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Model Constructions in Stationary Logic

Part II: Definable Ultrapowers

KIM B. BRUCE*

In this paper we continue our investigation of techniques for constructing
new models of an arbitrary theory Γin stationary logic, L(aa). In Part I [2],
we discussed the technique of model-theoretic forcing as a tool for building
models in L(aa). In this note we present a technique for constructing models
by a series of definable ultrapowers.

L(aa) was introduced by Shelah [3] (using the notation LiQ^)), and [1]
contains the first explicit proofs of completeness, compactness, and omitting
types for L(aa). New proofs of these were given in [2] using forcing. (A sketch
of the history of L(aa) may be found in Section 8.1 of [1].)

One reason that ultrapowers and ultraproducts have not usually been used
in the study of logics with generalized quantifiers like L{aa) and L(Qι) (logic
with the generalized first-order quantifier "there exist uncountably many x") is
that if U is a countably incomplete ultrafilter over set / and A is countable, then
UυA will be uncountable. Since the main difficulty in generating models for
these logics is in keeping the countable sets from growing and becoming
uncountable, the usual ultrapower construction has not been helpful. Defin-
able ultrapowers, originally introduced by Skolem, come to the rescue here. If
the set / is countable and only definable functions from / into A are considered,
τυA will still be countable. As usual in building definable ultrapowers we will
need our language to contain built-in Skolem functions. With this, and by iter-
ating the definable ultrapowers ω! times, we will be able to construct standard
models of L(aa). In particular we will give a new proof of the compactness the-
orem for L(aa).[

1 Preliminaries We review very briefly the logic L(aa) and the notion of
a weak model for L(aa). Our terminology and notation are the same as in [2].
Let Θωχ (A) be the set of all countable subsets of A.
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Definition Let X <Ξ (9ωχ(A). We say that X is c.u.b. (closed and un-
bounded) over A iff

(i) whenever s0 c: sj c s2 c .. . for s, G X9 then Us, G X
(ii) if s G (Pω, (.4), there is an s' 2 s with s' G X

We say Y ς= <Pωi (A) is stationary over A iff for every c.u.b. X, X Π 7 ̂
φ. The c.u.b. filter on A is defined to be the set ^(A) = {Xf: there is a c.u.b.
seiXWrthX^X'}.

Stationary logic is formed as an extension of first-order logic by the addi-
tion of two second-order generalized quantifiers: aas ("for almost all s") and
stats ("there is a stationary set of s") where stats is the dual of aas. We can now
define satisfaction for L(aa). Let 21 be a model of L9 a an A7-tuple of elements
of A (the base set of 2ί), t an m-tuple of elements of (Pω, (^4) and φ a formula
of L(aa) whose first-order free variables are among υX9.. .9υn9 and whose
second-order free variables are among sΪ9... 9sm. Satisfaction is defined as
usual by induction on the complexity of formulas. The clause for aas is:

21 N aasφ[s9 t9 a) if {tf G (Pωi (A): 21 N φ[t', t, a]} G S(Λ).

Since stats abbreviates ~^aas-^ it follows that 2ί N stats φ[s, t, a] iff {tf G
(Pωi(A): %\= φ[t\ t, a]} is stationary. Note that the second-order variables are
always interpreted as countable subsets of the base set; that is as elements of

<Pω,(Λ).
Note that the second-order quantifiers Vs and 35 are not included in the lan-

guage L{aa). However, when we are dealing with countable weak models of
L(aa) in this paper, we will want to extend the language to L+(aa) which does
include the second-order quantifiers Vs and 35, as well as aas and stats.

Our standard models of L{aa) will be constructed from countable approx-
imations, called the weak models.

Definition A weak model for L(aa) is a triple 2ί* = (2ί, (P, $) where 21 is
a model for L, (P is a collection of subsets of A, and ^ is a collection of sub-
sets of (P such that (P G 5\ All second-order variables range over elements of
(9 and first-order variables range over elements of A. Satisfaction for these weak
models is defined as usual by induction on the complexity of formulas. The aas
clause is (21, (P, $) (= aas φ[s, t9 a] iff {ΐ G (P: (21, (P, ίF) t= φ[t\ t9 a]} G 5\ As
mentioned above, we will sometimes want to use the extended logic L+(aa)
which includes Vs and 3s when discussing weak models. For example (21, (P,
S) N vs φ[s, ί, α] iff for all V G (P, (2ί, (P, S) N φ[^, f, a].

