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On the Σ?-Conservαtivity of Σ?-Completeness

ALBERT VISSER

Abstract In this paper we show that /Δo + Ωi verifies the sentential Σ?-
conservativity of schematical, sentential Σ?-completeness. (This means that
for any finite set of Σ?-sentences 5 we can prove in /Δo + Ωi that the state-
ment expressing the completeness of S w.r.t. 7Δ0 + Ωi is conservative over
7Δ0 + Ω! w.r.t. Σi-sentences.) Some consequences are discussed. We formu-
late a system of provability logic based on the verifiable sentential Σ?-con-
servativity of schematical, sentential Σ?-completeness.

1 Introduction As is well known it is a difficult question whether 7Δ0 + Ω\
proves Σ?-completeness. From Buss [1], Chapter 8, we can extract the following
point: let A(x) be any coNP-complete Π^ formula. Suppose 7Δ0 4- Ωi proves:
Vx(A(x) -> D / Δ O + Ω I V 4 ( J C ) ) . Then by Parikh's Theorem for some polynomial
P(x), 7Δ0 + Ωi proves: Vx(A(x) - i | y \ < P(\x\) Proof / Δ o + Ω l(j>, ,4 (*))).
Hence in the standard model we have: Vx(A(x) <-• 31 y\ < P( |JC|) Proof / Δ o + Ω l

(y,A(x))). In other words, A(x) is equivalent to a Σ?-predicate. Ergo NP =
coNP. On the other hand, if 7Δ0 + Ωi proves a suitable schematic version of
NP = coNP, then—as is easily seen—7Δ0 + Ω\ proves Σ?-completeness.

Verbrugge [7] shows that for A (x) in the above argument we may also take
a formula of the form: ΠIAo+ςiιB(x) < D / Δ o + Ω l C ( x ) . Such a formula is aΠ?.
This means that if completeness for Rosser-ordered provabilities (with param-
eter) were provable in 7Δ0 + Oi, then again NP = coNP.

In Paris and Wilkie [4] it is shown that all principles of Lob's Logic are valid
in 7Δ0 + Ω!. Solovay's proof of the arithmetical completeness of Lob's Logic,
however, uses essentially the verifiability of schematical, sentential Σpcomplete-
ness (in fact: completeness for Rosser-ordered provabilities) in the arithmetical
theory (see [7]). As a consequence, the question of arithmetical completeness of
Lob's Logic for interpretations in 7Δ0 + Ω! is still open.

In this paper we show that for any finite set 5, 7Δ0 + Ω! verifies that the
statement expressing the completeness of S w.r.t. 7Δ0 + Ωj is conservative over
7Δ0 + Ω! w.r.t. Σ?-sentences. In other words: 7Δ0 + Ω\ verifies the sentential
Σi-conservativity of schematical, sentential Σ?-completeness over 7Δ0 + Ωp This
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fact gives rise to a rather natural system of provability logic. Let us add to the
language of Lob's Logic propositional variables s,s'9... for Σ?-sentences. If we
consider interpretations in a theory U extending 7Δ0 + EXP (with Σ? provabil-
ity predicate), the resulting arithmetically valid and arithmetically complete logic
is Lob's Logic + {s-+ Πs\s a Σ-variable}. (The proof is surprisingly easy: see
Visser [8].) If we consider interpretations for the extended language in 7Δ0 + Ωι,
we can (by our present lights) only justify the system Lob's Logic + (D (/A {s-^
Πs I s1 in S} -> s*) -> Πs* | s* is a Σ-variable, S is a finite set of Σ-variables}.

This logic is useful, for example, if one wants to formalize metamathemat-
ical reasoning involving the Rosser-ordering in JΔ0 + Ω\ (see the following ar-
ticle by Carbone on provable fixed points).

