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Free Algebras Corresponding to
Multiplicative Classical Linear Logic
and Some of Its Extensions

ANDREJA PRIJATELJ

Abstract In this paper, constructions of free algebras corresponding to mul-
tiplicative classical linear logic, its affine variant, and their extensions with
contraction ( > 2) are given. As an application, the cardinality problem of
some one-variable linear fragments witltontraction is solved.

1 Introduction The topic of substructural logics, i.e., logics with restricted struc-
tural rules, already has a long tradition (withess relevance logic, BCK-logic, Lambek
calculus). However, with the birth of Girard’s linear logic [g]][it has regained the
attention of researchers with various motivations and different traditions. An exten-
sive survey covering the subject of substructural logics can be found3erband
Schider-HeistenZ].

The present paper continues our investigation of intuitionistic and classical
Gentzen systems with bounded contraction. In partical@gntraction i > 2) is a
version of the contraction rule, whe¢e + 1) occurrences of a formula may be con-
tracted ton occurrences. Our motivation for exploring these systems has its roots in
the observation that substitutingcontraction for full contraction in the systems con-
sidered already results in the splitting of logical operations familiar from linear logic.
However, most of the systems withcontraction do not enjoy the cut-elimination
property. Thus, standard proof-theoretic techniques of investigating metaproperties
of these systems are not available. In spite of that, the desire to acquire better in-
sights into the effects of bounded contraction led to a number of different papers on
this topic. To start with, in]] we showed that the linear models fan + 1)-valued
tukasiewicz logics are suitable modelsmtontraction. We also presented a new
complete axiomatization for these logics, essentially by meansohtraction. Fur-
ther, Hori, Ono, and Schellink]] extensively studied syntactic and semantical prop-
erties of extensions of the intuitionistic linear logic with knotted structural rules, re-
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sulting in cut-elimination theorems, decidability, and undecidabily results as well as
finite model property theorems. Briefly, knotted structural rules pemrodpies of a
formula to be contracted o copies, whem > k, and to be weakened tocopies,
whenn < k (with n, k > 1). Knotted structural rules can be seen as a generalization
of those discussed earlier. And finally, [f e introduced connectification opera-
tors for intuitionistic and classical linear algebras corresponding to linear logic and
to some of its extensions witltrcontraction. As a useful application of these opera-
tors we established the disjunction property for both intuitionistic and classical affine
linear logics withn-contraction.

The present paper had its origin in the problem of describing the structure and
determining the cardinality of one-variable fragments of some extensions of linear
logic with n-contraction and weakening. First, we point out that for the intuitionistic
case this task is easy. It is well known that the one-variable fragment of intuitionis-
tic propositional logic (in our notatiolPL ) isinfinite, due to the Rieger-Nishimura
lattice being the Lindenbaum algebra of the one-variable fragment in question (see
Troelstra and van Dalefil]). Consider now the systeiPL2 (n > 2) of affine in-
tuitionistic linear logic withn-contraction (see Appendix 1). We extend the Rieger-
Nishimura lattice withe and—o, interpreted as meet and relative pseudocomplemen-
tation respectively. Clearly, under this interpretation multiplicative connectives col-
lapse with the respective additive ones. Therefore, the structure obtained is not the
Lindenbaum algebra of the one-variable fragmenrtRif3 but just an infinitd PL 3-
algebra (sedq]) corresponding to the system under consideration. Nonetheless, since
the canonical valuation of one-variableL 5-formulas with values in this infinite al-
gebra is surjective, we may conclude that the one-variable fragmeRtdfis infi-
nite.

Far more interesting and involved is the problem of the structure and cardinality
of one-variable fragments of some classical linear logic extensionswatimtraction
(n > 2). The Lindenbaum algebra of the one-variable fragment of ordinary classical
propositional logic is a lattice of exactly four elements. However, in this paper we
show that the Lindenbaum algebras of the one-variable fragments of purely multi-
plicative (i.e., tensor, par) classical linear logic extended wittontraction and its
affine version are infinite.

Here we make a brief digression to mention some of the recent papers investi-
gating similar questions. It is interesting to note that each of them is supplemented
by a computer program designed for a specific generation of models. De Jongh, Hen-
driks, and Renardel de Lavaletlg pxamined the structure of finite diagrams of in-
tuitionistic propositional logic fragments. The diagram of a fragment is nothing but
the set of equivalence classes of its formulas partially ordered by the derivability rela-
tion. And finally, Slaneyif] showed that natural systems close to relevance logic, but
weaker, have infinitely many nonequivalent Ackermann constants. The nondistribu-
tive version of relevance logic considered by Slaney is in fact equivalent to proposi-
tional classical linear logic extended with full contraction.

