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Modal Definability in Enriched Languages

VALENTIN GORANKO*

Abstract The paper deals with polymodal languages combined with stan-
dard semantics defined by means of some conditions on the frames. So a
notion of "polymodal base" arises which provides various enrichments of the
classical modal language. One of these enrichments, viz. the base £(R,-R),
with modalities over a relation and over its complement, is the paper's main
paradigm. The modal definability (in the spirit of van Benthem's correspon-
dence theory) of arbitrary and Δ-elementary classes of frames in this base
and in some of its extensions, e.g., £(R,-R,R~ι,-R-1), £(R,-R,Φ) etc.,
is described, and numerous examples of conditions definable there, as well
as undefinable ones, are adduced.

Introduction Undoubtedly, first-order languages are reliable and universal
tools for formalization. However, in some cases the cost of this universality is
not fully acceptable: on the one hand we have the undecidability results, and on
the other the fact that the expressive power of first-order languages does not
allow any possibility for a categorical characterization of a given infinite model
since it is elementarily equivalent to any of its ultrapower. So it is desirable,
sometimes even necessary, to seek alternative languages for particular types of
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structures. One solution can provide the propositional modal languages. Let L2

be, for binary relational structures (frames) {W9R)9 a second-order language
which contains a countable set of unary predicate variables Pι,P2,.., and let
<£(D) be a propositional modal language. Define a translation ST of the for-
mulas of <£(•) into L2 (see [6]) as follows:

(1) S T ( A ) * PiX
(2) ST(-.^) ^ iST(*)
(3) SΎ(φ Λ ψ) ̂  SΎ(φ) A SΎ(φ)
(4) ST(D^) ^ Vy(Rxy -> ST(^) [y/x])

where x is a fixed individual variable and y is an individual variable, different
from x and not occurring in SΎ(φ). This translation reflects exactly the relational
semantics for the modal language: a modal formula φ is valid in a frame F iff
the L2-formula V<2i . vQmVxST(<p) is valid in F (considered as an L2-model),
where Q\,..., Qm are the predicate variables corresponding to the propositional
variables q\9... 9qm occurring in φ. So the validity of a modal formula in a
frame is expressed by a second-order universal L2-formula, i.e., the modal lan-
guage appears as a (fragment of) a nonelementary language alternative to the
usual first-order one for binary relational structures. This nontraditional role
of the modal language takes shape in works of Goldblatt, Fine, Sahlqvist,
Thomason (see, e.g., [11], [9], [12], [20], [23]), and especially van Benthem (see
[1], [2], [5], and [6]) where it forms the so-called correspondence theory. The
main problem of this theory can be formulated in two directions: which (first-
order) properties of the relational structures are expressible in the modal lan-
guage (modal definability), and which modal formulas have interpretations that
can be expressed by first-order conditions (first-order definability). The entire
ideology of this theory as well as a detailed systematization of the achievements
in the field are discussed in [5] and [6].

The correspondence theory can be naturally generalized- and the basic
results are directly transferrable into polymodal languages with relational seman-
tics over frames {W9Rχ9... 9Rn). However, in the concretely arising polymo-
dal languages (e.g., languages for tense and dynamic logics) some conditions
over the frames are imposed; the frames satisfying these conditions are the "stan-
dard" ones for the language. It is convenient to introduce the notion of a
"polymodal base" £τ(Ri9... ,Rn)9 which consists of a polymodal language
£ ( D j , . . . , D J and a (first-order) theory Γfor structures <W,RU . . . ,Rn). The
models of Tare just the standard frames; the standard semantics for this base
is the relational semantics, however only in standard frames. Now, in the class
of standard frames a relativized variant of the correspondence theory arises. It
should be noticed that the classical (poly)modal language is not powerful enough
to really compete with the first-order language. However, the polymodal bases
provide opportunities to construct enriched modal languages —when the theory
T explicitly defines some of the relations RΪ9... 9Rnby means of the rest. Here
is a typical example: the language for tense logics is a bimodal base with stan-
dard frames (W9R9R~λ) and can be considered as a modal language, enriched
with an additional modality D_! with a nonstandard relational semantics x 1=
D_!<ρ iff Vy(Ryx => y f= φ). In such a way appropriate bases can enrich the
modal language in order to obtain desirable expressive capacities. The main pur-
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pose of this paper is to suggest a general approach to the problem of modal
definability in polymodal bases in the spirit of the correspondence theory and
to investigate in that direction some concrete bases providing enriched modal
languages. The main paradigm is the bimodal base £(R,-R) (-R is the com-
plement of R) with standard frames (W,R,-R). This base considerably extends
the expressive power of the classical modal language, e.g., every universal first-
order formula for R and = is definable in it. It is investigated in detail in this
paper, and the modal definability of arbitrary (Section 3) and Δ-elementary (Sec-
tion 4) classes of standard frames are described and some consequences are
obtained. Also, various particular examples of definable and indefinable prop-
erties are adduced (Section 5). Some other bases, viz., £(R,-R,^),
£(R,-R,R-ι,-R~ι), £(Rι,-Rι,R29-R2,Ri Πi?2)> etc., are introduced and
briefly investigated in a similar manner in Sections 6 and 7.

One more note. It is clear that the main advantage of the modal languages
is their two-faced nature: propositional languages with a second-order interpre-
tation. This advantage can be realized only when the deductive reliability, con-
cerning the standard semantics, of a given axiomatic is ensured, i.e., when
completeness with respect to the standard frames is proved. In the completeness-
proving procedure in polymodal bases additional difficulties appear in compar-
ison with usual modal languages. These difficulties are connected with the "stan-
dardizing" of the frames refuting nontheorems. A general technique and various
completeness results in the bimodal base £(R,—R) can be found in [13].

1 Preliminaries Basic notions of modal logic (within the bounds of the initial
sections of [16] and [11] or [6]) will be assumed to be familiar, viz.: valuation
and model over a given frame, general (first-order) frame; modal algebra; forc-
ing (1=) and validity in a model/frame, general frame, modal algebra; the basic
frame constructions: generated subframe, p-morphism, disjoint union, ultrafil-
ter extension (ue), and Stone representation (SR); also the algebraic notions:
subalgebra, congruence, homomorphism, direct product. We specify that the
notion of a "generated subframe" will be reserved for the ones generated from
one point, and the others will simply be called subframes. If F and G are frames
and F = ue(G) then G will be called an ultrafilter contraction of F. All these
notions and the basic facts connected with them are naturally generalized in
polymodal languages. Now let us set forth some definitions of ultraproducts (see
[11] and [6]).

Definitions

(1) The ultraproduct of a family of sets {Wi}ieI over an ultrafilter D in I
is the quotient-set ΠD{ Wi}i<Ξl of the direct product Π{ Wi)i€.j9 over the
equivalence relation =D defined by / =D g iff {/:/(/) = g(i)} £ D.

(2) The ultraproduct of a family of frames {Fz = <WhR[,... , i O } / G /

over an ultrafilter D in Us the frame ΠD{Fi)iGί = (UD{ Wi}iGl,Ru...,
Rn>, where Rk = [<fMD9gMD>:fMD,gMD E Π ^ W ^ , &
{i\RίfU)g(i))eD}.

(3) The ultraproduct of a family of general frames {fo = (Fi,Wi)]iGl over
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an ultrafilter D in I is a general frame ΠWδ/he/ = <F,W>, where F =
HD[Fi}iGI and W =Π{W l )l € / / s D = {*/=/>:*G n{W/} / e /j .

(4) The ultraproduct of a family of polymodal algebras {2ί,}/G/ over an
ultrafilter Din 1is the quotient-algebra WD{%i\i^I = Π{21,}/(E//=D (the
equivalence =D, defined above, is a congruence).

Note 1 (see Chapter 4 of [6]) Let {/*}}/<=/ be a family of frames and D an
ultrafilter in /. If the frames of the family are considered as full general frames
{Wi92

Wi) then Definition (3) above provides an ultraproduct which is not (in
general) a full frame, hence is distinct from the ultraproduct obtained by (2)
above, so two different notions of ultraproduct of frames exist. The ultraproduct
obtained by (3) will be called a weak ultraproduct. Unlike the usual ultraproduct
(by (2)), it preserves the validity of modal formulas. Denote it by Π£{F/}/€/.

Fact 1.1 (Los's Theorem, 4.19 in [7]) Let a be a formula of a first-order lan-
guage L and {%}i(Ξl a family ofl^models. Then UD {21/ }/G/1= a iff {i \ 21,t a} G D.

