SWβ
of SDΊy Π 3Wβ (on an appropriate notion of probability). Thus in this case £2

is a potentially more informative experiment than £x. Nevertheless, without
the language and concepts needed to express δ or any "vertical" sentences,
εY rather than ε2 will be performed. (Of course other configurations of 9W
are possible and similar analyses can be made.)

ε2 = δ

' ' W/j N^
/ Ί////, ^
/ / / / / / / I

εΆno i ////// i

s ^ mi y

Figure 10
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In this way we can see that language indeed has a channeling effect.
Although the thesis that language '"shapes" thought seems to be stronger, it
is at least the case that language influences action, specifically in our case
the choice of experiments €x or £2 .

Kuhn's thesis, roughly stated, says that science progresses in a slow
cumulative manner until '"enough" anomalies, exceptions, and inadequacies
force scientists to search for a new paradigm or model. After a time a new
theory, usually incommensurable with the first, is discovered and generally
taken to be superior (despite defects of its own) to the old theory. After
making such a "scientific revolution," science proceeds again in its slow,
cumulative way refining the new theory.

To formalize this thesis we let 9W0 be the intersection of the WliOj,
Oi the observations supporting a theory Tlm For simplicity let 7\ = γl9 y2

and y3. A refinement of Tl9 call it T±9 is obtained when some previously
unconfirmed statement, say y4, is confirmed by a new observation, Oj.
(This is illustrated in Figures 11 and 12.)

O confirms γl9 y2, y3

y 2 Ύ3

Figure 11

0 Π Oj confirms γl9 y2, ya, and y4

/ / v — ^ r η \ O : circle

V/ \ \7 Qj-: triangle

Ύ2 y 3

Figure 12
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Thus the normal progression of science may be pictured as an increas-
ing sequence of theories, Tu Tx\ T x

2, T x

3, . . . where T"+1 results from
Tλ

n by the addition of new sentences confirmed in general by new observa-
tions as above. Minor alterations of the y* are ignored here.

The inadequacy of T" is reflected in the fact that ΠSW0. φ SWlTl»; i.e.,
the class of models in which the supporting observations hold true and the
class of models in which Tx

w holds true are not coextensive, do not "fit"
well ("fit" depending on the underlying probability assignment). Generally
naWfr. is a strictly larger class than SW,Tl«. Often, however, there will be
o b s e r v a t i o n s O which confirm T" but such that !WO £ aWιTl» (TΛ/>
0(«i, . . .««), 0(«i, . . . α«) the ε-sentence expressing O). Observations of
this sort are anomalies as are, of course, disconfirming observations.

Because of these defects and anomalies, T" is often felt to be inade-
quate and a new theory T2 is sought and eventually discovered. T2 is not a
refinement or modification of TΊn. It is expressed in a different language
£2 = K2 n {ε} whose semantics picks out different elements in the universe
M as interpretations for its symbols than does the semantics of £ x = Kλ U
{ε}, the language in which TX

Λ is expressed. (Ki and K2 have some basic
symbols in common, of course.) Thus many of the sentences in T2 are in-
expressible in Xi. In this sense T2 is incommensurable with T" (see Fig-
ures 13 and 14).

Anomalous set of ^ ^ Γ ^ ^ ^ ^ — ~ / \ ~ θV
observations ^^^7^O\ /[
supporting Tx

w / ^ ^ ^ ^ ^ / \

Figure 13

\ \ 77
Same set of \ \ o//
observations \ \ //
non-anomalously \ \ //
supporting T2 \V/

Figure 14
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We note again that though the set of observations O non-anomalously
confirms T 2 , there are, of course, potential observations anomalous for T2.
Note also that since T2 (and the T2 in general) are expressed in a different
language Af2, a different partition of the class 9W of models is effected.
Thus different observations and experiments become expressible or at least
more accurately delimitable and in this way the whole direction of research
changes with the adoption of the T2

n. Observations which are expressible
(or at least delimitable) in K2 but not in Kγ become relevant to K2 -scien-
tists but not to A^-scientists. Compare Figures 9 and 10 illustrating
Whorf's hypothesis.

5 Further application and comments What does all this say about the
theses of Whorf and Kuhn? Our formalism, being mathematics, of course
provides no empirical support for these empirical theories. It does, how-
ever, provide us with a formal analogue to them. Given certain scientific
and philosophic assumptions concerning the nature of language and reality,
the formalism actually proves these theories. In any case it clarifies them
and suggests further questions and extensions. We mention a few here and
will expand on them in a future paper.

Firstly, tools from model theory enable us to construct models (M,...)
having special properties. For example, we have the following:

Theorem 2 Given any model (M, . . .) of a scientific theory T there are:
(i) an elementarily equivalent model of T which is saturated and (ii) an ele-
mentarily equivalent model of T which omits types locally omitted by T.

Proof: Immediate from our definition of T and standard theorems on satu-
rated models and omitting types.

Hence, in some sense, both very dense worlds and very sparse worlds
are compatible with T. Hopefully properties of these special models (satu-
rated, generic, etc.) may say something about the tenability of certain
metascientific theses.

Model-theoretic tools may also be used to explore Af-ineffability and
Af-randomness. An observation O is Af-ineffable if there is no Af-sentence γ
such that γ expresses O. An observation O is Af-random iff there is no
Af-sentence γ such that γ delimits 0. Relativizing these notions to a partic-
ular language is at least one way to give us a handle on them. It's clear
that O is'^"-ineffable iff O, the complementary observation, is Af-random.

A third possible application concerns an explication using our apparatus
of the common idea that creativity results from the juxtapositioning of two
disparate notions (models, theories).

Finally, modal operators could be easily incorporated into this for-
malism by dealing with model systems—indexed collections of models of
ZF—instead of with models of ZF themselves. See our paper for details [3],
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