In the study of the one-variable fragments of classical logics witbntraction,
we encounter the following obstacles. First, the systems mvitbntraction consid-
ered here do not enjoy cut-elimination (for a counterexample, see Section 2). Thus,
the usual proof-theoretic methods to examine provable equivalence of formulas in
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these systems are not available. The other approach to this problem is a model-
theoretic one. As far as we know, there are only two classes of models suitable to
mimic the effects oh-contraction in the logical systems. These are the models for
(n+ 1)-valued tukasiewicz logics (see Appendix 4) and the algebraic models given
in Section 2. For our purposes, tukasiewicz models are useless, since they do not
distinguish sufficiently many formulas. On the other hand, there is a difficulty with
the algebraic models as well, namely, how to determine nonequivalent expressions in
apartially ordered algebraic structure. In what follows, we shall give a partial answer
to this, sufficient to solve the cardinality problem discussed earlier. Briefly, we con-
struct a free algebra on one generator corresponding to the one-variable fragment of
affine multiplicative classical linear logic with 2-contraction. Further, we elaborate
some lemmas and propositions in order to show the existence of two infinite chains
in the free algebra introduced. The free algebra on one generator is isomorphic to the
Lindenbaum algebra of the one-variable fragment considered, yielding that this frag-
ment is infinite. As an immediate consequence, we see also that one-variable frag-
ments of multiplicative classical linear logic witihicontraction (for anyn > 2) and

its affine version are infinite.

Moreover, we wish to emphasize that our construction of the free algebra is of
interest in its own right. It will be adapted to respective free algebras on one gener-
ator corresponding to multiplicative classical linear logic (a new result in this field),
as well as to its affine variant, and their extensions witontraction. Also, it will
become evident later that any of these constructions can be generalized to the corre-
sponding free algebra on an arbitrary set of generators.

Atthe end of Section 4, we shall indicate why our present strategy for solving the
cardinality problem of one-variable fragments is not directly applicable to the systems
extended with constants, negation, and additive connectives. We shall also give some
suggestions for further research.

We use Troelstra’s@ notation for the operators of linear logic.

2 The systemx, +)-CPL$ and monoidalCPL5-algebras A multiplicative sys-
tem of affine classical linear logic with 2-contractidr, +)-CPL3, is given by the
following axioms and rules. Throughout the sequell’y, 'y, A, A1, Ay denote fi-
nite multisets of formulas.

Axioms
A= A
Logical rules
I'AB= A
Lx
I'AxB= A
Rx = A A I'y= B, A,
', = AxB, A1, Ap
L+ ', A= Ay 'y, B= Ay
[, T2, A+ B= Ay, Ap
R+ '= A B A

'= A+B A
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Structural rules

W

C: S RASE

R A

cut 1AM T A=A

', 2= A1, Ay

Note that for any formulag,, B, andC, the sequen{B+ C)x A= (Bx A) +C s
derivable in(x, +)-CPL 3, however}/ (Bx A) + C = (B+ C) » A. The latter is due
to the fact that the seque(B A A) v C = (BVv C) A Aiis not derivable infA, v}-
classical propositional logic of whicfx, +)-CPL$ is just a fragment. However, the
fragment considered differs from classical propositional logic sirce-)-CPL$ I/
A= Ax A. Tosee this, choose fdk a propositional variablgp. As acounter-model
of the given sequent we may take the tukasiewicz 3-valued mddé€] . ]) (see
Appendix 4), with [p] = 3.

Next, we shall give a counterexample for cut-elimination in the sygient)-
CPL. Let p be a propositional variable in the languagg-af+)-CPL5. Then,

(x,+)-CPL3+ p, p+p= (p+ p)°.

where(p + p)3 stands for p+ p) » (p+ p) » (p+ p). The derivation of the given
sequent can be obtained as follows.

Applying Rx to two axiom instancep+ p = p+ pyields(p+ p)®® = (p+
p)2. Another application of Rto the latter sequent ar+ p = p+ pyields(p+
p)@ = (p+ p)3, and so, withLC,, applied next, givegp+ p)@ = (p+ p)3. On
the other hand, RW applied = pyieldsp= p® and, with R+ nextp = p+ p.
Cutting the latter sequent wittp + p)® = (p+ p)3 results inp, p+ p= (p+
p)3, with AKX = A, A, ..., A i.e. kcopies of formulaA in the derivation above.

However, it is easy to check that the sequpnp + p = (p+ p) has no cut-
free derivation in the system considered. Moreover, note that this is also a counterex-
ample for cut-elimination in the one-variable fragmentaf+)-CPL3.

We now introduce monoidaCPL 3-algebras corresponding to this system.

