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Infinite Versions of Some Problems
From Finite Complexity Theory

JEFFRY L. HIRST and STEFFEN LEMPP

Abstract  Recently, several authors have explored the connections between
NP-complete problems for finite objects and the complexity of their analogs
for infinite objects. In this paper, we will categorize infinite versions of sev-
eral problems arising from finite complexity theory in terms of their recursion
theoretic complexity and proof theoretic strength. These infinite analogs can
behavein avariety of unexpected ways.

1 Introduction  Startling parallels exist between the computational complexity of
certain graph theoretic problemsand the recursion theoretic compl exity and proof the-
oretic strength of their infinite analogs. For example, the problem of deciding which
finite graphs have an Euler path is known to be P-time computable [[Z], and Beigel
and Gasarch have shown in an unpublished work that the problem of deciding which
infinite recursive graphs have an Euler path is arithmetical. By contrast, the prob-
lem of deciding which finite graphs have Hamilton paths is NP-complete [[6], and
Harel [[4] has shown that the problem of deciding which infinite recursive graphs have
aHamiltongraphis Ei complete. Thus, the possibly greater computational complex-
ity is paralleled by a demonstrable increase in recursion theoretic complexity. This
pattern can aso be seen through an application of the techniques of reverse mathe-
matics. The existence of a function that decides which graphs have Euler paths is
provably equivalent to ACAq, while the existence of asimilar function for Hamilton
pathsis equivalent to the much stronger axiom system 1‘[%— CA.

Unfortunately, other graph theoretic problems do not demonstrate this paral-
lelism. We have selected some examples to illustrate two general themes. First, dif-
ferent infinite statements related to a fixed finite problem can have different recursion
theoretic complexities. Thiswould seem to indicate that the use of apreferred infinite
formulation might lead to natural parallels between finite complexity and recursion
theoretic complexity. However, the behavior of infinite analogsisnot so easily tamed.
Indeed, similar formulations of infinite versions of problemswith different finite com-
plexities may have the same recursion theoretic complexity.
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2 Variability among graph coloring problems  This section contains examplesil-
lustrating our first theme. The problem of determining which finite graphs are 3-
chromatic is NP-complete [[6]. Extrapolating from the problem of finding Hamilton
paths, we would expect infinite anal ogs of the 3-coloring problem to be 21 complete.
However, the actua recursion theoretic complexity depends on theformulation of the
infinite analog, as demonstrated by the following three theorems. Our notation is pat-
terned after that of Soare [[10].

The following theorem shows that the set of indices of 3-chromatic recursive
graphsis arithmetical, and so is much simpler than the 2} complete set we are seek-
ing. This result isimplicit in the work of Beigel and Gasarch [[1J. By formulating
their resultsin terms of partial recursive functions rather than index sets, Beigel and
Gasarch isolate the recursion theoretic complexity contributed by questions of chro-
maticity from that contributed by the coding of the graphs. To maintain uniformity
with later results, we have chosen to use index sets here.

Theorem 2.1  The set of indices of 3-chromatic recursive graphsis I‘Ig definable.

Proof: Let G; denote the set of indices of 3-chromatic recursive graphs. Note that
X € Gy if and only if every finite subgraph of the graph with index x is 3-chromatic.
Thus, G is l‘[? definable, using the set of indices of al recursive graphs as a pa-
rameter. Since the set of indices of recursive graphs is I3 definable, G, is also 19
definable. O

In order to find an infinite anal og of the 3-coloring problem with a complicated asso-
ciated index set, we examine natural supersets of the 3-chromatic graphs. One can-
didate is the collection of finitely colorable graphs. The set of indices of the finitely
colorable graphs is definable by the conjunction of a 1‘[8 anda Eg formula, and so is
A definable (see [1]). By expanding our superset again to the collection of graphs
with finitely colorable connected components, we gain some complexity in the index
Set.