2 Prerequisites The reader should be acquainted with [1], [4], and Smoryn-
ski [5].

3 Programming cuts Let U be an arithmetical theory. A (/-cut will be (in
this paper) a formula I(x), having only x free, such that U proves that 0 G /, that
/is closed under successor, addition, multiplication, and ωi, and that /is down-
wards closed w.r.t. <. If we speak simply about a cut, we mean: /Δo + Ωi-cut.
We write A1 for the result of relativizing all quantifiers in A to /.

Let / and / be /Δo 4- Ωi-cuts. Define:

/< / :«=>/Δo + Qι \-vχ(χel-+χe J).

I=J :<=•/</and/</.

x G ID :«* x = x.

xGloJ :«JCG/Λ(JίG I)J.

x G I[A]J :<-> (A AX G /) v (-> 4̂ ΛJC G / ) . (Here A is a sentence.)

We enumerate some elementary facts about cuts. The proofs are left to the
diligent reader.

1. / o / is a cut. The proof uses that /Δo + Ω\ h (/ is a cut) 7. Note that this
would not work if we were considering /Δo + EXP and /Δo + EXP-cuts
instead of /Δ o + Ωi and /Δ o + Ω r cuts.

2. ID is a cut. Cuts are closed under union and intersection and (•) [A] (•)•
3. = is a congruence relation w.r.t. Π, U, ° and (•) [̂ 4] (•) and < is a po

w.r.t. cuts modulo = .
4. ID is the identity w.r.t. °. Moreover ID is the maximum w.r.t. <.
5. / o / < / .

6. / < / ' = * (/o/) < (/Ό/).

7. ( / Π / ' ) o / = (/o/)Π (ΓoJ).

8. (/U/')<>/= (/o/)U (ΓoJ).

9. For A a sentence: /Δo + θ ! V AhJ ++ (Ar)J.
10. o is associative.
11. /ΔQ + ΩJ \-BI[A]J++ ((AAB^W^AAB1))

12. Io(J[A]K) = (IoJ)[A]{I*K).
13. (I[A]J)oK=(JoK)[Aκ](JoK).
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4 Onschematical, sentential Incompleteness Define C(S) := /k [s-> Πs \ s
in S}9 where S is a finite set of E?-sentences and where D is provability in 7Δ0 +
Qi. We have: for every S there is a cut J(S) such that: /Δo + Oi h C{S)J(S).

Proof: There exists a cut 7 such that for any Σ?-sentence s: 7Δ0 + Ωi h 5 7-> Πs.
(Let me briefly sketch the proof that such a cut exists. The usual proof of Σ?-
completeness transforms a witness x of s into a witness p of Πs. A crude esti-
mate shows that/? < exp(exp(|s|'5'+/: \x\))9 where kis a fixed standard number,
Iy\ := entier(2log(.y + 1)), exp(^) := 2y. Let 5 := lxso(x), where s0 Ξ Δ?. Using
the estimate we can show in 7Δ0 + Ωj:

vx,z((so(x) A exp(exp(|s|l*l+*. |JC|)) = z) - 3/? < z Proof(/?,*).

Let 7be any cut such that 7Δ0 + Ω\ shows: x G 7-> exp(x)l. Using the fact that
s is standard and the closure properties of 7 we can easily show 7Δ0 + Ωi h s1 -+
Us.)

The proof of our theorem is by induction on the cardinality of S. Put J(0) :=
ID. Note that C(0) = T. Suppose S := S* U {5*}, where 5* £ S*. Put J(S) :=
(ID[5* -> us*] (/(S*) * 7)) o /(S*). (Evidently our construction as it stands
does not give a unique result. It can be made unique, e.g., by using some ordering
of Σ1 -sentences.)

By the Induction Hypothesis 7Δ0 + Ω! h C(S*)JiS*K Note that also: 7Δ0 +
Ωj h c(S*)J(S*)oIoJ(S*\ because 7Δ0 + Ω! is again valid on J(S*) 0/0 j(S*).