We now define some operators over classes of algebras. Let A be a class
of algebras of some signature Ω. Then:

104) is the class of all isomorphic copies of algebras from A
S(A) is the class of all subalgebras of algebras from A

H(A) is the class of all homomorphic images of algebras from A
P(A) is the class of all direct products of algebras from A
U(A) is the class of all ultraproducts of algebras from A.

Note 2 When a sequence of operators is applied, the unneeded brackets will
be omitted, e.g., IS(^4) will be written instead of I(S(^4)). Also we shall write,
e.g., 5(21) instead of S({21}). Equality and inclusion of operators are naturally
defined.

Fact 1.2 (Section 23 in [15]) (i) X2 = X where X G {I,S,H,P}; (ii)
SH04) c HS(^); (iii) PH(^) g HP(Λ); (iv) VS{A) c SP(v4).

Fact 1.3 ([11]) All of the operators introduced above preserve the validity
of modal formulas.

Let us note that the class of £-algebras is defined by means of identities,
hence it forms a variety. Denote the variety, generated by a class of algebras A,
by VAR(,4). Then:

Fact 1.4 (Birkhoffs Theorem, see [15]) VAR(^) = HSP(v4).

Let us now define some operators over classes of frames. Let C be such a
class. Then:

If (C) is the class of all isomorphic copies of frames from C
Sf (C) is the class of all subframes of frames from C

H f (C) is the class of all p-morphic images of frames from C
D f (C) is the class of all disjoint unions of frames from C
Uf (C) is the class of all weak ultraproducts of frames from C.

Note 3 The last operator sends C to a class of general frames.
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Fact 1.5 ([11]) All of the operators described above preserve the validity of
modal formulas.

Fact 1.6 (6.5 and 7.8 in [11]) If {g,-J, e / is a family of general frames and D
is an ultrafίlter in I then (Σ{&}/G/)

+ = Π { ^ } / G / and (Πz,{g/}/G/)
+ =

Some more notation: Let £ ( / ? l 9 . . . ,Rn) be a polymodal language (base)
with a set of formulas Φ £ . Then L0(Ri,... ,Rn) is a first-order language
with = and binary predicates Rι,...9Rn and with a set of formulas
For 0(/?i,... ,Rn). The modality corresponding to Rj will be denoted by D,
(dual 0/), but more frequently by [/?,-] (dual </?,-».

If F = < ^ , ^ ! , . . . 9Rn) is a frame, x E W, and ^ c JΓ, then /?,-(*) =
{ye WlR^.RilX] = 0 */(*) , and [ * , ] * = [xE » Ί Λ / W S f l .

If g = <WPr,Λ1,... ,ΛΛ,1V> is a general frame, then %+ = <W,-,Π,[Rλ],
. . . , [Rn], JF> is the polymodal algebra generated by § (see [11]). If C is a set
of (general) frames then set C+ ^ {21/3F E C such that 21 = F}.

Finally, if β is a formula (modal or first-order) then FR(0) denotes the class
of frames in which β is valid; FR(Σ) is defined analogously for a set of formulas
Σ. If Fis a frame (general frame, model, algebra) then Th m o d (F) = [φ<EΦ£\F\z

φ}. The definition of Th m o d (C) for a class of frames (general frames, etc.) is
analogous.

2 Absolute and relative modal definability

The problem of modal definability Let a polymodal language £ = £ (D i,
. . . ,DΛ) be fixed.

Definitions

(1) A class of £-frames C is modally definable (MD) in the language £ if
C = FR(Γ) for some set of £-formulas Γ.

(2) A formula a (set of formulas Σ) of the first-order language Lo is
modally definable in £ if FR(α) (FR(Σ)) is such.

The problem arises of finding criteria for modal definability. Concretely,
if a given class of frames is MD then a defining set of formulas Γ or an algo-
rithm finding it has to be exhibited, or at least a nonconstructive proof for the
existence of a defining set has to be given; if the class is not MD, this has to be
proved.

Our purpose will be to find criteria for modal definability in the spirit of
Birkhoff's Theorem: a class of frames is MD iff it is closed under certain oper-
ators.

The most general result for modal definability in the classical modal lan-
guage (the generalization of which in polymodal languages is trivial) is the the-
orem of Goldblatt and Thomason (Theorem 3 of [12]) which translates
Birkhoff's Theorem into frame notions. This introduces a rather complicated
{ad hoc, as van Benthem notes) construction named by the authors the SA-
construction. It is a translation of a composition of natural algebraic construc-
tions—a subalgebra of a homomorphic image; however, this translation cannot
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be split in two natural analogues, so the SA-construction proves to be not quite
elegant. Informally it is a contraction of a reduction of a frame; for brevity we
shall call it a collapse.

Definitions

(1) Let F = (W,Ru...,Rn) and F' = {W\Rf

u... ,R'n). F' is obtained
from F by collapse (Fr is a collapse ofF) if there exists a general frame
% = </%W> such that

(i) W is a set of ultrafilters in %+, and for each u,v E W\ Rjuv iff
[Ri]u c v, i.e., V^G W([Rj]XG u => X E υ) for / = 1,... ,n
and the following conditions hold:

(ii) (Vί/c r ) ( l l G W ) ( V « G W')(uG UifϊXG u)
(iii) (VuG W')(vXeW)((we Wf){R\uυ => ^ E v) => ffllGM)

for / = 1,... ,n.
(2) The collapse of a general frame %ι = </%Wi> is defined analogously:

F is a collapse of %ι if there exists a general frame g = <F,W> such
that W ς W i and conditions (i), (ii), and (iii) hold.

Denote the class of all collapses of a class of frames C by C(C).

Fact 2.1 (1 in [12]) G E I fC(F) /£TG+ E HS(F+).

C o r o l l a r y 2 . 2 ( 2 i n [ 1 2 ] ) If G e C ( F ) a n d φ ( Ξ Φ £ t h e n F Y φ ^ G Y φ .

A specification: if G E C(F) then G+ E H(g + ), where g is the general
frame from the definition of collapse (see the proof of 2 in (12]).

Theorem 2.3 (3 in [12]) The class of £-frames C is modally definable in £
iff C is closed under isomorphisms, disjoint unions, and collapses.

Let C be a class of frames. Denote the class of all ultrafilter contractions
of frames from C by CU(C). As a matter of fact, the ultrafilter contraction is
a particular case of a collapse, since F+ < (ue(F))+, so the notation is coordi-
nated with the terminology.

Note that when C is closed under elementary equivalence then modal
definability obtains a more natural characterization (8 in [12]): C is modally de-
finable in £ iff it is closed under subframes, p-morphic images, disjoint unions,
and ultrafilter contractions.

Relative modal definability The modal definability discussed so far is, in a
sense, absolute; i.e., definability in the class of all <£-frames. When the poly-
modal language is replaced with a polymodal base a "relative" definability in the
class of standard frames arises. Some definitions in this connection follow.

Definitions Let C and D be classes of frames of the same language £ where
C c D ,

(i) C is modally definable (MD) in DiϊC = FR(Γ) Π D for some Γ c Φ £ ,
(ii) A modally definable closure (MDC) of C in D, denoted by [C]D, is

the least class containing C that is modally definable in D.
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Note 4 [C]D always exists—it is an intersection of all classes modally defin-
able in D and containing C (there are such classes, e.g. D).

Actually, [C]D is explicitly definable: [C]D ^ DΠ FR(Thm o d(C)). The
modally definable closure of the class C in the class of all frames of the given
language <£ will be denoted by [C]£ or simply by [C].

Definitions

(1) Let £ = £T(RU... ,Rn) be a fixed polymodal base. The class {F\F\=
T] of the standard frames will be denoted by C s. The frames from
[Cs] will be called basic frames and their generated subframes will be
called total frames. Denote the class of the basic (total) frames by C b

(Ct).
(2) A general £-frame % = <F,W> is standard (basic, total) if F G Cs (C t,

Cb). Denote the class of standard (basic, total) general frames by C g s

(Cgb.Cgt).
(3) An £-algebra 21 is standard (basic, total) if there exists an % G C g b

(Cgt,Cgs) such that 21 = %+. Denote the class of standard (basic, total)
<£-algebras by Mb (Mt,Ms).

Theorem 2.4 (specifying of 2.3) [C] = I fCD f(C).

Denote the family of classes modally definable in D by MD(D).

Theorem 2.5 Let C ^ D £ E be classes of frames. Then:
(i)C<ΞMΌ(D)iffC= [C]D

(ii) [C]D= [C]EΠD
(iii) ifDE MΌ(E) then [C]D = [C]E; in particular, C G MΌ(D) iff C G
MD(E).