We say a theory Γin L + (aa) has built-in Skolem functions iff for every
first- or second-order existential formula 3xφ(x9 y) or 3s\^(s, y) there is a
function symbol Fφ or Gφ such that Γ |= 3xφ(x9 y) -• φ(Fφ(y)9 y) and Γ |=
3sφ(s9 y) -• φ(Gφ(y)9 y). We say model 2ί* has built-in Skolem functions iff
77ί(2Γ) inL+(tftf) does.

2 Ultrapowers in L+(a) Let 2ί* = (21, (PH, ί 2 1) be a weak model of L(tfa)
which has built-in Skolem functions. Let U be an ultrafilter over the set (P2*.
We define the definable ultrapower of 2ί* over U9 33* = (33, (P21, $%) =
(Πt/21*)^/, as follows:
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(i) b u G B iff b: β>n -+ A and there is a formula ψb (s, y, z) and c G 04 U
(?*)«•> such that 21* N V5 3!.yiM5, Λ <0 and such that for all / G (PH, 21* N
Ψz? [*\ 6(0» c\ Thus Z?̂  is the equivalence class of a definable function from (PH

into ;4.

(ii) su G (P33 iff 5: (P* -> (P* and there is a formula φs(ί, «, z) and c E
(/I U ($>«)«" such that 21* N Vt3luφs(t, u, c) and for all / G (P2*, 21* N φ5 [/',
5(0, c]. As usual bυ <Ξ sυ iff {/E(Pa: &(0 Gs(/)} E £/.

(iii) Let Γ g ί P ^ Γ G ϊ 5 8 iff there is an X c ^ such that for all / E (P*
there are Xt c (p« with ^ = ( Π ^ / ) Π (P53 where

(a) Z={iE (P21: Â  G ί?21} G C/, and

(b) there is a formula ψ(/, w, JC) and c G (Λ U 6 ) 2 ί)< ω such that for all / G

Z, ^ { s E C P ^ a ^ I s , i, c]}.

The very careful definition of ί?23 above is necessary to push through
the following analog of Los's theorem.

Theorem 1 Let 2ί* be a weak model of L(aa) with built-in Skolem func-
tions and let 33* = (Uu%*)def. For all formulas φ(x) ofL(aa) and bu G (B U

( P ΰ ) < ω , 23* N φ[b) iff {/ G (P51: 93* N 0[ft(/)]} G £/.

Proof: The proof for atomic sentences, Λ, and -«is standard. The 3-case goes
through since we have Skolem functions.

(=>): Trivial.
(<=): Suppose F = {/ G (P21: 2ί* N 3«0[i/, 6(/')]} G (7. Since each bu G

( 5 U ( P Φ ) is definable, there is a formula ψb(s9 w, z) and c<Ξ{AU 6>2ί)<ω such
that 21* N V5 3!w ^ ( 5 , w, c) and 2t* N ^ ( / , ft(0. c) for all / G (?n. Thus for all
/G Y, 21* N 3w(3w(φ(w, w) Aφb(i9 w, c))). Let/(5, z) be the Skolem function
for the formula in parentheses. Therefore for all / G Y, 21* N φ(/(/\ c), 6 ( 0 )
Let rf(/) = / ( / , c) for all /. Therefore by induction, 33* N φ[dυ

y bu], and hence
S M H Φ [ W , ft*7].

The ^ case is a little trickier. aa(*=): Suppose Y = {/ G ^ ^ 21* N aasφ[s,
b(i)]} G £/. For / G r , let ^ = {5 G (PH: 2ί* N </>[5, &(/)]}. For / G (P* - 7, let
Xi = (S>%. Thus ^ 6 ί f a for all ieδ>n. By definition ^ = (UυXi) Π (P® G 5®.
Recall that 5^ G X means Z={iE (P5*: 5(0 Ξ A7} G (7. Also for / G y, 5(0 E
X, iff 2ί* N Φ[5(0, ft(0] It follows that

{/E(P a : 2l*Nφ[5(/), 6(ι)]} 2 Z Π 7 G (7.