Theorem 2.2 The set of indices of recursive graphs with finitely colorable con-
nected componentsis Hg complete.

Proof: Let Gy denote the set of indices of recursive graphs with finitely colorable
connected components. Supposethat X istheindex of agraph G. Then x € G if and
only if for every vertex v of G, thereisan integer k such that every finite connected
subgraph of G containing v is k-chromatic. Thus, G; isa 1‘[8 definable subset of the
set of indices of recursive graphs.

To show that G is T13 complete, let Go denote the set of indices of those re-
cursive graphs which have connected components that are not finitely colorable. It
suffices to show that (Cof, Cof) <; (Go, G1). Here, Cof = {e: Weis cofinite}.

For each e € w, define the graph Ge asfollows. Ge will contain vertices labeled
vm.n for each mand n in w, and some additional unlabeled vertices. For each m, the
vertex vm o Will be included in a complete graph on m+ 1 vertices. For every m
and j all edges of the form (v, j, vm, j+1) Will be included in Ge. Finally, the edge
(Vm,j, vmt1,j) Will beincludedin Ge if and only if {e} (m) haltsby stage j. For every
e, Ge isrecursive. By the sm-n Theorem, thereis a 1-1 recursive function f such
that for every e, f(e) isanindex for Ge.
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Note that if e € Cof, then thereisa j such that the vertices {vymn : M > j} are
all in the same connected component. Consequently, arbitrarily large complete finite
subgraphsare contai ned in thiscomponent, and it isnot finitely colorable. Thus, if e
Cof, f(e) € Go. Now supposethat e € Cof and C isaconnected component of Ge.
C must contain avertex of theform vy, 0. Sincee e Cof, thereisaleast j greater than
msuch that {e}(j) never halts. Consequently, C cannot contain any vertex v, x such
that n > j. Thisensuresthat C is j + 1-chromatic, so f(e) € Gi. Thus, f witnesses
that (Cof, Cof) <1 (Go, G1), asdesired. O

For the next proof, we will need the following notation for finite sequences of natural
numbers. Assuming a recursive bijection between w and w =<, we will use a Greek
letter (usualy o or 1) to denote both a sequence and its integer code. The formula
o C T meansthat o isan initial (not necessarily proper) segment of . Thus, T isa
treeif whenever te Tando C 7, theno e T.

Given an arbitrary index e, {€} may or may not be the characteristic function
for arecursive tree. To streamline our discussion, consider the following auxiliary
function.

Definition 2.3  For e € w, the partial recursive function ne is defined by:

1 if VoCt({el(o)=1),
o if {80 =0A[Vo S T(ie}(@) =0V {e}(o) = 1)]
ne(t) = Al¥o € 7V € o ({e)(a) = 0 — [e} (o) = O)].
1 otherwise.

Naively, ne approximates the characteristic function of atree. In particular, ne istotal
if and only if eistheindex of arecursivetree. Note that by the s-m-n Theorem, there
isa1-1 recursive function which maps each e to an index for ne.

So far, we have examined sets of graphs that can be colored with a set of colors
that is*small” in some sense. Infinite graphs, coloring with asmall number of colors
forces repeated use of some color. Thus, it seems reasonable to consider graphs with
colorings that use one color infinitely often. Note that this set of graphsis a superset
of the graphs with finitely colorable connected components.

Theorem 2.4 ([5]) Theset of indices of recursive graphs with colorings which use
one color infinitely oftenis 2} complete.

Proof: Let G denote the set of indices of recursive graphs with colorings that use
onecolor infinitely often. Notethat x € G if and only if thereisafunction x mapping
the vertices of the graph with index x into w, such that y maps neighboring vertices
to different values, and O appears infinitely often in the range of x. This statement
can beformalized using asingle existential set quantifier followed by an arithmetical
formula, so G is X1 definable.