Proof: (i) Follows directly from the definitions.
(ii) Let the class [C]E be definable in E by a set of formulas Γ g Φ , Then

[C]E Π D is defined in D by Γ and C c [C]E ΠD^ [C]D c [C]E Π D. Con-
versely, let [C]D be defined in D by Δ c= Φ and let CΔ be the class defined in E
by Δ. Then C c [CD] c CΔ => [C]E c [CA]E = CΔ =* [C]E ΠDQCAΠD =
IC]D.

(iii) If D G MD(£) then [ C ] £ c D and, by (ii), [C] D = [ C ] £ .

Some comments on the above results:

(i) The description of the MDC's provides, in particular, a description of
the corresponding modal definability.

(ii) The MDC's will be described as closures with respect to some opera-
tors. If we describe the MDC's in a class containing the standard one,
by means of operators preserving the standard class, this will provide
a description of the MDC's in the standard class.

(iii) If the standard class is modally definable (e.g., in the bimodal base for
tense logics) then the relative MDC's coincide with the absolute ones.

The problem of relative modal definability is to describe the modally de-
finable subclasses of the class of the standard frames of a given polymodal base.
The strategy for attacking this problem will be, in the spirit of the above com-
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ments, to describe the MDC's in the class of standard frames. Of course diffi-
culties will arise since, in general, this class will not be closed under the basic
constructions. So the problem of modal definability seems to be rather difficult
to work out in the general case; here we shall investigate some interesting con-
crete modal bases, which are sufficiently representative to illustrate the general
problem.

3 Modal definability in the base £(R,-R) The main purpose of this section
is to describe the MDC's and MD classes in the modal base £(R,-R), consisting
of a bimodal language £ ( D 1 , D 2 ) and a first-order theory Γ_ with a single
axiom, (-) Vxy(Rxxy** -R2xy), hence with standard frames (W,R,-R). This
base can be considered as a modal language with an additional modality CD
(= [ -R] -i) with the nonstandard relational semantics x N CD<p iff Vy{y N φ =>
Rxy). This modality has appeared in different authors and in different contexts:
in Goldblatt [10] as a negation in a quantum logic; in Humberstone [17] as a
modality over the "inaccessibility relation"; in van Benthem [3] as an "obliga-
tion"; and in Gargov, Passy, and Tinchev [14] as a "sufficiency".

Let us introduce some notation for the base £(R,-R) in the sense of Sec-
tions 3 and 4. In order to emphasize the standard semantics, and for conve-
nience, we write B ^ Π\ι and B ^ D 2 (duals Φ and 0). The modality • (dual
•), corresponding to R = Rι U R2 in the frames (W9RΪ9R2) is explicitly defined
by B and B: Mφ = \±\φ Λ Bφ. In [14] it is proved that the minimal normal
£(R,—R)-logic, denoted there by K~, is axiomatized by the S5-axioms for •.
This fact implies that the class of basic £(R9— i?)-frames C b = [Cs] consists of
exactly the frames (W9RX9R2) in which Rx U R2 is an equivalence relation; so
the total <£(i?,-/?)-frames are those frames (W,RUR2) in which RXU R2 =
W2, hence in total frames • is the universal modality.

Now the strategy will be to describe subsequently the modal definability in
C b , C t, and C s . Denote, for convenience, the corresponding MDC's by [ ] b ,
[ lt> [ Is- As a corollary of 2.4 and 2.5 we have:

Corollary 3.1 If C ^ C b then
(i) [C] b = IfCD f(C)

(ii) C is modally definable in C b iff it is closed under isomorphisms, disjoint
unions, and collapses.

Modal definability in C t Indeed, the fact that Rx U R2 is a universal rela-
tion in the class C t is not modally expressible, though there does exist a simple
condition which characterizes the algebras from Mt:

Lemma 3.2 21 G Mt iff in 21 the following condition holds: (r) vt G
A(Mt = 0 or t = 1) (equivalents, WG,4(Bί = 0 or Mt = 1)).

Proof: (1) Let 21 G Mt, 21 = g \ ft = <W,RUR2,W) G C g t, and Xe W. Then
MX= \±\XA BX= [x\Rι(x) c X & R2(x) Q X] = {x\(Rι U R2)(x) £ X] =

Γ W if X = W
[x\ WQ X] = ] Z,9 * so condition (r) holds in %+ hence in 21.1 1 J ( 0 , otherwise v υ
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(2) Let (r) hold in 31. We shall prove that SR(2l) E Cg t. Let SR(2I) = <W%,
Rf, Λ | , W^). Assume that Rf U i?f Φ W\\ i.e., there exist u,v E W% such
that ^Rfuv & -^R^uυ. Then there exists /! such that H\tiEu & tι£ v and /2

such that Bt2 E w & t2 ί tf. Let ί = ̂  U J2 Ξ*i < El/ =* Ξί E w. Analogously,
B / G M = > l ί E M = > l / ^ O = > / = l , but / ^ ι;, which is a contradiction. So
SR(2l) E Cgt =* « = (SR(2ί))+ E Mt.

Lemma 3.3 Each algebra from Mt is simple, i.e., has no proper con-
gruences.

Proof: Let Ξ be a congruence in 21 E Mt, different from =; i.e., there exist
a,b E 21 such that a = b and aψb. Then (a <* b) = 1 => • {a <-» b) Ξ 1, but on
the other hand {a <-» b) Φ 1 => • (ύf ̂  6) = 0, i.e. 0 s 1.

Note 5 Equivalent to Lemma 3.3 is this fact: The total frames do not have
any proper subframes.

Corollary 3.4 If FG Ct then G E I fC(F) iff G+ E IS(F + ) .

Theorem 3.5 LetA^Mt. Then Mt Π HSP(^4) = ISU(A).

Proof: Let us note that the operators I, S, and U preserve the class Mt. (Con-
dition (7) is a first-order formula in the signature of the JC-algebras, therefore,
by Los's Theorem, it is preserved under ultraproducts.) All algebras from A are
simple, hence subdirectly irreducible. Therefore, by the Jonsson result (3.2 in
[18]) each subdirectly irreducible algebra from HSP(v4) belongs to HSU(^4).
Moreover, SO {A) QMt=> HSU(^) = ISV(A) hence Mt Π HSP(^l) c ISU(^l).
The converse inclusion goes as follows: ISU(^4) c ISHP(^l) c HSP(^4) =>
ISU(A) c Mt.

Note 6 The quoted result of Jonsson's was pointed out to the author from
the anonymous referee. This led to the replacement of the complicated direct
proof of the theorem with the simple one above.

Lemma 3.6 Ct is closed under collapses.

Proof: Let F E Ct and G E C(F). Then G+ E IS(F + ) . F+ E Mt and condi-
tion (7) is preserved under isomorphisms and subalgebras => G + E Mt =* (see
the proof of 3.2) SR(G+) E Cg t => ue(G) E C t. And G is embedded as a sub-
structure in ue(G) => G E Ct.

Lemma 3.7 Lβr F = <JΓ,Λ1,Λ2> E Ct. ΓΛe« F' = <H^/,i?ί,^> E I fC(F) (gr
F ' fe isomorphic to a frame F~ = (W~ ,Rχ ,R$) for which there exists a gen-
eral frame % = <F,W> such that g+ is a complete atomic (as a Boolean algebra)
£-algebra with a set of atoms W~ and the following conditions hold:
(1, ) For every a,beW~, RT ab iff there exist xe a and y E b such that Rtxy
(2f ) (VtfE r ) ( v l G W ) ( ( V * G W~)(RΓab=>b^X)=>Ri[a] ^X),for
i = 1,2.

Proof: (1): Let F' = {W'9R'uR
r

2) E C(F). Then W is a set of ultrafilters in
an algebra %+ for some general frame g = <F,W>, at that %+ = F/+ according
to 3.4 and the specification after 2.2 and the conditions for g from the defini-
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tion of collapse hold. Let h: %+ -+F'+ be the corresponding isomorphism. %+

is a complete atomic £-algebra (see [22]). Let W~ be the set of atoms of %+.
Then the mapping g\W -> fΓ~, defined by g(u) = h~ι([u\) is a bijection,
since:

• g(w) E JF~ for each wG F : if J e W a n d Z ς g(w) then A(JT) c
{w} =>h(X) = 0 or A(^) = [u] =*X=0 oτX = g(u)

• g is an injection since h is a bijection
• g is onto: if # G W then Λ(#) =£ 0 . Let us assume that there exist w, t> G

fF' such that M ^ y and u9υ E A(α). Then g(w),g(y) c # and g(w) Φ
g(v) =» g(w) = 0 or g(t ) = 0 , which is impossible. So Λ(#) is {u] for some
w G W. Now let us define Rγ for / = 1,2: for every a,beW~9 Rf ab iff
R}h(a)h(b) for / = 1,2. Then (W~9Rγ 9Rϊ > = F' and:

(1/) RTabiϊΐ V^G W ( [ J R / ] ^ G Λ(«r) => ATG Λ(6)) iff V ^ E W ( « c
[Λ/]A'=>fc_g:X')iffvA'GW(ΛI [α] c x => b c ^ ) iff ^ [ α ] ί
5 iff i ί Λ / [ β ] for/= 1,2;

(2, ) is in fact condition (iii) from the definition of collapse.