Therefore by induction, s ^ G .Y implies 33* (= φ[5^, bu\. Thus since ^ G ίF59,
33*N^5φ[5, bu].

aa(=>): Suppose 33* N aasφ[5, fc*7]. Let Λ" = { ^ G ( P s : 33* NΦ[5^, Zί^]}.
By definition of $®, there is a n l ς Γ and A^ c fl>» for each i<Ξ(?n such that
^r = (Πt/AΓ,) Π (P33, Z = {/ G (P21: A^ G $*] G C/, and there is a formula tf(ί, w,
x) and c G (yl U ( P 2 ί ) < ω such that for all i G Z, A^ = {5 G (P%: 21* (= ̂ [ j , /, c]}.
We need to prove that Y= {/G (P21: 21* N aasφ[s, b(i)]} G C/. This will follow
if we show W= {ie(P%:Xi^ {s<Ξ(?%: %* ¥ φ[s, b(i)]}} G Usince then WΠ
Z G ί / a n d WΠZ^ Y.

Suppose W £ U. Then Z - W = {/ G (P21: 21* N 35(^[5, /, c] Λ -iφ[5,
6(01)} ^ U' Let/(x, z) be the Skolem function for the formula in parentheses.
Thus for ieZ - W,



260 KIM B. BRUCE

(*) 2ί* N ΦlfU, c), i, c] Λ -iφ[/(ι, c), &(/)].

Let sf(i) =f (/, c) . Thus s}1 E (P53 and {/ E (P21: */(/) E A",} E £Λ Hence s / E
X^X' and thus S3* (= φ[s/, b]. This contradicts (*) though, so we must have
had W EL U as desired.

Note that the proof of the above theorem does not depend on the diagonal
intersection axiom.

The following lemma gives the construction which will be central to our
proof of the compactness theorem. Notice the similarity between the descrip-
tion of the model S* below and the notion of a Φ-generic extension of 23 with
respect to stαts ψ as given in [2].

Lemma 2 Let L(αα) be α language with built-in Skolem functions. Let 93*
be a countable weak model ofL(aa) which satisfies the Skolem function axioms
as well as the closures of {stats φ(s) -» 3 -ns φ(s): n < ω, φ E L(aa)}. Let b E
(B U ( p 3 9 ) ^ and ψ be a formula ofL(aa) such that 93* 1= stats ψ[s, b].

Then there is a countable S* ^ 9 3 * such that:
L+(aa)

(i) e * N ψ[B, b] where B is the base set o/93*
(ii) whenever 93* 1= aasφ[s9 a] then g* (= φ[B, a].

Proof: We construct 6* as a definable ultrapower of 93*. First we define S33 as
follows: XG S33 if J f c p(β>®) and (?®\X £ ίF*. Thus 93* N stats φ(s) iff {s E
(P 5 3 :93*N^[5]}ES 5 8 .

We want to define an ultrafilter over (P93 which will ensure that (i) and (ii)
above both hold. Let Φo(s, b0),... 9φn(s9 bn),... be a list of all formulas Φi(s,
bi) with bi E ( 5 U ( P ^ ) < ω and 93* N aas φt(s, 6f ). Let c 0, cx,... be a list of all
elements of (HB)def. We will pick our ultrafilter U to contain the sets {Un:
n < ω} defined inductively as follows:

Let Uo = {s E (P23: 93* N ψ[s, b]} E S*. Suppose Uo 3 Uλ 2 U2 2 . . . 2
ί/2/I have been defined so that for each / < In, ίZ/GS93 and t/, is definable (with
parameters) in 93*.