Definition 21 X = (X, %, +, <) is a monoidalCPL §-algebra, if:

1. (X, ) and(X, +) are commutative monoids (also referred to as semigroups);
2. <is a partial order orX, satisfying the following clauses for atl y, z € X:

(a) xxy < xandx < x+ vy, corresponding to weakening;

(b) X* X < x*X*xandx+ x4+ X < X+ X, corresponding to 2-contraction;

(€) (y+2) xX < (YyxX) + z i.e., sub-commutativity ok and+;

(d) if x <y, thenxxz<yxzandx+z<y+ zi.e., monotonicity ok and
+ with respect to<.
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This formulation of a monoidaCPL $-algebra will turn out to be particularly suitable

for our purpose, which is to construct the corresponding free algebra on one generator.
Note that (2c) of Definitiof2.1lcovers precisely the derivability of the sequéBt+

C)x A= (Bx A)+ Cin (x, +)-CPL3. Next, consider an extension of a monoidal
CPLg-aIgebra with 0 and 1 as the respective units-foand, with involution ~

and the clausesx ~x = 0, X+ ~x = 1. We shall show later that in this algebraic
structure sub-commutativity of monoidal operations is just equivalent to adjointness
(witness Appendix 3).

Further, a monoidaCPL g-modeI,M Jisapair(X,[ .]), whereX is a monoidal
CPL%-algebraand [] is a valuation defined in a usual way (see Appendix 3). For va-
lidity of a (x, +)-CPL3-sequent” = A (see Appendix 3) in a given monoidaPL -
modelM, we use the standard notatiog:yy I' = A.

Soundness and completeness hold for the system and models under the follow-
ing consideration.

Proposition 2.2 Givena (x, +)-CPL%- sequent I' = A,
if (x, +)-CPLSFT = A, then ey = A,

for every monoidal CPL$-model M.

Proof: By induction on the length of a derivation bf= A.

To show soundness @ut the use of sub-commutativity afand+, i.e., (2c)
of the definition of a monoidaCPL §-algebra, is essential. The rest of the proof is
straightforward. O

Proposition 2.3  There exists a monoidal CPLg‘—model M, such that
if Em, = A, then (x,+)-CPL3FT = A,

for any (x, +)-CPL3-sequent I' = A.

Proof: Clearly,M_ = (L,[ .]), whereL = (F/=,+/,+’, <) is the Lindenbaum
algebra of the systerx, +)-CPL%. The Lindenbaum algebra considered is obtained
by the standard definition for linear logic systems. The partial orden F/ =
is given by: for any formulas A and B, [A]l= <’ [B]= iff (x,+)-CPLS+ A= B.
Clearly, then A= B iff [A]= <'[B]= and [B]= <’ [A]=. Itis now easy to check
thatL is indeed a monoidalPL 3-algebra. The rest of the proof is standard (e

O

3 Aconstruction of the free monoidaCPL -algebra on one generator A double
commutative monoid is a tripl€S, x, +), whereSis a nonempty set and+ are
binary associative and commutative operationS.in

We shall now give an explicit construction of the free double commutative
monoid P(y) = (P, x, +) generated byy}. First, we shall define for ang =
0,1,2,...the setsP}, (i.e., x-+-polynomials of depthd, with a principal operation
%, whend > 1), and their dualsPJF, inductively on the depth of &+-polynomial.

1. The only polynomial of depth 0 is the generatoso we put
P; =Py ={»}.
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2. Ford > 1:

(@) LetPj be the set of all formal products

(P * - x (P, (k=2),

such that

piePi (j=1...k and mkalxdj=d—1.
j=

(b) Let chr be the set of all formal sums

(P +---+ (P, (k=2),

such that
piePi (j=L....k and mkalxdj:d—l.
J:

The operations and+ betweerk-+-polynomials are defined in the ob-
vious way.

We now define an equivalence relatiory, , in P} and in PJ“ inductively by:

1ly~y

2. ford > 1:
(P1) * -+ * (Pr) = (P}) * -+~ » (Py) iff k= sand for some permutatiof of
{1,.... kL pj = pyjy (i =1, ..., K. And analogously(pz) + - -- + (k) =~
(py) + - - -+ (ps) iff k=sand for some permutatigiof {1, ..., k}, p; = p/g(j)
(j=1,...,Kk).

Moreover, since
p~p implies pxq~p'xq and p+q~p +4q,

for all x-4--polynomialsg, clearly >~ is a congruence relation on the algebra-of-
polynomials.
PutnowPy = B}/ ~= P/ ~andPy = (Pj/ ~) J(P;/~),foranyd > 1,

and take
o0
P=| R
d=0

Finally, we defineP(y) = (P, x, +), with » and+ being induced fromx and+ on
*-+-polynomials.

