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Reflections on Church's Thesis

STEPHEN C. KLEENE

Over fifty years after I first heard Church propose his thesis, about which
I have meanwhile often written, can I find anything more to say concerning it?
I have been introduced to much of the recent literature in which Church's the-
sis is discussed by the excellent scholarly volume [29] of Judson Webb.1 Its bib-
liography, which of course covers many topics besides Church's thesis, includes
over 300 items, about half of them published since 1960. It is nevertheless not
quite complete; thus Post [25], Markov [21] and [22], and Smullyan [26] are not
listed, although they are devoted to expounding some of the newer equivalent
versions of Church's thesis. Also, a new book from the Russian school has just
appeared: Markov (posthumous) and Nagornyi [23].

It is a recurrent theme in Webb [29] that Gόdel's (first) incompleteness
theorem of [8] gave "protection" to Church's thesis; thus, if, contrary to the
incompleteness theorem, a system F such as Gδdel considered were complete
(i.e., for each closed formula A, either \-F A or \-F -ιA) and gave correct re-
sults (say, satisfied GόdeΓs hypothesis of ω-consistency), then in Kleene's effec-
tive enumeration (with repetitions) Φo(x), φ\(x),.. .,φz(x), . (where φz(x) =
U(μyTχ (z,x,y)) of all the 1-place partial recursive functions (including all the
1-place general recursive functions), we could effectively complete the definitions
of all the functions which are not total (leaving those that are total unchanged)
getting φo(x), φχ(x),... ,Φz(x),..., by putting

\u{y) if Tx(z9x9y)9

[θ if h r V y i T ^ J c y ) .

That is, for given z and x, we search effectively through the numbers y =
0,1,2,... for the first one such that either Tι(z,x,y) holds (on finding which we
put φz(x) = U(y)) or y is the Gδdel number of a proof in F of Vy-ιTi (z, Jt,y)
(on finding which we put φz(x) = 0).2 Now by diagonalizing we would get
φx(x) + 1 as an effective total 1-place function which is not general recursive,3

contradicting Church's thesis. So, as Webb correctly stresses, if we hadn't the
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"protection" of GδdeΓs incompleteness theorem, it would have been foolhardly
in 1936 to have proposed Church's thesis. For, by the argument just given,4

(1) {not-(GόdeΓs incompleteness theorem for F)} -• {not-(Church's thesis)).

Of course, if in 1936 mathematicians had been ignorant of GδdeΓs incom-
pleteness theorem, one could have proposed Church's thesis and let it lead one
to GδdeΓs theorem. The implication (1) is exactly the contrapositive of

(2) {Church's thesis) -> {GδdeΓs incompleteness theorem for F}.

In fact, historically, beginning immediately after Church's thesis became pub-
lic, Kleene (in his [13], and more simply in [15], [16]: cf. [17], Sections 60, 61)
used Church's thesis to give proofs of GδdeΓs incompleteness theorem (in the
positive form4), fulfilling this implication (2), for a large class of Fs, in fact
generalizing GδdeΓs theorem to any formal system (maybe remote in its details
from the ones Gδdel talked about) meeting Hubert's demand for effectiveness
in the concept of proof and formalizing (with the correctness as hypothesis, just
as in GδdeΓs statement) a small piece of elementary number theory. Indeed,
Kleene's treatments each constituted a schema for establishing Gόdel's incom-
pleteness theorem independently of Church's thesis for any specific formal sys-
tem (embodying the necessary small piece of elementary number theory) for
which we have verified that being the Gόdel number y of a proof is a general
recursive predicate (the Gδdel number of the formula of which it is a proof is
then given by a primitive recursive function of y under GδdeΓs method of num-
bering) and that (e.g., for the [15] version) the Gδdel number of the formula
Vy-ιT!(jc,JC,y) expressing {y)Tx(x9x,y) is a general recursive function of x.

One sometimes encounters statements asserting that GόdeΓs work laid the
foundation for Church's and Turing's results, as for example in Webb [29], p.
26, lines 6-7. It seems to me that the truth is that Church's approach through
λ-definability and Turing's through his machine concept had quite independent
roots (motivations), and would have led them to their main results even if
GδdeΓs paper [8] had not already appeared.