To show that G is £} complete, we will show that 7 <; G, where 7 denotes
the set of indices of recursive trees which are not well founded. With each e € w, we
associate a partial recursive graph, Ge. The vertex set for Gg consists of (codes for)
elements of w=<®. For every o, T € w=%, the characteristic function for the edge set
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of Gg isdefined by
if ne(0) =1Ane(r)=1A(cCtVvTCo0),
if ne(0)=1Ane(r)=1A—-(cCStVvTCO0),

if  ne(o) I Ane(t) I A(ne(o) =0V ne(r) =0),
otherwise.

Ee(o, 7) =

S =)

Roughly, we connect o and t by an edge if they are incomparable nodes on the tree
or if one of them is not in the tree, ignoring those nodes whose status is suspect. By
the ssm-n Theorem, thereisa 1-1 recursive function f such that for every e, f(e) is
an index for Ge.

If e € T, then e isthe index of arecursive tree containing an infinite path P.
Conseguently, f(e) isthe index of a recursive graph. We can color this graph by
mapping every node of P to 0, and mapping al other nodes to their integer codes.
Since 0 isused infinitely often in thiscoloring, f(e) € G.

Now suppose e ¢ 7. If eisnot the index of arecursive tree, then f(e) isnot
the index of arecursive graph, so f(e) ¢ G. If we suppose that e is the index of a
recursivetree T, then T iswell founded. Suppose, by way of contradiction, that there
isacoloring of the associated recursive graph Ge that uses O infinitely often. All the
nodes of G that are colored 0 correspond to comparable nodes of T, contradicting
the claim that T is well founded. Again, we have f(e) ¢ G, completing the proof
that 7 <1 g O

The techniques of reverse mathematics can be used to draw a distinction between the
first two of our infinite analogs and the third. The following two results make use of
the axiom systems RCAy(Recursive Comprehension Axiom), ACA (Arithmetical
Comprehension Axiom), and IT{—CA, (I1} Comprehension Axiom). For a brief
overview of reverse mathematics, see Simpson [].

Theorem 2.5 (RCAp) Thefollowing are equivalent:

1. ACAo.

2. For any sequenceof graphs (G; : i € w), thereisafunctions: w — 2 such that
s(i) = lifand only if G; is 3-chromatic.

3. For any sequenceof graphs (G; : i € w), thereisafunctions: w — 2 such that
s(i) = 1lif and only if every connected component of G; is finitely colorable.

Proof: To prove (1) — (2) and (1) — (3), it suffices to show that the function s
is arithmetically definablein (G; : i € w). For (2), a I'I(lJ defining formula for s can
be extracted from the proof of Theorenl2.1] Simi larly, for (3), imitating the proof of
Theorem[22lyields a T13 defining formula.

By Lemma 2.7 of [8], to provethat (2) — (1) and (3) — (1), it sufficesto show
that RCA( can provethat for any injection g : @ — w, thereis a sequence of graphs
(Gj 11 € w) suchthat therangeof gis A‘l) definable in the associated function s. Fix
g and assume RCA . Wewill define a sequence of graphsthat worksfor both (2) and
(3). Let Gy havew asitsvertex set. For every j € w, includetheedge (j, j+ 1) in Gy.
For j < k, add the edge (], k) to Gy, if and only if 3t < j (g(t) = n). The sequence
(G :iew)is Ag definablein g, so RCAq provesit exists. Let sbeasin (2) or (3).
Then s(n) = 1if and only if nisnot in the range of g. Thus, the range of g is A‘l’
definablein s, as desired. O
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The proceeding proof still holdsif 3-chromaticisreplaced by 2-chromaticin the state-
ment of (2). Thus, these infinite analogs of the 2-coloring and 3-coloring problems
are provably equivalent.

Theorem 2.6 (RCAp) Thefollowing are equivalent:

1. TI}-CA.,.

2. For any sequenceof graphs (G; : i € w), thereisafunctions: w — 2 such that
s(i) = 1lif and only if G; has a coloring in which one color is used infinitely
often.