(2): Conversely, let the conditions of the lemma hold, and let %+ = <F, W>
be the complete atomic <£-algebra with set of atoms W~. Then the mapping
ft:2l-*F~+, defined by h(X) = {a G W~ \a Q X], is an isomorphism, since:

• h is a bijection: %+ is a complete algebra => h is onto; if Λ(̂ O = h(Y)
thenΛ(^\F) = 0 andΛ(r\^) = 0=^X^Y and Y^X^X=Y.

• Λ is a homomorphism: the only nontrivial checking is that h{[Rj]X) =
[RT]h(X):h([Ri]X) = {αeW~\Ri[α]^X}ΛRr]h(X) = {α\vbε
W~(RJ-αb^b^X)}. It follows from (2, ) that [/?~ ]h(X)^h([R^X);
conversely, let α E Λ([i?/] JQ, i.e., Rj[α] ̂  A", and let RJ*αb, i.e., there
exist xG flr and^ E 6 such that Rtxy. Then j E X=> b(ΊXφ0=>bQX.
So Λ([i?/]^) c [Rj-]h(X). Therefore %+ = F ~ + = F/+ => F ~ + E
IS(F+) => (by 2.4.5) F~ E I fC(F).

Note 7 Condition (1, ) is equivalent to

(1/) For any α, b E >F~, Λf α6 iff for every x G α there exists a j E 6 such
that Rixy. Actually, if there exist x E α and y E b such that i?/xy then
0Φ(αΠ (Ri)b) E W =» α c </?,.>&

The conditions for the frame F~ in the above lemma can be considered as
a definition of a collapse in C t. Let us call it a t-collαpse. Under the conditions
of Lemma 3.7 F~ will be called a t-collαpse of F, corresponding to g. The
respective operator will be denoted by 'C t\ A t-collapse of a general total frame
is defined in a similar manner.

Theorem 3.8 Let C c C t. 77K?Λ [C] t = I fC tU f (C).

Proof: According to 1.5 and 2.2, I fC tU f (C) c [C] t. Conversely, let F E [C] t.
Then F+ E Mt Π HSP(C+) = ISU(C+) =>fG I fC tU f (C).

Corollary 3.9 A class C^€t is modally definable in Ct iff C is closed under
isomorphisms and t-collapses of weak ultraproducts.
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Modal definability in Ct

Lemma 3.10 Let F = (W,R,-R) G Cs and F' = (W\R'UR'2) G C t(F).
Then F' G Cs iff:
(i) For ev£A7 a €: W and x9y G #, /?(*) = R(y)

(ii) FOA* βvβAj a,b G W, R[ab iff for every xEfl and y G Z>, Rxy (which, for
reasons similar to those of Note 7, is equivalent to b £ R[a])
(iii) The general frame % = <F,W> corresponding to Ff satisfies the condition:
for every a G W\ R[a] G W.

Proof: (1) Let the conditions of the lemma hold. Then R'2ab iff there exist x G
a and j G b such that -/toy iff -R'2ab, hence F ' G C s.

(2) Let F ' G Cs and % = <F,W> be the corresponding general frame. Then
for every a,b G W, —R[ab iff there exist x G # and y G b such that — /?#y =>
i?ί#Z? iff for every x G a and y G b Rxy, hence (ii). Moreover, it follows from
the definition of t-collapse that:

(*) (Vtf G W')(>ίX G W)((v6 G W')(R[ab => b <^ X) => R[a) c jf) &

Then i?ίαZ? iff -(-R[)ab iff 6 c - ( - ^ ) [ α ] = f| i?(χ). Analogously

(~R{ )ab iff 6 c p | (-i?)(χ). Let Q be the union in g + and for every α G

W':Xa=Q {b\XR[ab},Ya={J [b\ -R[ab}. Ya = W\Xa since g + is a com-
plete and atomic <£-algebra.

Now, VZ? G ^'(^ίύrZ? => Z? c jfβ) =. (by (*)) Λ[<i] c ^ and V* G
W'{-R[ab => 6 c »F\JTβ) => (by (*)) ( - Λ ) [ Λ ] C fF\JTe, i.e., * β c
-(-Λ)[flr] => Λ[flr] c - ( - Λ ) [ β ] f i.e., (J Λ(x) c f| i?(χ) ̂  f| R(χ) =

xGa xGa xGa

Xa = U Λ W = Rl°]> whence (i) and (iii) follow.
xGa

The conditions of the above lemma define a collapse in the class C s; let
us call it an s-collapse and denote the corresponding operator by 'Cs'. An s-
collapse of a general frame is defined in a similar manner.

Theorem 3.11 // C c Cs then [C]s = I fC sU f [C].

Proof: The ultraproducts preserve the standardness (a first-order condition),
hence the assertion follows from 2.5 and 3.8.

Corollary 3.12 C c Cs is modally definable in Cs iff C is closed under
isomorphisms and s-collapses of weak ultraproducts.

We should note that the obtained characterizations are rather nonconstruc-
tive (which is objectively conditioned) in order for them to serve as a practical
criterion. That is why more natural characterizations of the modal definability
of Δ-elementary classes of total and standard frames will be sought in the next
section.

4 Modal definability of Δ-elementary classes and formulas in £(R,-R)

Modal definability of A-elementary classes in Ct Recall that a class of
frames C is Δ-elementary if there exists a set Σ c For0 such that C = FR(Σ).
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Theorem 4.1 Let CQCtbea Δ-elementary class. Then [C] t = I f C t (C).

Proof: IfCt(C) c [C] t . Conversely, let F G [C] t = I f C t U f (C). Then there
exist [Fi}i(Ξl c C, an ultrafilter £> in 7, and FD = Π^JF;.}.^ such that F E
I f Q ί Π S ^ J/e/) =*F+ E ISOI^F/^/) c ISS(F^) = IS(F^) => F<Ξ I{Ct(FD) g
IfCt(C) since the Δ-elementary class C is closed under ultraproducts.

Corollary 4.2
(i) >1 A-elementary class C^Ctis modally definable in Ct iff C is closed under

t-collapses
(ii) A set of elementary formulas Σ c For0(J?i,/?2) & modally definable in Ct

«y ^Ae fπ/f A o/ Σ> is preserved under t-collapses.

Another, more convenient characterization of the modally definable Δ-
elementary classes in Ct can be obtained applying the results from Section 2 of
[12].

Definition g = (W,Ri,R2,W) is a replete general frame if for each ultrafil-
ter u in g+ :

(i) ΠuΦ0
(ii) Π{<*/>*!*G u] c (jRyXnii), for i = 1,2.

If 55 satisfies (ii) and
(Γ) For every w G FFsuch that Πw = {w},

then % is descriptive.

Fact 4.3 (4 in [12]) // % = <F,W> /AeΛ /Aere exists a replete %' = <F',W>
such that %+ = %'+ and F ~ F' f« denotes an elementary equivalence).

Note 8 //*$ E C g b (Cgt,CgS) then %' E C g b (C g t,C g s), since the classes C g b ,
C g t,C g s are elementary.

Fact 4.4 (5 in [12]) If%' = <F',W> is replete then there exists a descriptive
g" = (F",W) such that %'+ = %"+ and F" is a p-morphic image ofF'.

Note 9 The classes C b and Ct are preserved under p-morphisms => if %' E
C g b (Cgt) then g" E C g b (Cg t). However, the same does not hold for C s (see
4.16).

Corollary 4.5 (6 in [12]) If%<F+ then there exists a descriptive %" =
<F",W"> such that g"+ = 21 and F" is a p-morphic image of some F' « F.

Fact 4.6 (7 in [12]) // % = <F,W> is descriptive and F/+ E U(%+) then
ue(F')ElfC(F).

Corollary 4.7 If % = <F,W> E Cg t is descriptive and F'+ = %+ then
ue(F') =F.

Theorem 4.8 Let C ^ Ct be a A-elementary class. Then [C] t = CuH f (C).

Proof: (1) CuH f (C) <Ξ [C] t, since Cu and H f preserve the class Ct (it is defined
by a universal formula that preserves the validity in substructures; the preserving
under H f follows from the definition of p-morphism) and the validity of modal
formulas.