Church's formal system (which subsequently appeared in his [2], [3]), which
had as a subsystem the λ-calculus, had already been presented in his logic course
in the fall semester of 1931-1932 (in which I was a student), before Church and
the rest of us first learned of GδdeΓs results [8] (through a lecture by von Neu-
mann). So can there be any question but that the program of investigating the
λ-def inability of number-theoretic functions (which actually Kleene initiated,
diverging from Church's start toward using descriptive definitions mixed with
λ-definitions in developing the theory of positive integers in his system; cf. [19]
pp. 55-56), the results of which led to Church's first entertaining his thesis,
would not have gone ahead under its own momentum even if GόdeΓs [8] had
not existed? The only question I see is whether, without the example in Gόdel
of the use of what we now call Gόdel numbering,5 Church would have thought
of the arithmetization of the metamathematics of the λ-calculus which he used
in applying his thesis in his [4] to obtain some undecidability results (what Webb
calls unsolvable mass problems) in the theory of λ-definability,6 continuing in
[5] to establish the unsolvability of the famous Entscheidungsproblem for the
first-order predicate calculus. Whether or not one judges that Church would
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have proceeded from his thesis to these results without his having been exposed
to Gόdel numbering,7 it seems clear that Turing in [27] had his own train of
thought, quite unalloyed by any input from Gδdel.8

One is impressed by this in reading Turing [27] in detail. Already while an
undergraduate at Cambridge University, which he entered in 1931, Turing

started to build a machine for computing the Riemann Zeta-function, cut-
ting the gears for it himself. His interest in computing led him to consider
just what sorts of processes could be carried out by a machine: he described
a 'universal' machine which, when supplied with suitable instructions, would
imitate the behavior of any other; and he was thus able to give a precise def-
inition of 'computable', and to show that there are mathematical problems
whose solutions are not computable in this sense. The paper [27] which con-
tains these results is typical of Turing's methods; starting from first princi-
ples, and using concrete illustrations, he builds up a general and abstract
argument. (Robin O. Gandy in Nature, 18 September 1954, p. 535.)

It was, perhaps, a defect of his qualities that he found it hard to accept the
work of others, preferring to work things out for himself. (M. H. A. New-
man in the Manchester Guardian, 11 June 1954.)

A given machine ΐPίί for Turing will have, say, R possible "machine con-
figurations" qu ... ,qR, and m symbols Su . . . , S m , any one of which can be
printed on a square of the tape (only finitely many squares being printed upon
at each moment of time). In writing the standard description of 3fll, Turing rep-
resents <?/ by the letter "£>" followed by the letter "A" repeated / times, and Sj
by " D " followed by " C " repeated j times. In fact, he succeeds in writing his stan-
dard descriptions using only the six letters "A", " C " , "D", "L", "R", *W" and
the semicolon " ". Thereby, the inputs for a machine δ to operate on the stan-
dard description of any machine ΐftl are finite printings using symbols from a
fixed finite list (of just 7) symbols. The standard description (S.D) of a machine
3ΪI becomes the arabic numeral for its description number (D.N) upon replacing
the seven symbols by the digits " 1 " , . . . ,"7". Thus Turing uses a totally differ-
ent method of numbering linguistic objects than Gόdel —one perhaps more nat-
ural to a person who is steeped in machines.

This should not at all disparage GδdeΓs achievement. "Kurt GόdeFs
achievement in modern logic is singular and monumental-indeed it is more than
a monument, it is a landmark which will remain visible far in space and time"
(von Neumann in the New York Times, March 15, 1951, p. 51). It only argues
that Church and Turing had their own independent inspirations, leading them
to equally significant results (the Church-Turing thesis, and their first examples
of the unsolvability of some decision problems). Whether (and in what form)
without GδdeΓs having already done it, they would have come via (2) (perhaps
deduced from (1)) to the incompleteness of formal systems I hesitate to judge.9

Let me now address an argument reported in [29], p. 222 (after Wang [28],
p. 325): "Gδdel . . . objects that Turing 'completely disregards' that

(G) 'Mind, in its use, is not static, but constantly developing/

. . . Gόdel granted that
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(F) The human computer is capable of only finitely many internal (mental)
states.

holds 'at each stage of the mind's development', but says that

(G)' '. . . there is no reason why this number [of mental states] should not
converge to infinity in the course of its development.' "

If one chooses to believe (G)', I can see that it would imply that there need
be no end to the possibilities for the human mind to invent stronger and stronger
and stronger . . . formal systems that would, in the face of Gδdel's ever-
renewing incompleteness theorem, decide more and more and more . . . number-
theoretic propositions (e.g., of the form (Ey)Tι(x,x,y)).