Sincez is a congruence relation on the algebra-ef-polynomials, the oper-
ationsx and+ are, indeed, well-defined on:-equivalence classes. Moreover, note
thatx and+ are associative and commutative operationB.irt is now easy to see,
using standard arguments (Birkhdff], that ?(y) is indeed a free double commuta-
tive monoid on one generatgr Next, observe the following important property of

P(y).
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Fact 3.1 By the construction of P(y), it follows that every x € Py (d > 1) hasa
unique decomposition up to a permutation of factors or summands, in the following
sense:
(i) ifxe P/~ (forsomed=1,2,...), then
d-1
X=Xg %% X, (K> 2), with xj € U(Pﬁ/:)(j =1,...,k).
i=0
(i) ifxe Pj/ =~ (forsomed=1,2,...), then
d-1
X=X+ +X (K=2), with xje| JPr/>) (j=1.....k.
i=0
Our intention in what follows is to construct the free monoi@&IL 3-algebra on one
generator fromP(y). The construction is carried out in four steps.

I. A binary relation<g is introduced inP, by clauses (a)—(d) being satisfied for
allx,y,ze P:

(@) x<oX

(b) x*y <gxandx <gx+Y;

(C) X*X <gX*xXxXandX+ X+ X <g X+ X;
(d) (y+2Dxx=<g(y*X)+z

Il. We construct the monotonic closure &fg , asfollows.
A sequence of binary relatiois:n}°, in P is defined inductively by:
for everyn > 1, let <, be the extension ofk,_; , determined by:
forallx,y,ze P,if x<p_1 Yy, thenxxz<, yxzandx+z<,y+z
We define

S0 = L_JO(SH)7

i.e., givenx, y € P, X <, Yiff x<,y, for somen > 0.
lll. Let < be the transitive closure &f,, in P, i.e., givenx, y € P, x < yiff there
exists a finite chaiX <., X1 <go " <oo Xk <00 Yin P.

With the following two lemmas we shall justify monotonicity efand+ with
respect to< in P and show thak is a preorder orP.

Lemma3.2 Theoperations and + are monotone with respect to <., in P.

Proof: Assumex <., y for somex, y € P. By definition, there i1 > 0, such that
X <py. Take anyz € P. Then,xxz <p,1 Yyxzandx+ z <p,1 Y+ z. Hence x
Z<o Y*zZandxX+z<, y+2z O

Lemma3.3 Therelation < isapreorder on P. Moreover, the operations « and +
are monotone with respect to < in P.

Proof: Indeed,< is reflexive and transitive, due to I(a) and (Ill) above.

To show monotonicity, assume=< y for somex, y € P. Hence there is a fi-
nite chain inP, X <., X1 <go '+ <oo Xk <00 ¥- Thenforanyze P, Xxxz <., X3 »
Z<o" oo Xk *Z<go Y*ZaNAX+Z <o X1 + 2 <4 " <o Xk + Z<o Y+ Zare
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again finite chains if® due to Lemm&.2] Thereforexxz< yx zandx+z < y+z
O

In the sequel, we shall generate two infinite chains in the preordered algebraic struc-
ture (P, x, +, <) constructed so far. In order to show that these two infinite chains
exist also in the free monoid@&PL 3-algebra, we continue with two crucial lemmas.

Lemma34 Vn>0,Vze P. y<,zifandonlyifz=y or z= y + Z for some
ZeP.

Proof: Note thatvn > 0 andvz e P, y <, ziff y <9 z Moreover, following the
definition of <g we gety <q ziff z=y orz= y 4 Z for somezZ € P. O

Lemma35 Vn>0,Vy,zeP:ify+y=<,zthenz=y+ Z for someZ € Pand
y=nZory=n7.

Proof: By induction onn.

1. (n=0):
Assumey + Yy <q z, for somey, z € P. The following three cases are to be
considered.
If 1(a) occurs, there = y + y, and hence’ = vy, yieldingy <q Z.
If I(b) occurs, there =y + y+ u, for someu € P. Hence,Z = y+ uand thus,
indeed,y <qZ.
If 1(c) occurs, then two subcases occur.
(1)y=y+yandz=y+ y, resulting inZ = y. By Lemmad3.4] y < Z.
(2)y=y+y+u+u+uandz=y+ y+u+u, forsomeu € P. Therefore,
Z = y 4+ u+u, and by Lemm&.4we are done.

2. n=>1):
Assume LemmE.5ko hold fork =0, 1, ..., (n— 1). Assume further that for
somey, ze P,y +y <,zandy+Y £,_, z This means that there aaeb, c €
P, satisfying

(M) a=<p_1b,

and hencea+ c <, b+ c, such thaty + y=a+ c, andz= b+ c. Now, due
to Facf3.1] the following possibilities are to be distinguished.