(2) Conversely, let Th m o d (C) = Γ. We shall prove that Γ modally defines
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CuH f (C) in C t. If F G CuH f (C) then F1= Γ. Let F (= Γ. Then F+ f= Γ =* F+ G
Mt Π HSP(C+) = ISU(C+), i.e., there exist {^}/e/ g C, an ultrafilter £> in /,
and i7^ = HD[Fi}iGJ such that F 4" G 1S(F£) (as in the proof of 4.1). C is Δ-
elementary =>FDeC. According to 4.5 there exists a descriptive %" = <F",W">
such that g" + = F+ and F " is a p-morphic image of some F' « F^. Then
F' GC^F" S H f(C) and, by 4.7, F G CU(F") =* F G CuH f(C).

Corollary 4.9
(1) A A-elementary class C^Ctis modally definable in Ct iff C is closed under
p-morphisms and ultrafilter contractions.
(2) A set of formulas Σ <Ξ ForQ(RιiR2) is modally definable in Ct iffΣ is pre-
served under p-morphisms and ultrafilter contractions.

Corollary 4.10 A closed formula a G For0(RuR2) is modally definable in
Ct iff & is preserved under p-morphisms and its negation is closed under ultra-
filter extensions.

Corollary 4.11 A set of universal formulas Σ <Ξ ΈOXQ{RUR2) is modally
definable in Ct iff Σ is preserved under p-morphisms.

Proof: The ultrafilter contraction is a substructure and all universal formulas
are preserved in substructures.

Modal definability of A-elementary classes in Cs

Theorem 4.12 Let C c Cs be a A-elementary class. Then [C] s = I f C s (C).

Proof: The assertion follows from 3.11 and 4.1 since ultraproducts preserve
"standardness" (a first-order condition).

Corollary 4.13
(1) A A-elementary class of Kripke-frames (W,R) is modally definable in
£(R,-R) iff it is closed under s-collapses.
(2) A set of formulas Σ c ForQ(R) is modally definable in £(R,-R) iffΣ is pre-
served under s-collapses.

The above characterization is more easily applicable for nonconstructive
proofs of modal definability, but the characterizations following from 2.5 and
4.8 seem to be more convenient for negative results.

Corollary 4.14 Let C Q €s be a A-elementary class. Then [C]s = Cs Π
C u H f (C).

The description of the MDC's in a given modal base suggests the way to
find a construction that proves for a given formula or a class of formulas that
it cannot be modally defined, which will be illustrated by the following example.

Example 4.15 The formula 3xRxx is not modally definable in £(R9—R).

Proof: Let C = Cs Π FR(3x Rxx). We shall prove that C Φ [C] s = C s Π
CuH f (C). Let F = <N,<,>>. F £ C. Let ue(F) = <N*,<*,>*> and N* =
NpUNf, where Np is the set of principal ultrafilters in N and Nf is the set of
free ones. It is a matter of direct checking that if X Q N then [ < ]X = the big-
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gest ray [n,oo) contained in X, and that [>]X = the biggest segment [0,n] con-
tained in X. Then the structure ue(F) has the following properties:

( l ) < N p , < * | N p , > * | N p > = <N,<,>>
( 2 ) < * | N f = > * | N f = N?
(3) for each u E Np, υ E Nf : u <* v, -m >* v, v >* w, and -n> <* w.

Now let us set J F ^ Np x (Oj U Nf x {0,1}. Define the following relations in
W:

<«,/> <' (vj)iffu< v & (w,ι;GNf=>/=y)
<*/,/> > ' (vj) iff u>v & (u9veti{ => i gfcy)

Let G = <W,<',>'>. G G C s; if M G Nf then <w,0> < r <w,0> =* G G C. It
remains to observe that the mapping g: G-+ ue(F), defined by g((uj)) = u9 is
a p-morphism:

(1) <w,/> <' (vj) ^u<v
(2)g«u,i)) <' t; =><iι,/> <'<i;,y>
(3), (4) analogously for >'.

Therefore C ?t [C] s => formula 3x Rxx is not modally definable.

The following lemma characterizes the p-morphisms preserving C s.

Lemma 4.16 LetF= <W,R,-R) e Cs, F' = <Wf

9Rί,R^, andg: F^F' be
a p-morphism. Then F' E Cs iff the condition

(@) "for every x,y E W, Rxy iff'R[g(x)g(y)"

holds.

Proof: If F' E Cs then R'2 = -R[. So Rxy => R[g(x)g(y) and -Λxy =>
^ ^ ( ^ ί ^ ί ^ ) * therefore -RίgWgiy) ^ ^ J , hence (@). Conversely condition
(@) implies -R{g(x)g(y) => -/?Λ7 =» Λi ίWβίJ ' ) . If Rίg(x)g(y) then there
exists Λ:' E FF such that -.Rxx' and g{x') = g(y), i.e., -R\g(x)g(y). So
i?^= -i?ί and F Έ C S .

Definition A p-morphism satisfying (@) will be called a bi-morphism. (Thus,
the morphisms in C s are just the bi-morphisms.)

Let us note that the results obtained in this section are trivially generalized
for polymodal bases £(R\9—Rι9... ,Rn,—Rn).

5 Some demonstrations of the modal definability in £(R,-R)

Definability of universal formulas Adding [-R] to the classical modal lan-
guage greatly strengthens its expressive possibilities. The following theorem is
weighty, but it is hardly the only argument in support of this assertion.

Theorem 5.1 Each universal formula a from ¥or0(R) is modally definable
in£(R,-R). (Cf. 14.5 of [6].)

Proof: It is not difficult to see that each s-collapse is a bi-morphic image of a
substructure and that the validity of universal formulas is preserved in both sub-
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structures and bi-morphic images. However, we shall adduce an explicit algo-
rithm, providing the modal equivalent to each universal formula. This equivalent
will not be the shortest possible, but the improving of the algorithm or the re-
ducing of the obtained formulas is connected with technicalities which will not
be discussed here. We may assume that a is closed (otherwise the universal clo-
sure of a will be taken). Now we shall construct a modal formula φ such that
FR(α) = FR(<ρ). So let a = V>Ί . . . Vynβ where β is an open formula in con-

k

junctive normal form, β = βx Λ . . . Λ βn. Then a = /\ V J Ί . . . Vy^ft. For each

member VJΊ . . . V%ft of this conjunction a modal equivalent ψf will be con-
structed such that φ ̂  φx A . . . Λ φk. We may also assume that in each ft there
are no disjuncts of form yj = yj, otherwise ft = T and φ^ T. So, let us fix a
member Vyx... vyπft. We then proceed as follows.

(1) If disjuncts of the form yj Φ yk occur in ft, they are subsequently
removed in the following way: Let ft s= yj Φ yk v yt and, for definiteness, let
j < k. If j = k then ft = γ,; if j < k then v ^ .. .j^ft s v ^ . . . Vyk-\Vyk+ι...
VynΊi\.yj/yk\ ̂  <V I n the former case replace ft by γ, and in the latter replace
^ . . . v j^ f tbyό,- .

(2) Now let us suppose that all operations from (1) are performed. Let
Y)Ί vynfii Ξ π 3Ji 3)^7;, where γ,- is a conjunction of formulas of type
yj Φ yk9 Ryjyk, and ^Ryjyk. Put for eachy = 1, . . . ,n:

r/ ^ [ ^ l ^ j y occurs in γ, }; rj ^ [s\ ^Rysyj occurs in γ,};
βj ^ { ^ I Λ ̂ = J'y occurs in 7/}. Now put for eachy = 1,...,«:

φj ^ Py Λ Ξ/?3y+l Λ &Py+2 Λ Λ "Ί/735+2 Λ Λ_ " l/?35+l Λ Λ ~l/735;

n

 s^rί 5 G / 7 5 e e 7

<Pj ̂  -i f\ •<£>/; ^ ^ ^1 Λ Λ φk. We shall prove that F R ( α ) = FR(<p).
7=1

(1) Let F # a => for some /: Z7 (= 3jμχ... 3jΛ7/ => there exist points wx.. .wn

such that F \= yι [ W\,..., wn]. Define a valuation F as follows: V(p3j) = {wy},
^(P37+i) = *(wy), F(/73,+ 2) = -Λ(wy). Let 9DΪ = <F, F>. Then m^φjίwj] -

2R I*-Λ •W, i.e., Wllr-iφi^mVφ^FVφ.
7=1

(2) For some model Wl over a frame F and point w suppose that 3Dΐ 1/

^ [ w] => for some /, 3DΪ 1= /\ •<£>/ => there exist wu.. ,,wn such that SEX? f= φj[ Wj],

j = 1,...,«. Then, if Rysyj occurs in 7/ then ws t= B/735+2 and Wy (= ~ιi?35+2 =*
ΛWjWy . Analogously, if ~^Rysyj occurs in 7/ then -*RwsWj, and if j 5 Φyj occurs
in 7/ then ws \=p3s, Wj t= -I/7 3 J => ws Φ Wj. So F1= γ, [ Wi... wn] => F¥a.