But I reject that (G)' could have any bearing on what number-theoretic
functions are effectively calculable. (Indeed, Webb so argues.) For, in the idea
of "effective calculability" or of an "algorithm" as I understand it, it is essen-
tial that all of the infinitely many calculations, depending on what values of the
independent variable(s) are used, are performable — determined in their whole
potentially infinite totality of steps — by following a set of instructions fixed in
advance of all the calculations. If the Turing machine representation is used,10

this includes there being only a finite number of "internal machine configura-
tions", corresponding to a finite number of a human computer's mental states.
We are dealing with discrete objects (the arguments and the result included) —it
is digital, not analog, computing. Maybe human thought as well as human sense
perception can encompass a continuous infinity of qualities. But in digital com-
putation we have abstracted from that continuity to deal with discrete mental
states and objects. Indeed, Markov [22], Chapter I, Section 1, emphasized the
abstraction by which we obtain abstract letters (what his algorithms work with)
as equivalence classes of observed concrete letters. I think the like applies to
instances of a given mental state, which is supposed always to lead to the same
operation in a given abstract situation. As Turing [27] says in paragraph 6 of
Section 9, "If we admitted an infinity of states of mind, some of them will be
'arbitrarily close' and will be confused." Hardly appropriate for keeping things
straight digitally!

Let us have a try at making sense out of there being a potential infinity of
states of mind by a human computer with an expanding mind in applying an
algorithm. So I encounter Smarty Pants, who announces to me, "I can calcu-
late the value of a certain function φ(x), for each value of x for which it is
defined, by rules already fixed which will determine my every step, so that what
function φ is is already determined. But I can't tell you, Wise Acre, how, because
the rules have to tell how I will respond in each of an infinity of ultimately pos-
sible states of my expanding mind." I would reply, "Phooey! If you can't tell
me what your method is, it isn't effective in my understanding of the term!"
How can S.P. know about all those future states of his infinitely expanding —
should I say exploding?— mind?

The notion of an "effective calculation procedure" or "algorithm" (for
which I believe Church's thesis) involves its being possible to convey a complete
description of the effective procedure or algorithm by a finite communication,
in advance of performing computations in accordance with it. My version of the
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Church-Turing thesis is thus the "Public-Processes Version" of Hofstadter [10],
p. 562 (which is phrased there for deciding a total one-place number-theoretic
predicate P(x) rather than for calculating say a partial one-place number-
theoretic function φ(x)). Smarty Pants' method of calculating φ(x) (or decid-
ing P(x)) must by the "Proviso" be one that "can be communicated reliably
from one sentient being to another [of reasonable mathematical aptitude] by
means of language", or I don't accept it as being effective and thus coming under
the Church-Turing thesis.

What has Smarty Pants offered me except his say so that he has a method
(which he is keeping secret from me)? How do I know that his claim is right that
his method "always yields an answer within a finite amount of time", if we are
dealing with a total predicate P(x), or, if we are dealing with a partial function
Φ(x), for each x for which φ(x) is defined, "always . . . the same answer for
a given number" as value of xΊ I could try to test S.P. by trying some values
of x on him (and try to trap him by trying the same value sometimes a second
or third time). But by observing his performance for any finite length of time
(and observing that he always gives the same answer each time I repeat a value
of x), I really won't ever finally know that his claim is right.

Particular objects in mathematics, such as predicates and functions, and
methods for deciding or calculating an answer to each of a class of questions,
are by my book ones that are fully specified for any mathematician to compre-
hend. Smarty Pants' supposed method (depending on the future statuses of his
supposedly infinitely expanding mind), and the predicate or function which it
is alleged to decide or calculate (unless he has given me another definition of
that) are mystical objects, not mathematical objects.