Reason in 7Δ0 + Ω! and reason 'inside' J(S*): we have C(S*) and
C(5*) / ( 5 * ) β / . In case s* -> D^*, clearly C(S) and ipso facto C(S)lΌ. Other-
wise it follows that -iDs* and hence (->5 * ) 7 (since s*1 -• D51*). By the down-
ward persistence of Πi-sentences, also (-i5*)J(S*)o/and thus (s * -» D^*)*7^*^7.
Combining this with C(S*)J(S*)o1 we find: C(S) y ( 5 * ) o / . So we may conclude:
C(SγΌ[s*-+Πs*]{J(S*)oI)Λ

There is an alternative proof that is conceptually very simple: (in 7Δ0 + Ωx)
consider the set of true elements of S. Go inside 7. Inside 7 the same elements of
5 are either true or less (because we can only lose witnesses). In the first case we
are done: for any s in S we have: if s then s1 then Πs. In case we have less, re-
peat the procedure inside 7. This can go on no more than n times, because af-
ter each step S is left with strictly fewer truths and S contains only n elements.
So in all cases we finish with C(S)! Below I give the alternative proof in a slightly
more formal style.

Alternative proof: Let 7 be as before. Suppose the cardinality of S is n.
Define FIX(S) := M [s ++ sτ\s G S}. Let J0(S) := ID and J*+i(S) : =
ID[FIX(5)] (Jk(S)oI) and J(S) := Jn(S). Reasoning in 7Δ0 + Oi one easily sees
that each time the right-hand side is chosen strictly fewer elements of 5 will be
true. If this happens n times no elements will be left and C(S) is trivially true.
Otherwise at some stage AτFIX(S) is true. Clearly FIX(S) implies C(S).

Remark Let K be any 7Δ0 + Ω^cut. Define K° := ID, Kn+ι :=K<>Kn. It
is a nice exercise to show that for the Λ(S) of the alternative proof we have:
jk(S) = (ID[FIX(S)]7)*. (Hint: use 10 and 12 of Section 3.)
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The sentential Σ^-conservativity of schematical, sentential Σ^-completeness:

for allSandsr/Δo + Ω! h D(C(S) -+s)^> Us.

Proof: Reason in 7Δ0 + Qp Suppose Π(C(S)-+s). Then ΠsJ{S). Ergo: Πs.

Remarks

i. It is an open question whether 7Δ0 + Ωj verifies the Σi-conservativity of
full sentential Σi-completeness. As is easily seen it is sufficient to show:
7Δ0 + Ωi h vS,sD(C(S) -• s) -* Us. I conjecture that this is the case.
My reasons for believing this conjecture are given in a note.1

ii. Can we get e.g.: 7Δ0 + Oi h D(VΛΓC(S(X)) -> Vxs(x)) -> ΠVxs(x),
where S(x) is a finite set of Σi-formulas having only x free and s(x) is a
Σ i-formula having only x free? We can see that this is a difficult problem
by the following argument due to Dick de Jongh: let A(x) be a coNP-
complete Π? formula. Let S(x) := [A(x)) and s(x) := C(S(x)). From
the principle under consideration it would follow that ΠVx(A(x) -*
D^4(JC)). The considerations in the introduction show that we cannot
hope for an easy proof of this fact.

Corollary Let L be Lob's Logic. Let I be an 7Δ0 + Q\-cut. An interpreta-
tion (•)* of the modal language is an la-interpretation if UA is interpreted as
Π/Δo+Ωî *7- (•)* ̂  an Ib-interpretation ifΠA is interpreted as Π/Ao+QιA*. We
have:
(a) LY A &for all 7Δ0 + Qχ-cuts I and all la-interpretations (•)* : 7Δ0 + Ωi h

A*1.
(b) L V A &for all 7Δ0 + Qy cuts I and all Ib-interpretations ( )* : 7Δ0 + Ω2 h

A*.