Proof: To provethat (1) — (2), it sufficesto note that the function sis E% definable
in(G; :i € w), and so exists by 1‘[}— CAy. To provethe converse, we will usethe fact
that I11—CA, isequivalent to the existence of afunction that decideswhich members
of a sequence of trees are well founded. (Thisis an easy consequence of Lemma 6.1
in[3].) Assume RCA(, and supposethat (T; : i € w) isasequence of trees. With each
tree T,,, we associateagraph G, asfollows. Theverticesof G, arethenodesof T,, and
two vertices of Gy, are connected if and only if the associated nodes are incomparable
in the tree ordering. The sequence (G; : i € w) is A‘l’ definablein (T : i € w), and so
existshy RCAg. Letsheasin(2). Thens(i) = 1if and only if G; containsan infinite
collection of pairwise disconnected vertices, which occursif and only if T; isnot well
founded. Thus (2) implies H}— CA,, completing the proof. O

3 Variability among graph isomorphism problems  From theresultsin the preced-
ing section, it is clear that the recursion theoretic strength of infinite anal ogs depends
in part on their formulation. As shown by Harel and Tirza Hirst in [[5], adoption of a
standardized trandation yieldsinteresting parallel s between finite complexity and re-
cursion theoretic complexity for restricted classes of problems. However, for broader
classes of problems, the parallels break down. In this section, we will consider three
problems of diversefinite complexity that all have £1 completeinfinite analogs, thus
illustrating our second theme. Consider the following three variants of the subgraph
isomorphism problem:

P1 Givenapair of finitegraphs, H and G, determineif H isisomorphic to a sub-
graph of G.

P2 For afixedfinitegraph H, given afinite graph G, determineif H isisomorphic
to a subgraph of G.

P3 For afixedfinitegraph G, given afinitegraph H, determineif H isisomorphic
to a subgraph of G.

P1 is the familiar form of the subgraph isomorphism problem, and is known to be
NP-complete [2]. One algorithm for solving P2 and P3 consists of enumerating all
functionsfrom H into G, and checking each oneto seeif itisthe desired isomorphism.
The number of functions to check is bounded by | G |1, where | G | denotes the
number of vertices of G. Since H isfixed in P2, the number of functions to check is
a constant power of | G |. Furthermore, the number of steps required to check each
function is bounded by a constant based on the fixed value | H |. Thus, P2 can be
solved in a number of steps which is bounded by a polynomial in| G |. InP3, Gis
fixed, and we can discard any graphs H suchthat | H |>| G |, so the number of steps
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required to solve an instance of P3 is bounded by a constant based on the fixed value
| G |. Summarizing, the complexity of three problems ranges from NP-complete to
constant time computable.

Compared to the coloring problem in 82, these subgraph i somorphism problems
have very straightforward infinite analogs. Despite the variation in the computational
complexity of the finite problems, their infinite analogs are al Zi complete, asis
shown in the following three theorems.

Theorem 3.1 ([5]) Theset of indices of ordered pairs of recursive graphs, (H, G),
such that H isisomorphic to a subgraph of G is Ei compl ete.

Proof: Let G betheset of indices of ordered pairs of recursive graphs such that the
first graph is isomorphic to a subgraph of the second. Since x € G if and only if an
appropriate isomorphism exists, it is easy to seethat G is E% definable.