As I wrote in [18], p. 337, our "idea of an algorithm is sufficiently real that
in example after example . . . it separates cases when mathematicians agree that
a given procedure constitutes an algorithm from cases when they agree that it
does not." Historically, our idea of algorithms has involved their being proce-
dures that mathematicians can discuss with one another.

Godel continued from (G)' above, saying, "Now there may exist system-
atic methods of accelerating, specializing, and uniquely determining this de-
velopment, e.g., by asking the right questions on the basis of a mechanical
procedure" (Wang [28], p. 325). If Gδdel meant that we could uniquely effec-
tively determine the development (including the responses the expanding human
computer will make to each of a potential infinity of future (mental state)-
(observed symbol) pairs), our procedure for doing this being of the sort that
Turing conceives, then I think it is clear that the combination of effectively deter-
mining the infinite future expanding computer's mind and applying it would be
an effective (finitely describable) procedure from the beginning, coming under
the Church-Turing thesis. But of course, as Gόdel admits, "the precise defini-
tion of a procedure of this kind would require a substantial deepening of our
understanding of the basic operations of the mind". For the present I have to
characterize what he is contemplating as pie in the sky. So far as I can predict,
the pie will remain stratospheric.

In conclusion, I will recall that I was present at the Amsterdam Colloquium
of 1957 when my good fried Laszlό Kalmar presented his argument against the
plausibility of Church's thesis [11] (cf. Webb [29], p. 209); I immediately con-
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eluded, as fast as I heard it, that he had not given an effective procedure for
deciding as to the truth or falsity of (x)T(n,n,x). He would not be able to tell
me in advance in a finite communication (no matter how long we both should
live) what set of atomic rules would completely govern the concrete steps in his
search for proofs by "arbitrary correct means" of (x)T(n,n,x). I refrained from
embarrassing him at the Colloquium by asking him for them on the spot.

NOTES

1. It is not true, as seems to be stated on p. 212 of Webb [29], that, when Kleene
"undertook the detailed study of number theory in the λ-system" (the results of
which he published in [12]), "Church had, in fact, already suspected that these *λ-
definable' functions might provide a good approximation of effectiveness". In fact,
Church came to this suspicion from contemplating Kleene's results. Thus in January
or early in February 1932 when Kleene showed Church his λ-definition of the
predecessor function, Church acknowledged that he had just about convinced him-
self that there wasn't any ([19], pp. 56-57). For a full account of the origins of
Church's thesis, etc., see Kleene [19] and Davis [7].

2. Exactly one of these will be found, assuming that F, which embodies a bit of primitive
recursive number theory, is ω-consistent as well as complete. Thus if (Ey)Tx (z,x,y),
then simple consistency assures that not-(|-F Vy-iT^z,*^)}. If (Ey)Tγ(z,x,y),
i.e., (y)Tλ(z,x,y), then (y)[YF ~~'T1(z,jt,.y)], so ω-consistency assures that not-
IYF "IV.y-iTi(z,JC,y)J, so by completeness YF Vy-iTj U,x,y).

3. Of course, you and I know that (assuming the ω-consistency of F) we are arguing
under a false assumption (that Fis complete), so we should not be surprised to get
strange results. In fact, from our assumptions of the ω-consistency and complete-
ness of F, it follows that, for each z, the function φz(x) is general recursive
(indeed, φz(x) is a general recursive function of z,x). We need only use the fact
that, for each of the F's considered, [y is the Gόdel number of a proof in F of
vy->Ti(z,*,y)} is a general, in fact primitive, recursive predicate of z,x,y. So we
have a contradiction to the result of Kleene [17], p. 324, example 1, that the par-
tial recursive function μyTλ(x,x,y) which is ΦZo(x) for some Zo) is not potentially
recursive (so 0^o(x), which is eyTι(xix,y)f is not general recursive). In fact, we
thus get a (new?) proof of the absurdity of the completeness of F if F is ω-
consistent.