(@ a=y, hencez= b+ y. Then, by(M) above,y <,_; b. Using
Lemmad3.4lwe getb = yorb =y + I/, for someb’ € P. Thus,z=y +y
orz=y+b' +y,yieldingZ =yorzZ =b’+y. And hencey <, Z.

(b) c=y. Theny=aandZ = b. Usng (M) we gety <, Z.

(c) a= y + u (for someu € P), resulting iny = u+ c. Now by (M) y +
u <,_1 b, therefore we can use induction hypothesis andbgety + b’
with the options

(O) u<pabory<pib.

Sincez=b+c=y+b +c wegetzZ =b' +c. Wefinally have to
consider each option ifO).

If u<n_1b,theny=u+c<,b' +c=7,and we are done.

If vy <n_1 b, thenb’ = y orb’ = y + b” (for someb” € P) due to
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Lemmd3.4] Hence,Z = y+corZ = y +b” + ¢, resulting iny <, Z
by Lemmd3-4]

(d) ¢ = y + u (for someu € P), yieldingy = a+ u. Hencez=y+u+Db
and soZ = u+b. Due to(M), we gety=a+u <, b+ u= 27, andwe
are done. O

Proposition 3.6 Vy,ze P:

1 ify+y<zthenz=y+ 7z forsomeZ e Pandy<Zory<?Z.
2. y<zifandonlyifz=yorz=y+ 7z for somez € P.

Proof: Following the definitions ok and <., the proof goes by induction on the
length of the chain using essentially Lemr@aghnd3.5] O

By duality the following proposition can be established.
Proposition 3.7 Vy,ze P:
1l ifz<syxythenz=yxZforsomezZ e PandZ <yorZz <y.
2. z<yifandonlyifz=yorz= y« Z for some Z € P.
Consider now the sequendes}, 2, and{yn} - o of elements oP, given inductively
by:

Xo=y+y, Yo=v*(+¥) , Xnp1=Yn+¥ , Ynt1=Xny1* V.

Due to I(b) of the definition ok and monotonicity ok and+ with respect to< (see
Lemmad3.3), it is easy to see that:

Xn+1 < Xp andypi1 < yp foralln e N.

In order to show later that none of these two chains collapses in the free monoidal
CPL%-algebra, we need one more lemma.

Lemma3.8 Let{Xn}n2oand{yn}ne o beasabove. Then, X, £ Xnt1 and Yn £ Yn+1,
for any n € N.

Proof: By induction onn.

1. (h=0:) we want to prove
Ohy+yZ2y*xy+v)+y
(i) yx(y+) Z2(yx(y+y)+r)*y.
Assume first thay + y < (y x (y + ¥)) + y. By PropositionB.6]1, we get
y < y* (y + y). This contradicts Propositid&6]2, and we are done.
Assume next thay « (y +y) < ((y x (y + y)) + y) » y. Proposition3.7]1
yields the following options:

y+y=(xWy+y)+vy

contradicting (i) above, or
Y+v=v

violating Propositiof87]2.
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2. n>1)
(i) Assumexn < Xpi1, i-€., Yn_1 + ¥ < Yn + y. By Propositior3.6]1, we get
Yn—1 < Yn, contradicting the induction hypothesis,)o& y, = X, x y, violating
propositior3.6]2.
(ii) Finally, assumey, < Ynt1, i.€., Xn * ¥ < Xnp1 * y. By Proposition3.7]1
we getx, < Xn.1, contradicting the first part of the lemma already proved, or
Yn_1+ ¥ = X» < y, Which contradicts Propositida7]2. O

IV. Next, we define a congruence relatieaa on (P, x, +, <) by:
foranyx,ye P, x=yiff x<yandy < x.

Clearly, due to Lemmla.3] = is a congruence relation on the structure consid-
ered. We now define

Fy)=(P/=++, <),

with ¥ .+, and<’ being induced fronP.

Since= is a congruence relatiow,and+’ are well-defined inf (y). Moreover,
<’ is a partial order orff (y). Taking into account also the given constructiong?of
and< on P, itisnow easy to see thaf(y) is a monoidalCPL §-algebra. Moreover,
F(y) is the freeCPL5-algebra on one generatpr(see []). To verify the latter, we
have to show that for every monoidaPL $-algebraX and for everyx € X, there
exists aunique morphisrh: F(y) — X, suchthatf ([y]) = x. Define, foranyg € P,

f([q]) = q(x), whereq(x) is the evaluation of the polynomiglatx in X. To see,

first, that f is well-defined (i.e., independent of representatives) we have to show that
foranyq,q e P, if = g, theng'(x) = q(x) in X. Infact, itis enough to prove that
forallne Nandvqg,q € P, if <, g, theng' (x) < q(x) in X. A diligent reader is

now invited to work out the proof following the definition ef, by induction onn.