To proverthat G is E} complete, we will show that 7 <; G, where 7" denotes
the set of indices of recursive trees which are not well founded. With each e € w,
we associate a pair of partial recursive graphs, He and Ge. He isa countably infinite
linear graph with atriangle attached at one end. To be precise, the vertex set of He is
{vn:n € w}andtheedge setis{(vg, v2)} U {(vn, vne1) : N € w}. If eistheindex of a
recursive tree T, then G, consists of a copy of T with atriangle attached to the root,
and a collection of disconnected vertices. In general, the vertex set for Ge consists
of {vp, v1, v2} and (codes for) the elements of w=®. Let oy denote the code for the
empty sequence. The edge (vg, og) and the three edges of the form (vi, vj) where
i # j areincluded in Ge. For every o and 7 in w=¢, the edge (o, t) isincluded in G
if and only if

Ne(0) =ne(tr) =1Ao CtA—-Ja(c CaC 1),

where ne isthe function defined in 82. By the s-m-n Theorem, thereisarecursive 1-1
function f such that for every e, f(e) isanindex for the pair (He, Gg).

If e e T, then eistheindex of arecursive tree containing an infinite path P. In
this case, He isisomorphic to the subgraph of G consisting of the base triangle and
acopy of P. Thus f(e) € G.

Now supposethat e ¢ 7. If eisnot theindex of arecursive tree, then G is not
arecursive graph, so fe ¢ G. If eistheindex of arecursive tree 7, then 7 is well
founded. Thegraph Geisacopy of T with atriangleattached toitsbase. Any isomor-
phism mapping He into Ge must map the triangle in He into the triangle in Ge, and
the linear portion of He to an infinite path in the copy of T. Since T iswell founded,
no such isomorphism exists. Thus f (e) ¢ G, completing the proof that 7 <1 G. O

Theorem 3.2 Thereisarecursivegraph H, such that the set of indices of recursive
graphs containing a subgraph isomorphicto H is Z% complete.

Proof: In the proof of Theorem He is a fixed recursive graph defined without
reference to e. Any recursive 1-1 function mapping e to an index for the graph Ge
(defined asin the proof of Theorem[B.1) witnesses the desired 1-reduction. a

Theorem 3.3 Thereisarecursivegraph G, such that the set of indices of recursive
graphs that are isomorphic to a subgraph of G is 2% complete.
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Proof: We begin the proof by constructing the recursive graph G. This graph will
consist of a countable collection of subgraphs (Ge : e € w), where each Ge consists
of atreelike substructure together with some spurious disconnected subgraphs.

For each e € w, Ge will be constructed from cycles labeled C(e, o, k) for each
nonempty o € v=“ and each k € w. The cycle C(e, o, k) consists of 2(e+ 1) + 2
vertices joined to make a circular graph. We designate two vertices of C(e, o, k) as
v, and v ., and require that the paths joining them contain e+ 2 edges. To give
a concrete example, C(1, o, k) looks like a hexagon, with the bottom vertex labeled
V) . and the top vertex labeled v7 .

Thetreelike substructure of Ge consists of atriangular base with avertex labeled
tp, and branches consisting of linked cycles. We say that a cycle C(e, o, k) is exact
if kistheleast integer such that (1) ne(7) | by stage k for every T which isan initial
subsequence of o or hasacodelessthan o, and (2) ne(o) = 1. (Here ne isthefunction
defined in §2.) Edges are added to G by the following two rules. Connect v, to
to if and only if C(e, o, k) isan exact cycle and o is a sequence of length 1. Connect
Vg 1008 ; if andonly if C(e, 0, k) and C(e, 7, j) areexact cyclesand t = o+ (m)
for some m € w. Cycleswhich are not exact are spurious; they are included in Ge,
but are never connected to the treelike substructure.

Let G betheunion of al the G¢'s. Gisrecursive, sincetherulesfor adding edges
involve only bounded computations. Furthermore, if e isthe code of arecursive tree
T, then the treelike substructure of G can be mapped homomorphically onto T by
identifying exact cycles with corresponding nodes. Viewing the cycles as nodes, the
substructure is well founded if and only if T is awell-founded tree. If e is not the
code of arecursivetree, ne isnot total, and the treelike substructure of Ge isfinite.