Stage In + 1: The motivation for this stage is to ensure that sdiag, which is
defined by sdiag{i) = / for all / E (PH, will contain no elements not already in B.
L e t J f = {/E(P S : 93* Ncrt(/) E/}. Since stats(φ v ̂ ) -^ stats φ y stats φ, one of
£/2/, Π ̂  and ί/2Λ\^ is in S33.

C^5β /. U2n\XG S53. Let t/ 2 Λ + 1 = U2n\X' Therefore no matter how we complete
{Un: n < ω} to an ultrafilter U, we will have X £ U and hence 6* N -ic^7 E

^diag

Case ii. U2n ΠXe§>®. Let (9(5, b) be the definition of U2n in 93*. C/2/f Π Xe
S33 implies 93* 1= stats3z(θ(s, b) Λcn(s) = ZΛZGS). Therefore by the diagonal
intersection schema, 93* N 3zstats(θ(s, b) Λ cn (s) = z). Hence there is an a E B
such that 93* f= stats(θ(s, b) Λ C Λ ( ^ ) = a). Let ί/2λ2+1 be the stationary set
described by the formula in parentheses. Clearly U2n+ι ^ U2n and for all / E
^2«+i» 33* |= cn(i) = α. Hence at the end cn will be identified with the constant
function fa (defined by fa(i) = a for / E (P%) in the model S*.
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Stage2n + 2: Let Y= {/GCP21: 93* NΦΛ[/, bn]}. Since YG SF®, it follows that
Uin+2 = U2n+\ Π XE: S^ (recall the intersection of a c.u.b. set and a station-
ary set is itself stationary).

Let C/Ξ2 {£/„: Λ < ω} be a nonprincipal ultrafilter over 5 . We can choose
C/to be nonprincipal since each Un is infinite.

Let (£* = (Πc/93*)^/. We show (5* satisfies the theorem. For each b G B
let Λ be defined so that for all / G (P93, Λ (/') = ft. Clearly / ^ G C for each £ G

B. By Los's theorem for L + (aa) we get 93* "^ 6* where we identify Z? G 5

with/^7 G C. Define s ^ so that sdiag{i) = i. Clearly s%ag G (P e . We will show
s%ag = B (i.e., fu G s j ^ iff fu =tf for some b G 5 ) . If ft G 5, 93* N ααs(ό G
s) and hence in an even-numbered step we ensured that 6* N/&7 G s$ σ g . On the
other hand, if 6* |= c 6 7 G 5 ^ then c = cn for some n. Hence at stage 2/7+1 we
must have applied case ii, which would give us an a G B such that β* N c —fa -
Thus Sdjag corresponds to B.

Since Uo G £/, ©* N ̂ [ ^ β g , ft]. Similarly by the constructions of the
U2n € EΛ we are assured that whenever S* N ί?ύf5 φ[5, ft], 6* N φ[Sdiagi ft].

The above lemma is all we need to prove the compactness theorem for
L(aa) (note L+(aa) is clearly not compact). We cannot prove the completeness
theorem this way since we need the existence of Skolem functions to push
through the proof.

Compactness theorem Let Γbe a countable set of sentences of K{aa) and
suppose that every finite subset of Γhas a standard model. Then T has a stan-
dard model.

Proof: Let L + (aa) be an extension of K{aa) with Skolem functions. Clearly
any standard model of K{aa) can be expanded to a model of L + (aa) satisfy-
ing the Skolem axioms and the closures of STAT — {statsφ(s) -+ 3~nsφ(s):
n<ω and φ G L+(aa)}. Hence T* = TU {Skolem axioms} U S7:4Γis a count-
able finitely satisfiable theory in L+(aa) (interpreted as a two-sorted logic where
we allow existential quantification over both sorts). Thus by a Henkin-type con-
struction there is a countable weak model 2lo satisfying Γ*.

By using Lemma 2 as in the proof of the completeness theorem we can
obtain a standard model 21 of L{aa) such that SI N T. (Note that 21 will not nec-
essarily preserve second-order universal statements since the union of the (?®a

for a < ωj need not give all of (Pωj (A).)

NOTE

1. We would like to thank M. Kaufmann for showing us a similar construction for
L(Qι) and for several interesting discussions on generalized quantifiers.
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