Sketch of the proof: We prove (a) and (b) simultaneously. The soundness side
is trivial. Suppose L \f A. Let K be a countermodel with extra node 0 added be-
low. Say the domain of K is {0,...,«}. Define:

A(0) :=0,
h (/!+ 1):=/ if A (n)Ri and ProofIAo+Qι(n,(L Φ i)J), h(n +1) :=h(n) otherwise,

L = i :&lxh(x) = / Λ vy,z((A(^) = ΪΛZ >y) -> Hz) = /),
/ := J({3xh(x) = 1,... ,3JCA(JC) = n}).

It is easily seen that this definition can be made to work in 7Δ0 + Ω1? using the
Fixed Point Lemma to get both L and /. Note that L and / only occur as codes
in the definition of A. Let me briefly indicate why A is provably total in 7Δ0 +
Ωj: first the function \A,J AJ can be formalized and proved total in 7Δ0 + Ωi:
the reason is that the recursion in its definition is over subformulas. (This fact
is verified in detail in Kalsbeek [3].) Using this we can show that the function that
assigns (a code for) (L Φ d)J to d, 77, where H is a code for a formula defining
A, is definable in 7Δ0 + Ωi and provably total. Define FCF(σ) (for: "σ codes a
Finitely Changing Function") by:

FCF(σ) :Φ» ((σ)o)o = 0Λ (VK < lth(σ)3t;, w< σ(σ)u = (v, W»ΛVW, V < lth(σ)
(u<v->((σ)u)0< ((σUo).
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Define further (for σ such that FCF(σ)):

α(x) = y :<r*3u < lth(σ)3t; < σ(v < X Λ (σ)u

= <v,y> ΛVW <lth(σ)(w < w->x< ((σ)w)0)).

It is easily seen that under this definition σ represents a function, when FCF(σ).
Let B(x) := «Λ:,0>,<X, 1>,... ,<x, n))\ for a decent coding of sequences B{x)

is of order xk for some standard k. We can write the equivalence proved by the
Fixed Point Lemma as follows:

h(χ) = y<->3σ<B(x)
(FCF(σ) Λ σ(x) = J Λ σ(0) = 0 Λ Vz < xlu < z3d < n

(σ(u) = σ(z) = dΛ
(u = 0v3t; < u3e < Λ

(w = y + 1 ΛProof/Δo+Ωl(ί;,(L Φd)J) AO(V) =eΛeRdΛVw<z
(v < w-+ V/< Λ

(-.el^v -iProof/Δo+Ωl(w,(L ^/)y))))))).

The existence of L is trivial, the range of h being standardly finite.
To make the usual Solovay's argument work it is sufficient to provide sen-

tences \i (i = 0 , . . . , n), where we define/?* := W {λ/| i\Vp) and where the \i
satisfy:

(i) λO is true,
(ii) hW{λ/|/ = 0, . . . ,« j ,

(iii) i Φ j => h -i (λ/ Λ λ/),
(iv) ι/y => hλί -^ Oλy,
(v) /^0=^hλ/^DW{λ/1 iRj} .

Here for the proof of (a): b4 means /Δ o + Ωi V AJ and UA means D / Δ o + Ω l^4 7.
For the proof of (b): YA means 7Δ0 -h Ωi h^4 and UA means D/Δo+Ωl^4.

Define for (a): λi := (L = /); for (b): λi := (L = ι)Λ Note that in this way
the ultimate meanings of (i)-(v) are precisely the same for (a) and for (b). We
leave it to the reader to verify from (i)-(v) the Embedding Lemma: for / Φ 0:

iW-A* hλi-+A*9

iVA=*\-\i->-*A .

We also leave to the reader the proof of Solovay's Theorem from the Embed-
ding Lemma.

We turn to (i)-(v). The only interesting case to verify is (v). The crucial step
is the verification of: for / Φ 0

7Δ0 + Ωj h (ixhx = /-> D / Δ O + Ω I(3Λ:ΛΛ: = i)J)J.

Our construction of J gives us:

7Δ0 + U! h (ixhx = /-+ D/ΔO+ΩI3Λ:ΛΛ: = i)J.