Let G bethe set of indices of recursive graphs that areisomorphic to a subgraph
of G. Since x € G if and only if an isomorphism exists, it is easy to see that G is
>1 definable. To provethat Gis £} complete, we will show that 7 <; G, where T
denotes the set of indices of recursive trees which are not well founded. With each
e € w, We associate arecursive graph He consisting of a countable linear graph with
each node replaced by a2(e + 1) + 2 cycle and with a triangle attached at one end.
More precisely, He contains atriangle with one vertex labeled to, and (copies of) the
cycles C(e, (0), k) for each k € w. To the edges aready specified, we add the edge
(to, v3 g ) and theedges (vg o, > V3 g 11) fOr €aCh k € w. By thes-m-n Theorem,
thereisarecursive 1-1 function f such that for every e, f(e) isanindex for He.

If e e T, then eistheindex of arecursive tree containing an infinite path P. In
this case, He isisomorphic to the subgraph of G consisting of the base triangle and
acopy of P with nodes replaced by cycles. Thus f(e) € G.

Now supposethat e ¢ 7. Notethat becausethe size of the cyclesvarieswith g, if
He isisomorphicto asubgraph of G, then He isisomorphicto asubgraph of Ge. Since
e ¢ T, G consists of disconnected cycles and a well-founded treelike substructure.
If He isisomorphic to asubgraph of Ge, then the treelike substructure of Ge contains
an infinite path, yielding a contradiction. Thus f(e) ¢ G completing the proof that

Using the reverse mathematics framework, the preceding three theorems can be
lumped together into a single equivalence resullt.
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Theorem 3.4 (RCAp) Thefollowing are equivalent:

1. TI}-CA.,.

2. For any sequence of ordered pairsof graphs,((H;,G;):i € w), thereisafunction
S:w — 2suchthat s(i)=1if and only if H; isisomorphic to a subgraph of G;.

3. For any graph H, and any sequence of graphs (G; : i € w), thereisa function
S:w— 2suchthat s(i) = 1ifand onlyif H isisomorphic to a subgraph of G;.

4. For any graph G, and any sequence of graphs (H; : i € w), thereisa function
s:w — 2suchthat s(i)=1if and only if H; isisomorphic to a subgraph of G.

Proof: To prove that (1) implies (2), (3), or (4), it suffices to note that the function
sis E% definable in the appropriate sequence of graphs. Since (3) isaspecia case of
(2), we need only show that (3) — (1) and (4) — (1) to complete the proof. Asinthe
proof of Theorem[2.6] we will determine which members of a sequence of trees are
well founded. For the remainder of the proof, assume RCAg and let (T; ;i € w) bea
sequence of trees.

To prove that (3) — (1), we use asimplified version of the construction in the
proof of Theorem[3.2] Asin that proof, let H be a countable linear graph with atri-
angle attached to one end. For each n € w, let G, be a copy of Ty, with atriangle
attached to the root. The graph H and the sequence (G; : i € w) are A‘l’ definable in
(Ti i € w), S0 RCA provesthat they exist. Let sheasin (3). Thens(i) = 1if and
only if H isisomorphic to a subgraph of G;, which occurs if and only if T; has an
infinite path. Thus (3) implies 11— CA.

To prove that (4) — (1), we use a simplified version of the proof of Theorem
B3] Asin that proof, let H, consist of alinear graph with each node replaced by a
2(n+ 1) + 2 cycle, and with a triangle attached to one end. The graph G consists
of subgraphs G, for each n € w, where each G,, isacopy of T, with nonbase nodes
replaced by 2(n+ 1) + 2 cycles, and atriangle attached to the base node. The graph
Gandthesequence (H; : i € w) are Ag definablein (T; : i € w), S0 RCAg provesthat
they exist. If sisasin (4), thens(i) = 1if and only if H; isisomorphic to a subgraph
of G, which occursif and only if H; isisomorphic to a subgraph of G;. Finally, H;
isisomorphic to asubgraph of G; if and only if T; isnot well founded, so (4) implies
T}-CAo, completing the proof. O

Although infinite analogs are useful for studying restricted classes of problems,
the preceding examples indicate that, in a genera setting, their behavior does not
necessarily paralle that of the associated finite problems. However, examination of
resultsin finite complexity can provide motivation for appealing resultsin recursion
theory and reverse mathematics.