Note 10 The adduced algorithm was noted to be quite prodigious. An appar-
ent step towards reducing the obtained formula is the following: If the propo-
sitional variable pm has a single occurrence in the formulas ψ),..., <pf for some
/ then it might be removed (together with the modality eventually prefixing it)
from φh since pm does not bear any information there.

Example a = vj>1vy2vy3v>;4((#>'i.>;2 -• Ryiy-s) v y2 = y* v (y2 Φ y 3 Λ
^ 2 ^ 3 ) ) - Transform:
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a s vyxvy2vyjiy^Ryxy2 v Λ Λ Λ v j>2 = y* v (j>2 * Js Λ / ? Λ Λ ) ) Ξ

V^IVJ2V^3V^4( ^Ryxy2 v Λ ^ Λ v ^2 = J4 v j>2 * Λ) Λ

vyWivy&yA ( - ^ J Ί ^2 v i ? M 3 v j 2 = ) ; 4 ) Ξ (fo)
^3yx3y2^y4(Ryxy2 Λ -IΛJ/2J2 A ̂  Φ y4) Λ

<Pl = /?3 Λ Ξ/74 Λ BT?5;
^ 1 = /76 Λ B/?7 Λ Bps Λ -1775 Λ ip7;

<P3ι=p9Λ Ξ/7 1 0 Λ B p n ;

^ | = Pn Λ Sp 1 3 Λ Bpi4 Λ i/76.

Then, reduce according to Note 1:

φ\ = B/75; rf=/?6Λ B/?7 Λ ip5 A -i/?7; ^ f = τ;φi= -./?6.

^1 = ~ 1 (^ΞP5 A •(/?6 A ffl/77 Λ ~ιp5 Λ -1/77) Λ f T Λ •~"/?6) Ξ

• θ-i/?5 V •(->/76V Φ-1P7 V/75 V/?7) V •/7 6 );

analogously, <̂ 2 = M^-*p$ v BΦ —1/77 v • (p5 v/?7) v H/?6 a n d φ = φ\ ̂  φ2.

Definability in the class of finite frames If we restrict ourselves to the class
of finite frames, C f i n, we may ascertain that the language £(R,—R) is able to
register each difference in the structures and by means of a modal formula to
distinguish each finite frame F\ from every other one not isomorphic to FXi i.e.,
if FuF2e C f in and Fx φ F2 then Th m o d (F!) Φ Th m o d (F 2 ) . (Let us remember
that the classical modal language is not able to distinguish a given frame from
an arbitrary one in its disjoint power.) Let us now examine the MDC of a finite
frame Fin £(R,-R). Two observations will help us:

(1) Each s-collapse of the frame Fis simply a bi-morphism mapping the
point x in the atom containing x, since each element of the finite univer-
sum W belongs to some atom.

(2) Each ultrapower of Fis elementarily equivalent to F (see 4.1.10 in [7])
and therefore isomorphic to F (elementary equivalence coincides with
isomorphism on the finite structures, see 1.3.19 in [7]).

Thus, [F] s consists of all bi-morphic images of F Now let FUF2 E C f in

and Fx φ F 2 . If Fx G [F 2 ] s then \WX \ < \W2\ => F 2 £ [Fx]s ** Thmod(Fx) Φ
Th m o d (F 2 ) .

Some concrete examples of modally definable properties of the relation R in
£(R,-R) (but not in £(R))

(i) ([14], [17]) If the property (P(R) is definable in <£(/?,-£) then Q,(i?)^
(P(-R) is also definable in £(R9-R) and therefore in £(R,-R); in
the formulas defining (P(R) B is replaced by B and conversely. For
example, the formula S/? -> p defines the property "/? is reflexive"
hence Bp-+p defines "-^R is reflexive", i.e., "i? is irreflexive"; the
formula B± defines "R is the empty relation" => B_L defines "R is
the universal relation", etc.
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(ii) strict asymmetry ASYMS: vx,y{Rxy -* -*Ryx) is defined by the for-
mula^! = /?-• BΦp. Let<F, F> l/^i[x], i.e., xt=p and jct=ΦB-</?=>
for some /?A^ & y V B-7? => ityx: => -ιASYMs. Conversely, let i 7 #
ASYMS, i.e., ix,y E W(Rxy & φw). Then a valuation F, such that
V(p) = {x}, refutes ̂ l β

The condition ASYMS for the relation —/?, Vx,j>(-itoy-*i?yΛ:) is equiv-
alent to CONNS: vx,y(Rxy v Ryx) which expresses the "strong connectedness"
of R, and according to (i) it is defined by φ2 = p -* BΦ/?. The following exam-
ples are verified analogously.

(iii) antisymmetry ASYM: Vx9y(Rxy Λ ityx -+ x = y) is defined by <ρ3 =
Φ(B/?Λ/?)->p;

(iv) trichotomy TRIH (dual to ASYM): Vx,y(Rxy v ityx: VX = J Ί , is
defined by φ4 = θ (Θ/> Λ/?)-•/?;

(v) complete antisymmetry ASYMf: VJC,J(X Φ y -+ (Rxy ++ ~^Ryx)) is
defined by <̂ 5 = (Φ (Bp Λ / ? ) V O ( S/? Λ/?)) ->/7. (ASYMf is the con-
junction of ASYM and TRIH.)

Using these properties and the classically definable "reflexivity" REF, "sym-
metricity" SYM, and "transitivity" TRAN we can define some orderings, e.g.:

• partial ordering PO = REF + ASYM + TRANS
• strict partial ordering SPO = ASYMS + TRANS
• linear ordering LO = PO + TRIH = PO + ASYMf

• strict linear ordering SLO = SPO + TRIH.

Various "tense principles" for the "point model" of time (the notion of time
as a sequence of moments, <T,<>, where < is a partial ordering (see [4])), are
definable in £(R,-R). Here are some examples:

(vi) left linearity (determinism in the past, nondeterminism in the future)
L-LIN: vx,y,z((y <x/\z<x)-+(y<zvz<yvy = z)) is defined
by <Pβ= (p-+ §q) v B(Φ#-> (pv Φ/?)).

Let us note that IRREF + TRANS + L-LIN defines a tree-ordering.

(vii) right linearity (determinism in the future) R-LIN: Vx,y,z((x < y Λ
x < z) -• (y < z v z < y v y = z)) is defined by φΊ = §p v B (q ->
B(p-+(tfvΦ?)));

(viii) existence of a <-maximal point (end of the time) END: ixvy -ιχ <
y is defined by φs = 4 Ξ ± ;

(ix) left directedness L-DIR: VxVy3z(z < x Λ Z < y) is defined by φ9 =
•/? Λ •# -• •(Φ/7 Λ Φq);

(x) right directedness R-DIR: V*Vy3z(x < z Λ y < z) is defined by φϊ0 =
\±\p-+ BΦ/7.

6 Modal definability in the base ϋίΛ,-/?,/?"1,-/?"1)

The general theory In this and the next section some enrichments of the bi-
modal base £(R,—R) will be briefly investigated, and analyzed with methods
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applied in the previous section using the (corresponding analogues of) results
obtained there.

Let us begin with a modal base combining the advantages of the language
for tense logics and the base £(R9 -R)9 viz. £(R9 -R9R~\ -R~ι). It is a four-
modal language <£ = £(Rl9Rl9R39R4) with a theory Thaving as its only axiom
(-,-1): vx\/y((Rιxy*=*R3yx) & (R2xy^R4yx) & (R\xy**-R2xy)). Now
the basic frames are (W9R\9... 9R4) such that

(i) jR3 = RTι, R4 = R2

ι and
(ii) Rι U R2 = /?3 U R4 = an equivalence relation.

C b is modally defined by the axioms p -> ([R\] (R3)p Λ [R3] (Rχ)p) and /? ->
([i?2] (R4)p Λ [Λ4] (R2)p)9 defining (i) and the S5-axioms for •, where •/? =
[R\]p Λ [2?2]j0. The proof is a slight modification of that for £(R9-R) in [14].
The total frames are those basic frames (W9Rγ9... 9R4) in which RγU R2 =
W2 and the standard ones are (W,R9-R9R~ι

9-R~ι). Furthermore, the theory
of modal definability in £{R9-R9R~ι

 9-R~ι) is worked out in the same man-
ner as for £(R,-R). In the end, the descriptions of the MDC's and the char-
acterizations of the modal definability of arbitrary and Δ-elementary classes of
total and standard frames will be obtained, and the assertions will literally repeat
those from the previous sections, but the notions occurring in their formulations
will already have definitions corresponding to the new base. Concretely:

• the definition of a general frame will require closure under the operations

[Λi],.. .,[Λ 4]
• in the definition of s-collapse conditions (i) and (iii) will read:

(ir) for each a G W and x9y e a, R(x) = R(y) and R~ι(x) = R~ι(y)
(ii') for each a G W\ R[a] G W and R~l[a] G W

• to the definition of p-morphism will be added clauses corresponding to
R3 and R4.