From the above, it follows that preserves the partial order. Hence, indektds a
morphism between the two algebras considered, since it also satisfies the following:
foranyq.q € P, f([goq]) = (@od)(x) =aq(xX) o g (x) = f([q]) o f([q]), with

o € {x, +}. Also, f([y]) = X, by definition. And finally, the uniqueness dffollows
directly from f being a morphism and([y]) = x. Thus, F(y) is the free monoidal
CPL$-algebra on one generatprand isomorphic to the Lindenbaum algebra of the
one-variable fragment df, +)-CPL3.

We emphasize, however, that our constructior¥af/) has a much wider scope,
establishing also the free algebras (on one generator) corresponding to the multiplica-
tive fragment of classical linear logic (i.e., tensor, par fragment without constants and
modalities), in our notatiotw, +)-CPL, its affine version(x, +)-CPL 2, and their ex-
tensions wittm-contraction § > 2): (x, +)-CPL, and(x, +)-CPL 2 respectively. To
be specific, we state the following fact.

Fact 3.9 A construction of the free algebra, on one generator y, corresponding
to (x, +)- CPL, (x, +)-CPL?, (x, +)-CPLp, and (x, +)-CPL2, (n > 2), can be ob-
tained from the given construction of 7 (y) respectively by:

1. omitting I(b),(c);



FREE ALGEBRAS 63

2. omiting I(c);
3. omitting I(b) and replacing I(c) by I(c):

X" <o X"t and (n+ 1)x <g nx,

where X" and nx denote n copies of x inthe product and in the sumrespectively;
4. replacing I(c) with I(c’), as above.

Besides, note that the construction #fy) and its variants, in the fact above, can
easily be generalized to the corresponding free algebras generated by an arbitrary set
of generators.

4 One-variable fragments of multiplicative classical linear logic witlcontrac-
tion are infinite  We are now ready to prove the existence of the two infinite chains
in F(y), with its application to the one-variable fragment(ef +)-CPL3.

Theorem 4.1

1. F(y)isinfinite.
2. There are infinitely many provably nonequivalent formulas built from one
propositional variable in the system (x, +)-CPL3.

Proof:

1. Let{xn}p2o and{yn}p> o be the sequences of elementsRyfas given above.
Then, clearly,

[Xni1]= <" [Xn]l= and [Yny1l= <" [yn]=, forallne N.

Now by Lemmd3.8lve may conclude thad,, 1 # X, andy,1 # Yn, thus prov-
ing the existence of two strictly decreasing infinite chaingity).
2. Letpbe a single propositional variable in the languagéxof+)-CPL35. Take
now the monoidaCPL3-modelM = ((y),[ . 1) and put [p] = y. Since
M is the Lindenbaum model of the fragment considered, we are done by (1) of
the present theorem. O

Figure 1 below illustrates a part ¢f(y) with the first two elements of each of the two
strictly decreasing infinite chaingy = 2y, X1 = y + (yx 2y), Yo = yx 2y andy; =
y* (¥ + (y x 2y)). Moreover, for any---polynomial p of y, 2p and p? stand for
p+ pandpx prespectively. From now on, we will use these abbreviations whenever
convenient.

Explicit constructions of the two infinite sequendds}n>, and {Gn}2, of
(%, +)-CPL$ provably nonequivalent formulas of one-variable can be obtained by
analogy with the sequencés,}; 2, and{yn};>, given above. To be specific:

F0: p+p ’ GOZ p*(p+ p) ) Fn+1:Gn+ p’ ) Gn+1:Fn+l*p,

wherep is the single propositional variable in the languagésof+)-CPL 3.
Finally, observe that the respective sets of derivable sequents (i.e., theorems) in
CPL3, CPL2, CPL, (n> 2),CPL?3, andCPL are in the following relation:

Th(CPL3) 2 Th(CPL2) D Th(CPL,) 2 Th(CPL),
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2y

Y+ (2y)?
Y +2(y?)
Y+ (yx2y)

v+ (y*(y+7v?)

2

(2y)? y+y

2y * (v +7v%) v2+ (y*2y)
y*2y 2(y%)
y*(y+ (y*2y))
y*(r+v%)

y* (2y)2
y* (2y%)

Figure 1: A part of 7 (y).
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and also,Th(CPL%) © Th(CPL?).

Clearly this fact remains valid for purely multiplicative fragments of the systems con-
sidered. Thus, the two infinite sequences of formfas;> , and{Gn},, are also
provably nonequivalent in the multiplicative fragment of any of the syst€ris?,
CPL,, (n>2),CPL?, andCPL.

We can now sum up the results obtained in this section in the following.

Corollary 4.2 There are infinitely many provably noneguivalent formulas built
from one propositional variable in any of the systems: (x, +)- CPL2, (x, +)-CPL
(n> 2), (x, +)-CPL?, and (x, +)- CPL.