Acknowledgments Lempp’sresearchwaspartially supported by NSF grant DM S-9100114.

REFERENCES

[1] Beigd, R., and W. Gasarch, “On the complexity of finding the chromatic number of a
recursivegraph I: Thebounded case,” Annalsof Pureand Applied Logic, vol. 45 (1989),
pp. 1-38. [Zb[ 0685 03033IMR 9Th:0307617]2]


http://www.emis.de/cgi-bin/MATH-item? 0685.03033
http://www.ams.org/mathscinet-getitem?mr=91b:03076

FINITE COMPLEXITY THEORY 553

[2] Cook, S., “The complexity of theorem-proving procedures,” pp. 151-158 in Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing, ACM, New York,
1971. Z0[ 0253.680201

[3] Friedman, H., S. Simpson, and R. Smith, “ Countable algebraand set existence axioms,”
Annals of Pure and Applied Logic, vol. 25 (1983), pp. 141-181.

[4] Harel, D.,"“Hamiltonian pathsininfinite graphs,” Israel Journal of Mathematics, vol. 76

(1991), pp. 317-336.[Z0 0756.05073IM R 93d.68023

[5] Hirst, Tirza, and D. Harel, “Taking it to the limit: On infinite variants of NP-complete
problems,” Journal of Computer and System Sciences, forthcoming. [Zbl 0859.68016
24)BIE1]

[6] Karp, R., “Reducibility among combinatorial problems,” pp. 85-103 in Complexity of
Computer Computations, edited by R. Miller and J. Thatcher, Plenum Press, New York,
1972. (70l 0366.68041IMR 51:14644111 ||

[7] Kaufmann, A., Graphs, Dynamic Programming and Finite Games, Academic Press,
New York, 1967. ZbI0161.392011[1]

[8] Simpson, S., “Which set existence axioms are needed to prove the Cauchy/Peano theo-
remfor ordinary differential equations?,” The Journal of Symbolic Logic, vol. 49(1984),
pp. 783-802. Zbl 0584.03039IMR 86a:030661 2]

[9] Simpson, S., “Subsystems of Z,,” pp. 434-448 in Proof Theory, by G. Takeuti, North-
Holland, Amsterdam, 1986. [2]

[10] Soare, R., Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, 1987.
(20l 0667.03030MR 88m:03003] 2]

Department of Mathematical Sciences
Appalachian State University
Boone, NC 28608

email: | | h@math.aggstate.edul

Department of Mathematics
University of Wisconsin
Madison, W1 53706-1388

emil: lempp@math wisc edi]



http://www.emis.de/cgi-bin/MATH-item?0253.68020
http://www.emis.de/cgi-bin/MATH-item?0575.03038
http://www.ams.org/mathscinet-getitem?mr=85i:03157
http://www.emis.de/cgi-bin/MATH-item?0756.05073
http://www.ams.org/mathscinet-getitem?mr=93d:68023
http://www.emis.de/cgi-bin/MATH-item?0859.68016 
http://www.ams.org/mathscinet-getitem?mr=97k:68060
http://www.emis.de/cgi-bin/MATH-item?0366.68041
http://www.ams.org/mathscinet-getitem?mr=51:14644
http://www.emis.de/cgi-bin/MATH-item?0161.39201
http://www.emis.de/cgi-bin/MATH-item?0584.03039
http://www.ams.org/mathscinet-getitem?mr=86a:03066
http://www.emis.de/cgi-bin/MATH-item?0667.03030
http://www.ams.org/mathscinet-getitem?mr=88m:03003
mailto: jlh@math.appstate.edu
mailto: lempp@math.wisc.edu