4. Actually we have just shown that, for F a formal system such as Gόdel considered
or the system of formal number theory of Kleene [17],

{Fis ω-consistent and complete) -• {not-(Church's thesis)),

Thence by propositional logic, classical or intuitionistic (Kleene [17], *12, *12, *49b,
*58b),

{not-(if Fis ω-consistent, then Fis incomplete)) -* {not-(Church's thesis)),

which is (1) with a negative form of GόdeΓs incompleteness theorem (asserting the
absurdity of completeness, rather than giving a specimen of an undecidable
formula).

5. Compare Church's [4] footnote 8 (which I introduce with material paraphrased
from the text): "[The equivalence of each of an important class of problems in the
theory of well-formed formulas to a problem of elementary number theory obtain-
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able by means of the Gόdel representation] is merely a special case of the now
familiar remark that, in view of the Gόdel representation and the ideas associated
with it, symbolic logic in general can be regarded, mathematically, as a branch of
elementary number theory. This remark is essentially due to Hubert (cf. for exam-
ple, Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidel-
berg, 1904, p. 185; also Paul Bernays in Die Naturwissenschaften, vol. 10 (1922),
pp. 97 and 98) but is most clearly formulated in terms of the Gόdel representation".

6. Including the undecidability of the two equivalent problems stated in his footnote
23, "(1) to find an effective method of determining of any two formulas A and B
whether A conv B, (2) to find an effective method of determining of any formula
C whether it has a normal form, [which] were both proposed by Kleene to the
author . . . about 1932", the positive solution of which (as Church remarks in his
preceding text) would, as is clear from results of Kleene [12], entail the solution of
"most of the familiar unsolved problems of elementary number theory" (cf.
Church's Theorem XIX).

7. Church's paper [4] uses, besides the Gόdel [8] numbering method, the Herbrand-
Gόdel concept of general recursive function from Gόdel [9] (a bit modified after
Kleene [13]). But Church remarks in footnote 3, "With the aid of methods of
Kleene [12], the considerations of the present paper could, with comparatively slight
modification, be carried through entirely in terms of λ-definability, without mak-
ing use of the notion of recursiveness".

8. I consider the diagonal method, used by both Church and Turing, to have been so
widely known since Cantor introduced it in [1] as not to have to be considered an
input from Gόdel (cf. the footnote at the beginning of Section 8 of Turing [27]).

9. Cf. the fourth paragraph in Section 11 of Turing [27].
Of course, Gόdel [9] set the stage for Kleene [13]; but, as with Church [4] (cf.

this paper's note 7), Kleene's normal form theorem could have been established
directly for λ-definability (cf. Kleene [19], p. 60, right column, lines 11-16). Kleene
learned of primitive recursive functions (in the terminology introduced in Kleene
[13]) from Gόdel [8] (what Gόdel called there simply "recursive" functions); but
they were also available through a series of publications going back to Dedekind
and culminating in Rόsza Peter's writings. Kleene chose to offer his [13] to
Mathematische Annalen because it had published Peter [24]. That elementary num-
ber theory with only 0, ', +, as individual and function symbols suffices for rep-
resenting every primitive recursive function, so that it becomes an example of an
F for the incompleteness results, comes by GόdeΓs use of the Chinese remainder
theorem in proving his [8], Theorem VII (and I do not know another source for it).

10. It is perhaps not always noticed that Turing's detailed treatment in [27] of his
machines used them for computing decimal expansions of real numbers. What he
briefly indicates in the first paragraph of his Section 10 as "possibly" the "simplest"
way of using his machines to compute (1-place) number-theoretic functions can't
be used for partial functions that are not total. But Turing's brilliant analysis of the
possibilities in the functioning of a mechanical or human computer are all adapted
in Kleene [17], Chapter XIII, to apply to the computation of partial (including total)
number-theoretic functions.

The gains for the theory of effective procedures obtained by Kleene's intro-
duction of partial recursive functions in [14] (separating the question of effective-
ness from the questions for given arguments whether the function being computed
is defined), particularly his "recursion theorem" (also in his [17], pp. 352-353) are
brought out well in Webb ([29], pp. 214-219). (Kleene lectured on the use of his
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recursion theorem in analyzing von Neumann's self-reproducing automata, cited in
Webb, p. 233, at the RAND Corporation in the summer of 1951.) Kleene similarly
used his "first recursion theorem" ([17], p. 348) in his [20].
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