Moreover it is well known that:

7Δ 0 + Oi h (ΠIAo+QιB-+ ΠIAo+UιB
J)J.

Combining these two results we are done.
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Corollary 7Δ0 + Ωi + ~>EXP + [s -> Πs \ s is a Σ\-sentence) is locally inter-
pretable in 7Δ0 + Ωi.

Proof: Let S be any finite set of Σ?-sentences. Let us write A > B for: 7Δ0 +
Ωi + B is interpretable in 7Δ0 + Ωι + A. We use the principles for interpretability
of the system ILW verified in Visser [9].

We have by our theorem T > C(S) and (because the interpretation is a cut)
D(T > C(S)); hence D ( 0 τ - * 0 C ( S ) ) . By a result of Paris and Wilkie: EXP >
0 τ , so EXP > OC(S). By the principles W and J5:

EXP > (OC(S) Λ D-.EXP) > O(C(S) Λ -nEXP) > (C(S) A Ί E X P ) .

Also: (C(S) A - I E X P ) > {C(S) A -ΠEXP). Hence by J3:

T > C(S) > (EXP v (C(S) A -.EXP)) > (C(S) A ->EXP).

Remark The fact that T > - EXP was first proved by Solovay in 1986. This
was unknown to me when writing [9]. Solovay's proof is quite different from
ours.

4 The s-system Let s-L be Lob's Logic in a language with two sorts of prop-
ositional variables: the usual/?,q,r,p'9... ,P\,P2, and s,s'9... ,Sι,s2,....
The ^-variables stand for Σ?-sentences. Let Σ be the smallest class of formulas
in the enriched language such that formulas of the form _L, T, ΠA, s are in Σ (for
any formula A), and if B, C are in Σ, then so are (B v C) and (B A C). s-L has
the following additional rules:

5-Principle hD (C(S) -+s)-+ Us, for S a finite set of ^--variables,
Substitution \-A(pu.. . 9pn,su ... ,sn) => hA(Bu . . . ,Bn,σl9... ,σ w ) , for

any formulas Bu.. .,Bn and for any σ{,..., σm in Σ.

Equivalently we could take instead of ^-Principle plus Substitution:

5 + -Principle hD (C(X) -> σ) -> Dσ, for X a finite subset of Σ and σ G Σ.

An interpretation (•)* of the language of s-L is a function from the elements of
this language to sentences of the language of arithmetic, which satisfies the fol-
lowing conditions:

• (s)*eΣ?,(±)* = ±,(τ)* = τ,
• (•)* commutes with the propositional connectives,
• (ΠA)* = ΠIAo+QιA*.

As is easily seen, s-L is arithmetically valid for interpretations in this sense, i.e.:

5-Lh^=>Y( )*/Δ0 + 0i \~A*.

Evidently the closure of s-L under the rule: \-ΠA => K4, is also arithmeti-
cally valid. I conjecture that s-L is already closed under this rule.

We give some theorems in s-L:

51 hD¥S^D^S + , where S+ := {SAΠS\SGS}
52 \-(Π(\JA -> WS) Λ D(WS + ->^)) -* DΛ
53 hD(C(S) -• (A ->s)) -+ Ώ+(ΠA -> Πs), where Π+C := ( C Λ D C )
54 hD(C(S)-> (D5->5))->D5.
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Proofs: SI is trivial. For S2: suppose (in the s-System) D(D^4 -• WS), then
Ώ(ΠΏA - D W S ) . Hence by SI: D ( D D ^ - D W S + ) . Suppose further
D ( W S + -> Λ), then D ( ϋ W S + -> ΠΛ). Combining: D(DD,4 -> DΛ), and
thus DDΛ. We may conclude D W S , hence D W S + , hence DΛ.

Ad S3: From Π(C(S) -* (Λ ->s)), we have D M -» (C(S)-+s)). Hence
D + ( D , 4 - » D ( C ( S ) - * * ) ) . Hence D + (D,4-» Ds).