Concrete examples

(1) The natural order The categorical description of the natural order
<N,<> is out of reach both for the first-order language and for the language
<£(<,>)— it can define <N,<> up to disjoint powers (see 3.1.3 of [5]). It is
doubtful if <£(<,>) can also provide such a description.

Lemma 6.2 The natural order <N,<> is categorically defined by the follow-
ing formulas of the base £(R9-R9R~\-R~1):

(LF) [>]([>]p-+p)-+[>]p
(TRIH) < Ί < > ( [ < ] / > Λ / ? ) - > / ?

(SUCC) /?-><<>[>](/?v <<>/?)
(PRED) «>>T Λ/7) -> <>>[<] (p v <>>;?).

Proof: The Lob formula (LF) shows (see Chapter 3.9 of [6]) that < is a transi-
tive and well-founded relation and by (TRIH) (trichotomy for <) < is a well-
founded linear ordering. (SUCC) means that each element has an immediate suc-
cessor (succ) vxly(x < y Λ VZ(Z < y -> z = x v z < x). If <F, V) ¥ SUCC[x]
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then x ¥p and for each y, if x < y then there exists a z such that y > z & z P
/7&zh[<]->/?=»z^Λ:& ->z < x => F1/ (succ). Conversely, if (succ) is refuted
in the point x from a frame i7, then a valuation Fsuch that V(p) = {x} refutes
SUCC in x: x \=p but for each y, if x < y then there exists a z such that z < y
& zΦ x & ~^z < x => z #p & z t= [<] -"/?. Analogously, it can be verified that
(PRED) expresses the existence of an immediate predecessor of each element
except the zero. Now, according to 3.35 and 3.36 of [8] each well-founded lin-
ear ordering, for which SUCC and PRED hold, is isomorphic to <N,<>.

Note 11
(i) The formula SUCC can be replaced by the simpler (R-DISC): p ->

<<>[<] <"•>>/?> which means that Vx3^(x< y A VZ(Z <y-+ ~^x< z))
and, together with TRIH, it implies SUCC; analogously, PRED can be
replaced by (L-DISC+): <>>T Λp -> <>>[>]<-><>/?.

(ii) The existence of zero is already expressible by the formula (ZERO),
• [>]_L, but the induction axiom still remains out of reach; it requires,
e.g., the presence of [/?*].

(2) Transitive E-structures, ordinals, and ZF Consider structures (X9 E>
where E is a relation of belonging and Xis an E-transitive set, i.e., if x E X and
y Ex then y EX. According to the well-known Mostowski lemma for collapses
each extensional and well-founded structure (W,R) is isomorphic to a transi-
tive E-structure. So we can define such structures in the modal base £(R,—R9

R~ι,-R~ι), since extensionality EXT: Vy,z(Vx(x E y <-• x E z) -• y = z) is
defined by φί2 =p-+ •(-•/? Λ # - > • ( « E > / ? Λ <-IE><7) V « - I E > / ? Λ <E>#)) and

well-foundedness FUND: VJC3^VZ( y E J C Λ (z E y -+ ->z E x)) is defined by

•/7 ->•(/? Λ [ 3 ] -1/7). By adding the axioms of linear ordering we can define
the notion of an ordinal. The question arises: how far is it possible to translate
the axioms of ZF by means of the considered modal base? Let us take the axio-
matics of ZF suggested in Section 9.1 of [21]:

(1) EXT
(2) FUND

(3) Subset axiom scheme (SUB): Vy3zVx(x Ez++ (x E y Λ PX))

(4) Power set axiom (POW): Vx3tVy(Vz(z Ey-+zEx)->yEt)
(5) Replacement axiom scheme (REP): Vw(Vx3zVy(R(x,y) -+ y E z) ->

3tvy{lx(xEWΛ R(x,y)) -*y E t))
(6) Axiom of infinity (INF): 3x(3y(y E x A VZ(Z φ. y)) A Vy(y E x -•

lz(z E x A vw(w Ez*+(wEyvw = j))))).

Besides EXT and FUND, in £(R,-R,R~\-R-1) the following axioms
are also definable:

(SUB) with φsub = m«3)(p^q)v(^3)(pAr))^(θyqv<^3>r)

(POW) with <ppow =p -* •[-i3] <3><^E>/7.

The axioms (INF) and REP) will be considered in 6.3.

(3) Discreteness and continuity Here are some more examples of modally de-
finable conditions, expressing some discreteness and continuity principles.
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• right discreteness (R-DISC): Vx(3y(x < y) -» 3j(x < y Λ VZ(Z < .y -•
-υt< Z))) is defined by <pr_disc = p Λ <<>T -> <<>[<]<->>>/?

• /e/ϊ discreteness (L-DISC): VΛ:(3J>(Λ: > .y) -• 3y(x > y Λ \/Z(Z > j> -*
-α:>z))), dually <pUdisc=pA(»T -><>>[>] <-><>/?

• continuity principle (see [4]) (CONT): vP(((VxVy(Px Λ -iPy) -> x <
j>) Λ 3Λ:PΛ: Λ 3ΛΓ-«PΛ;) -> 3z( W(z < / -* ->PO Λ W ( K Z - ^ Pi))) is defined

by ĉont = •(/*-* [-•<]/?) Λ Φ/7Λ •ij3->*([<]π/?Λ [>]/?)
• />z/: 5/?oί principle (two-dimensional analogue of the continuity principle,

see [4]) (INK): VP((3XPXΛ VΛ:(PX-> 3^(Λ: <^ Λ Py)) Λ VX(PΛ:^ V^(^ <

JC -> Py))) -> Vx(Px -^Vj(x <y-+ Py))) is defined by φ[nk= •/? Λ • (p ->
<<>/7)ΛH(/7^ [>]/?) ^ • ( / ? - ^ [ < ] / 7 ) .

It is worth mentioning that the modal equivalents, as a rule, are consider-
ably shorter and use fewer (propositional) variables than the corresponding first-
order formulas use individual ones.

(4) Negative examples Despite its great expressive possibilities the base
£(R, —R9R"1

9 -R'1) can not overlay the first-order language L0(R). Here are
some examples of first-order formulas, beyond these possibilities:

Lemma 6.3 The following properties ofR are not definable in £(R,—R,
R-\-R-1):

(i) each point can R-reach another one: a{ ^ Vx3y(Rxy Λ X Φ y)
(ii) there exists an R-reflexive point: a2 ^ 3ΛΓ RXX; more generally, there exists

an R-loop with length n, containing x: c(x,n) ^ 3JΊ . . . 3yn-\ (Rxy\ Λ Ry\y2 Λ
...ΛRyn_xx)
(iii) each point can R-reach a reflexive point: α 3 = Vx3y(Rxy Λ Ryy)
(iv) the axiom of infinity INF
(v) there exists a left R-compression point (L-COMP): 3xVy(Ryx-+ 3z(Ryz Λ

Rzx))
(vi) the replacement axiom scheme REP.

Proof: (i) oc\ is not preserved under p-morphisms. An example: F = ({x,y},
{^^l2) Nαi, G = <{w},««,w>}> #OLX and the m a p p i n g / : F ^ G, defined by
g(x) = g(y) = u is a p-morphism in £(R,—R,R~ι,—R~ι). We shall examine
in the next section an enrichment of this base, which will trivialize (in the stan-
dard frames) the p-morphisms and OL\ will then become definable.

(ii), (iii), (iv) We shall use essentially the construction of 4.15 (it is known
that <ω,E> = <N,<». None of the formulas a2, a3, INF is true in 91 =
<N,<,>,>,<>, whereas these formulas are true in ue(9l) = <N*,<*,>*,>*,
<*>. We shall construct a standard frame G such that:

(1) ue(9l) is a p-morphic image of G
(2) G N a2 Λ a3 A INF.

W and < ' are defined as in 4.15 and the other relations are defined such that
G = {W\<\>\>' ,<'> is standard. The mapping g:G-+ ue(9l), defined by
g((uj) = u is a p - m o r p h i s m i n £(R,—R,R~ι,—R~ι): ifu< g((v,j)) t h e n , if
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w G N p then <«,0> < ' (v9j) and otherwise (uj) < ' (vj). The other checks
are analogous. Obviously G 1= a2 Λ α 3 ; G N INF: let y G N f . Then

(1) <wo,O> < <y,0>
(2) let <ιι,/> < / <^,0>.