We emphasize, however, that the corollary above presents a nontrivial result only
with respect to the systems withcontraction. The systen@PL ® andCPL, aswell

as their respective multiplicative fragments, all enjoy cut-elimination (as opposed to
the systems witin-contraction). Therefore, for these systems the statement of Corol-

Iary@ban be obtained very easily by purely syntactic reasoning.

A natural question arising at this point is whether the results obtained so far can
be extended to the systems which include also constants, negation, and additive con-
nectives. We shall now briefly comment on this problem.

Consider first the syste@PL 3 (see Appendix 2) in the absence of additive con-
nectives. We claim that a monoidaPL $-algebra, extended with 0, 1 and satis-
fying the folowing clauses for any € X,

(@) xx1=xandx+0=Xx;
I(b) ~~x=x;
I(c) xx~x=0andx+~x=1,

is a partially ordered structure satisfying all clauses of the definition 6Ph%-
algebra with exception of (2) (see Appendix 3). We refer to this algebraic struc-
ture, X = (X, ~, *, +, <,0, 1), as(~, , +)-CPLj-algebra. To verify our claim, it
remains to be shown only that clause (5) of the definition &L 3-algebra (i.e.,
adjointness) is derivable in(a-, x, +)-CPL5-algebra. We proceed as follows.

1. Assumexxy < z, for somex,y,ze X. Then,x =Xx*x1=Xx (y+~Yy) <
(X*xy)+~y<z+~y=~Yy+ zduetol(a), I(c), commutativity of, 2(c),
assumption (1), 2(d), commutativity ef, and transitivity of < respectively.

2. Assumex < ~y+ z forsomex,y,ze X. Then,xxy < (~y+2)xy <
(~yxYy)+z=0+ z= z due to assumption (2), 2(d), 2(c), commutativity of
*, 1(c), commutativity of+, 1(a), and transitivity of respectively.

In fact adjointness is equivalent to sub-commutativitk @hd+ in the algebra con-
sidered. Giverx, y € X, y* X < y* x by reflexivity of <. Due to adjointness, we get
y <~X+ (yxX). Thus, foranyze X, y+ z < ~x+ ((y*x X) + 2), due to 2(d) and
associativity off-. Using adjointness, once again, giVgst z) x X < (yx X) 4+ z,and
we are done.

Due to the presence of involution iy, x, +)- CPL 5-algebras a form of de Mor-
gan duality can be expressed in them.

Lemmad4.3 Inany(~,x, +)-CPL3-aIgebraX = (X, ~, *x, +, <,0, 1) thefollow-
ing pairs of operators are dual to each other: (~,~), (x,+), and (0, 1).
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Proof: Clearly~ is dual to itself by I(b).
Next, we want to show, using anti-symmetry-ofthat

~Xxy) = (X)) + ().

(1) ~X*xy) < (~X) + (~y) iff 1 < ~~(Xxy) + (~X) + (~Y) = (X*xy) +
(~Xx)) + ~vy, due to commutativity ok, I(a), adjointness, I(b), and associativity
of +. Indeed,(X*y) + ~X) +~y > (X+~X)xy) +~y=(Ixy) +~y =

y+ ~y=1, by 2(c), I(c), commutativity ok, I(a), and I(c).

(2) (~x) + (~y) < ~(x*Y) can be proved analogously, and so we are done. The
duality of 0 and 1 is now a trivial matter. O

One can extend the given construction of the free monoidal algebrawith the re-
spective clauses for 0, 1, and involution. Eventually, one should construct a free lat-
tice generated by the extended free structure. However, in this case, different lemmas
and propositions to prove the existence of the two infinite chains in these extended
free structures are needed. Therefore, our present strategy is not directly applicable
to any of the extended systems discussed above. Retaining a positive attitude in spite
of that, one should search for a suitable conservativity theorem. However, due to the
non-eliminability of cut in the underlying syntactic systems, we still lack the proof-
theoretic technigues to achieve that. Thus, it seems more promising to find a faithful
embedding of the free monoid&@lPL $-algebra in the free algebra corresponding to
the systenCPL3. However, this still remains to be achieved.

We conclude this paper with the conjecture that the one-variable fragment of the
systemCPL § (and consequently, of any weaker system in the sense of ColdlFry
is infinite.

Appendix 1: Systems of affine intuitionistic linear logic with-contraction  For

anyn > 2, an intuitionistic system of affine propositional linear logic witlsontrac-

tion, IPL2, is given by the following axioms and rules. Throughout the belaw,
denotes the empty multiseb denotes either an occurrence of &L 3-formula or

the empty multiset, anfl, I'1, ', stand for finite multisets dfPL 2-formulas.