AdS4: Suppose Π(C(S)-+(Πs-+s)). By S3: D(DDs-» Ds), hence DDs.
Ergo D(C(S) -*s) and thus D s.

Remark It is now easy to specify a reasonable system for Rosser logic valid
in /Δ o + Qi. Take Svejdar's system Z (see Svejdar [6]). The validity of Z for in-
terpretations in 7Δ0 + Oi is verified in detail in Verbrugge [7]. Now add to it the
Σ*-substitution instances of the ^-Principle, where Σ* is the smallest class such
that formulas of the form ±9τ9ΠA,ΠB < DC, ΠB < DC are in Σ*, and if B9 C
are in Σ*, then so are (B v C) and (BΛC). Call the resulting system Z-s.2 Note
that Z-s is not valid for the interpretations studied by Svejdar. Z-s is studied by
Carbone and De Jongh. They show that the theorem by Montagna and De Jongh
on provable fixed points is true for Z-s. See the following article (pp. 562-572)
by Carbone: Provable Fixed Points in 7Δ0 + Q{. (For the original result by De
Jongh & Montagna see: De Jongh & Montagna [2].)
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its turn was inspired by ideas of Franco Montagna and by earlier work by De Jongh and
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NOTES

1. I sketch a Lakatosian Throught Experiment of which I hope it could be converted
into a real proof.

To formalize our argument in 7Δ0 + Ωi we should provide bounds for the cut
J(S) and for the 7Δ0 + Ωi -proofs involved. If we follow the first proof of Section 4
it seems to me that J(S) will grow too fast in 5. So let us look at the alternative proof.
By the remark following the proof we can use as a definition of J(S): (ID[FIX(5)] I)n.
Let A'be any cut and add a unary predicate variable JΠo the language. Let (x € K)x

be defined in the obvious way. By a method due to Ferrante and Rackoff we can re-
write ( x e l Λ ( x e K)x) to a formula P(x, X) with only one occurrence of X. (One
needs a language with <->.) Let us define K° X using P(x, X) rather than the obvious
formula. We can convert a proof of "K is a cut" into a proof of "X is a cut -• K <> X
is a cut". Using these facts we can show that the length of Kn is linear in n. Since
n is the number of elements of 5, 2" exists in 7Δ0 + Ωi and hence Kn will exist in
7Δ0 + Ωi. Furthermore, one can show that the 7Δ0 + Ω!-proof that Kn is a cut exists
in7Δ0 + Ω1.

Take K := ID[FIX(S)]7. Our induction hypothesis is: for k (with 0 < k < n) we
have an 7Δ0 + Ω^proof of: in Kk we have: Fix(S) or at least k elements of S are
false. If we treat this naively then we explicate "at least k elements of S are false" by
a big disjunction of conjunctions of negations of elements of S. It is easily seen that
this big disjunction is so big that generally it won't exist in 7Δ0 + Ω!. The alternative
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is to use a Σi-truthpredicate. The only problem is that such a truthpredicate is not
available in 7Δ0 + Ωι. However we can save ourselves by a trick: we can choose our
cut /in such a way that there is (outside /) a Σ?-trutripredicate for /; i.e., there is a
predicate T such that 7Δ0 + Ωi proves: for all s there is an 7Δ0 + Ωrproof of s1 <-•
T(s). Now we do our whole construction inside /using Tto formulate "at least k el-
ements of S are false". (Note that we have to convert Γin truthpredicates for differ-
ent cuts for the different k. This is easily done by extracting the witness for s from
the witness for T and by demanding that the witness for s is in the desired cut.)

A different way to avoid the big disjunction is to say: there is a 0,1-sequence σ
of length n such that 0 occurs at least k times in σ and /A {ŝ ++ (σ)ι• = 110 < / < « } .

2. V " before a system signals the presence of special variables for Σ?-sentences and
that our system contains the ^-Principle. "-s" behind a system means that we have
substitution instances of the ^-Principle for a suitable class of formulas (the 'Σ-for-
mulas' of the system).
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