• if w G N p , w = MΛ then <«Λ+i,0> < ' <υ,0) & VM>(H> < ' <un+u0) <=>

(w <' ( W J ) V W = ( M J )

• if u E Nf then Vw(w <' <ι/,/><=> (w <' <ι/,/> v w = <!/,/»).

Further reasonings repeat those in 4.15 and prove the undefinability of 0:2,0:3,
and INF. The formulas c(x,n) are attacked analogously.

(v) A little modifying of the above construction: add to the carrier W of
the frame G a new point (v,2) for some v E Nf and extend the definition of
<': for each x E W,x<f <v,2); (v,2) < ' x iff x = (v,2) v (x = <w,l> & ue
N f). We thus obtain a frame O'. The mapping ^, extended by g((v,2)) = y
remains a p-morphism and G' 1= COMP while ΐfl # COMP.

(vi) The reason for the undefinability of REP seems to be technical: in REP
a binary predicate occurs whereas the propositional variables are translated in
L2 as unary predicates. This difficulty can also be technically overcome, add-
ing to the language a new binary relation R with a corresponding modality; then
REP becomes an /^-formula in the new language, though still undefinable. The
reason is the heavy heaping of quantifiers 3V3 in the consequent of REP. This
rather heuristic argument will be generalized in the following conjecture.

Conjecture If a formula a E L0(R) is modally definable in £(R,—R,R~ι,
—R~ι) then a is logically equivalent to a closed formula in a prenex form a' =
Q\X\ . QnXnβ such that if an atomic formula of the type X/ = Xj or RXJXJ

occurs in β and the quantifier Qt is 3 then

(2) if / andy are not neighboring numbers theny < / and Qt is V.

If the conjecture is true then formulas of the type 3x3y3z(Rxy Λ Ryz Λ
Rxz), ixly\fz(Rxz v Ryz), lxVylz(Rxy -> Ryz) etc. remain out of reach for the
base.

Note 12 It is necessary to pay attention to the following circumstance: Let
C^E^Dbe classes of frames. It can happen that C is not definable in E but
C Π D is definable in D (and if D is definable in E then C Π D is also definable
in E). For example, in the language £(R) the property "R~ι is a well-founded
relation" is not definable but the Lob formula (LF) D (Πp ->/?)-* Πp defines
the class of frames with a transitive and well-founded converse relation, so in
the class of transitive frames the above property is definable. To this effect the
following open question remains: is the formula INF (REP) definable in the class
of frames < W, E> « W, G,R}, plus the corresponding modalities over R) which
satisfy the other axioms of ZF?
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7 Modal definability in other bases Further interesting examples of poly-
modal bases will be noted in this section. The theory of modal definability in
them is developed in the known manner; here we shall only briefly illustrate the
additional expressive possibilities which each of them possesses.

The base £(R,-R,Φ) We obtain this base as a four-modal language <£ =
£(Rl9R29R3fR4) with theory TΦ having an axiom (-.=£): VxVy{(Rxxy <=>
-R2xy) & (R$xy <=> -R4xy) & (R4xy ^x = y))9 so the standard frames are
(W,R, —R9Φ9=). The basic frames are those (W,Ri9... 9R4) in which R{ U
R2 = R3 U R4 = an equivalence relation and R3Ίs =. The defining set of modal
formulas consists of the S5-axioms for •', where Wp = [R\]p Λ [R2]p9 and
the axioms [R4]p <->p and Wp <-> • "/?, where Wp — [R3]p Λ [i?4]/>.

The modality [=] can be omitted from the language since it is explicitly de-
finable; it does not extend the expressive power. The presence of [Φ] requires
from the definition of s-collapse that all atoms consist of only one element, so
the s-collapses are isomorphic to special substructures. Here is a demonstration
of its expressive possibilities: in the obtained base the formula •(<? Λ [Φ] -><p)
says that φ is true at exactly one point, i.e., syntactical objects playing the role
of "constants" introduced by Passy (see [14] and [19]) can be constructed by
prefixing the given formula φ with a conjunction of formulas of type • (p Λ
[Φ] -ιp) for each variable/? that is destined to play the role of constant in φ.
Actually, the construction rather simulates than expresses the constants, since
in nonstandard models the described antecedent can be trivialized; so this sim-
ulation cannot be used for axiomatizations. Nevertheless, the hope for improving
the classical modal deductive machine by adding new rules for inference makes
this construction potentially useful.

The base £(R1,-R1,R2,-R2,R1 Π R2) The intersection of two relations
(often discussed vis-a-vis dynamic logics) can be modeled by similar means: an
underlying language £(R\9R2,R39R49R59Rβ) and a theory Tn with an axiom
(-.Π): vxVytfΛjΛy ~ -R2xy) &(R3xy*=* -R4xy) & (R5xy **-R6xy) &
(R6xy^ (R2xyvR4xy))). The standard frames are (W,RU-RUR2,-R2,R{ Π
R2,-R\ U - # 2 > The basic frames are those (W,RU... 9R6) in which R{ U
R2 = R3U R4 = R5U R6 = an equivalence relation and R2 U R4 = R6. Since the
modality [R6] = [R2 U R4] is explicitly defined, it can be omitted. Now, apply-
ing the familiar techniques and results, a description of the modal definability
in this base is obtained.

The modal constant loop The languages under consideration, despite their
power, cannot express the simple condition 3x Rxx. The reason is that the valid-
ity of modal formulas is preserved under ultrafilter contractions while the above
condition is not. In general, problems with definability arise with first-order for-
mulas in which subformulas of the type Rxx occur. An effective solution is sug-
gested in [14] by adding a "modal constant" loop to the base £(R,-R)9 with
a semantics in (W,Rι,R2): x \= loop iff -tR2xx9 which in a standard frame
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(W,R,-R) becomes x t= loop iff Rxx. Now, 3JC RXX is defined by 41oop and
the formula Φloop defines the condition Vxly(Rxγ Λ Ryy), also undefinable
up until now. The modal constant loop is not a traditional modal tool, but the
general definability theory will here be developed in the familiar manner with
some corrections in the definitions of a general frame and a p-morphism:

• general frame—the condition loop E W is added
• p-morphism—the condition R'f{x)f(x) => Rxx is added.

One more peculiarity: the ultrafilter extension is not already obliged to pre-
serve the validity of formulas from £>(R,— i?,loop) and its extensions, which is
why the results about definability of Δ-elementary classes are not directly trans-
ferred here. In this connection a question arises: which formulas from a language
with loop are preserved under ultrafilter contractions? Also, the description of
the modal definability of Δ-elementary classes and elementary formulas in such
languages are open questions.

Actually, loop can be modeled by standard means in the following way.
A relation S and its complement — S are added to the base £(R,—R,Φ); the con-
dition - 5 = -R U Φ is imposed by the formula [-S]p «•> [-R]p Λ [Φ]p,
whence (in standard frames) S = (R Π =) = {{x,x)\Rxx}. So in standard frames
x t= loop iff x 1= <S>T. Now the problem, mentioned above, has disappeared,
since in nonstandard frames (such as the ultrafilter extensions) the formula
<5>T will simply not be true—there it does not express the existence of an R-
reflexive point but something stronger (and not ever true). So the preserving of
the validity of modal formulas does not already contradict the condition 3x Rxx.
The question then arises whether the obtained language is stronger than
£(R9-R9Φ,IOOQ).

8 Concluding remarks The investigations in this paper present rather more
problems than they solve. Here are some of them. The characterization of modal
definability of arbitrary classes of frames in the examined bases does not seem
to be quite satisfactory. The reason lies probably in the nature of the things, but
the hope remains for more elegant results in this direction. Also, the open prob-
lem is whether or not natural analogues of the quoted theorem (8 in [12]) de-
scribing the modally definable ΣΔ-classes exist. Some natural and powerful
modal languages—the languages for dynamic logics and modal languages with
constants (see [19]) (and possibly quantifiers over constants) beckon to be
characterized with respect to modal definability. In this connection, the following
may be asked: Does there exist a natural modal base, covering the expressive
power of first-order languages? A useful investigation would be searching for
partial syntactical characterizations of the modally definable (in a given base)
first-order formulas in the spirit of Chapter 15 of [6]. Finally, the converse direc-
tion of the correspondence theory, viz. first-order definability, suggests a large
field for investigation. It seems that positive results such as the syntactical cri-
teria of Sahlqvist-type (see [6] and [20]) can be comparatively easily generalized
in polymodal variants (at least in the treated cases), though the analogues are
quite risky.
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