Axioms
A= A
0= A
A=1
Logical rules
I'AAB= &
I'AxB= o
= A I'h=1B
r,I'n= AxB
rh=A [',B=®
I1,T5,A—oB=®
I'yA=B
'=A-—-B

L

Rx

R—o
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A=o .
LM I ANA = & i=1,2)
RM r= A =B
I'= AnB
LL A= o I'B= &
I'AUB= &
= A .
RY TS a0A (512
Structural rules
= o
LW A= &
I'= A
RW '=A
F’A(n‘l’l):(b
LCn F,A(n):>®

whereA® = A A, ... A i.e. kcopies of formulaA.

rh=A '), A= o
', o=

Remark: A noninvolutive negation can be definedyA = A — 0.

Cut

Appendix 2: Systems of affine classical linear logic withcontraction For any
n > 2, aclassical system of affine propositional linear logic wittontractionCPL 2,
is given by the following axioms and rules. Throughout the segnalenotes the
empty multisetand’, I'y, ', A, A1, A stand for finite multisets cEPL 3-formulas.

Axioms
A= A
0= A
A=1
Logical rules
L~ '= A A
I'~A= A
R~ A=A
'=s ~A A
I'AAB= A
Lx
I'AxB= A
Re M=A2A I'y= B, Az
', 2= Ax B, A1, Ay
L+ 'y, A= Ay [y, B= Ay
', T2, A+ B= Aq, As
R+ '=ABA

'= A+B A



68 ANDREJA PRIJATELJ

A=A .
LM T ANA = A i=12)
'=AA I'=B,A
R
I'= AnB, A
LL A=A IB= A
I'AuB= A
RU L= A A (i=12)

'= AU Ay A
Structural rules

'=A
LW A= A

I'=A
RW = AA

r, A(n+1) = A
LCI"I 1—1’ A(n) :> A

= AMD A
RGh =AM A

whereA® = A A, ..., A i.e. kcopies of formula A.

cut = A Az [y, A= A

', 'y = Aq, Ar
Remark: A linear implication can be defined by — B=~ A+ B.

Appendix 3: Algebraic models fo€PL 2

Definition X = (X, ~,x,+,M, U, 0, 1) is aCPL2-algebra, if:
1. (X, *,1) and (X, +, 0) are commutative monoids with units 1 and O respec-

tively;

2. (X,m,u,0,1)is alattice with bottom 0 and top 1;

~ is involution, i.e.,~~x = xforall x € X;

4. x and+ are monotone with respect to the lattice ordetr.e., forallx, y, ze X,
if X<y, thenxxz<yxzandx+z<y+z

5. forallx,y,ze X, xxy < zifand only if x < ~y + z i.e., adjointness;

6. forallx e X, x" < x™1 and(n+ 1)x < nx, wherexk = xx - - - » x andkx =
X+ - - -+ x with k copies ofx respectively.

w

Remark: Note that, &CPL 2-algebra is just a classical linear algebra (providet
taken as primitive whiler, ~ and+ are defined in a usual way, s€g)[ satisfying
in addition:

e | =0andT = 1 (corresponding to weakening);
e clause (6) (corresponding tecontraction).
Definition M = (X, [ .]) is aCPL2-model, if:

1. X is aCPL2-algebra;
2. [ .] is a valuation satisfying:
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(@) [[P] € X, for every propositional variabl®;
(b) [0] =0, [1] =1;
[ .1 is extended t&€PL 3-formulas inductively by:
[~A] =~[A]land [Ae B] =[A] e[B], with e € {x, +, m, L};
Moreover, aCPL2-sequentA, ..., Ax = By, ..., Byis valid in M if and only if
[Ad »---«[AJ < [Ba] + -+ [Bml.

Appendix 4. Models fom-valued tukasiewicz logics

Definition  Foranyn > 2, a model fon-valued Lukasiewicz logidVi ([ . ]), con-
sists of:

1. avaluation [. ] assigns to each propositional varialpi@an element of the set
S ={%1k=0,1,...,n—1};
2. [ .1 is extended to arbitrary formulas (in the langugger, L, x, +, —}) in-
ductively by:
(@ [~Al =1-[Al;
(b) [An Bl =min{[ A, [B]};
(c) [AuB] =max[Al, [B]};
(d) [A= Bl =max[A] +[B] — 1,0}
(e) [A+ B] = min{[ A] +[B], 1};
H [A—B] =min{1—[A] +[B],1}.
3. [ . ] is extended to arbitrary sequeft, ..., Am= By, ..., Bj by:

[AL,....,.Am=B1,....Bjl=[~A1+---+~An+B1+---+ Bj].

A given sequent = AisvalidinMp([ . ]) ifand only if [’ = A] = 1. Moreover,
a equent” = A is n-valid if and only if [[" = A] = 1 for every valuation [. .
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