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Pitts’ Quantifiers Are Not
Topological Quantification

TOMASZ POLACIK

Abstract We show that Pitts’ modeling of propositional quantification in in-
tuitionistic logic (as the appropriate interpolants) does not coincide with the
topological interpretation. This contrasts with the case of the monadic language
and the interpretation over sufficiently regular topological spaces. We also point
to the difference between the topological interpretation over sufficiently regular
spaces and the interpretation of propositional quantifiers in Kripke models.

When we consider propositional quantification and think of classical logic we eas-
ily find out that the problem is trivial: the truth functional interpretation allows us
to express quantification by means of propositional connectives and constants only.
However, in case of nonclassical logics the situation is different—there propositional
guantification usually gives rise to interesting extensions of the logic in question. The
problem of propositional quantification was investigated in case of modal logics (see
e.g., FinelP], Bull [[1], Ghilardi and Zawadowski], Kaplan [E], Kremer [L1]), rele-
vance logic (see KremdiLf]) and intuitionistic logic (see Gabbalf]] Scedrov[[7],
Kremer [L0], Pitts [L3], Potacik [LE], Ghilardi and Zawadowskig], Visser 27,
Skvortsov[L9)). The study of propositional quantification in intuitionistic logic is
continued in this paper.

We consider the Heyting calculus which corresponds to (the fragment of) intu-
itionistic propositional logic in the language of the standard propositional connec-
tives: —, v, A, —. Inthis language, the constants L, and equivalence= can be
defined in the usual way. In the sequplg.r,s, ... will range over the set of prop-
ositional variables and the lettel's G, H . . . will serve as the metavariables for for-
mulas. The symbol- will be used to denote provability in Heyting calculus. We
extend the language by adding propositional quantifigrsvp, .. .; the notions of
formula (in the extended language) and free variable are as usual.

One way of introducing propositional quantification into a propositional logic
is to specify the characteristic properties of quantification in the form of axioms and

Received December 13, 1995; revised January 5, 1998



532 TOMASZ POLACIK

rules of inference and add them to the list of the axioms and rules of inference of the
appropriate logical system. In the case of intuitionistic logic the merits of proposi-
tional quantification can be given, for example, by the following schemata of formu-
las,

VpF(p) — F(@) F@ — IpF(p),
and rules of inference,
F(p)— G G— F(p)
IpF(p) > G G—VpF(p)

wherep is not free inG. It is natural to accept also the comprehension schema: for
everyG in which p is not free,

dp(p=0G).

These basic axioms and rules governing the quantifiers, together with a usual axiom-
atization of Heyting calculus, give rise to the systlsF?ﬁ:2 which can be regarded as

the minimal system corresponding to intuitionistic logic (in the standard language)
with propositional quantification.

In [4], undecidability as well as soundness and completeness (with respect to
avariant of Kripke semantics) dPC? is proved. However, it is easy to see that the
systeni PC2 cannot be complete with respect to any natural semantics of intuitionistic
propositional quantification, since for example, the formu¥p (p v —p)—which
is intuitively true intuitionistically—is not provable itPC2. This fact shows that
IPC? covers only a fragment of intuitionistic logic with propositional quantification
and motivates the semantical approach to propositional quantifiers. However, any
natural interpretation of propositional quantification should validate the axioms and
rules ofIPC2.

An interpretation satisfying this property is the so-called Pitts’ interpretation in
which propositional quantifiers are interpreted within Heyting calculus. Let us sketch
how it can be done. Recall that Heyting calculus enjoys the interpolation property:
for all formulasF, G such that the formul& — G is provable, there is a formula
|—called their interpolant—involving only the variables involved botHFimand in
G, such that the formulaB — | andl — G are also provable. It is shown g,
that the interpolation property for Heyting calculus can be strengthened. Namely, for
every propositional variablp and every formuld of the language of Heyting calcu-
lus, the set of interpolants &f not involving p is not merely nonempty but contains
the weakest and strongest elements with respect to the provability ordering in Heyting
calculus. More precisely, the following can be proven (‘ﬁ)[

Theorem 1 (Uniform interpolation theorem for Heyting calculusisiven a propo-
sitional variable p and aformula F, one can effectively find formulasAp FandEp F
containing only variables not equal to p which occur in F, such that for all formulas
G not involving p,

FG—ApF iff G- F,

FEpF— G iff FF— G
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The uniform interpolanté p F andE p F satisfy the axioms and rules of the system
IPC? if we substituteAp F for Vp F andEp F for 3p F. Thus we can model propo-
sitional quantification in Heyting calculus: given a formiave can interprefip F
asEpF andvp F asAp F. This modeling will be calledPitts interpretation; con-
sequentlyE andA will be calledPitts' quantifiers.

Recall that, although the existential quantifier is definable in intuitionistic logic
by means of the universal quantifier and the implication, Pitts’ quantifiers are defined
simultaneously via mutual recursion. MoreovendA are defined for multiseta
of formulas rather than for single formulas and have the fag(A) andAp (A; F)
whereF is a formula of the language of Heyting calculésp F is then defined as
Ap (@; F)andF in Ep F is to be treated as the one-element multiset. From the rules
of calculating andA we recall those employed in this paper. Here we give only the
variants of the rules in the case of one-element multisets.

Ep((F>G)—> H)=(Ep(G—->H)—>Ap(G— H;F—> G)) > EpH,

Ap(@;F— G)=EpF — Ap(F; G),
Ap(o;FvG)=Ap((g; F) vVAp(g; G).

However, whenever it is possible we shall avoid the laborious computations of Pitts’
guantifiers and exploit the fact that they are the appropriate interpolants of the formu-
las in question.

A semantical proof of Uniform Interpolation Theorem was discovered recently
by Ghilardi and ZawadowsKE] who used ideas from Shavrukov’s proof of the Uni-
form Interpolation Theorem faBL (seelLS]). Ghilardi and Zawadowski’s proof also
conveys a definite meaning on the Pitts’ quantifiers in terms of Kripke semantics.
These results were also obtained independently by Vigggr [

It should be pointed out that, since Pitts’ quantifiers are definable in Heyting cal-
culus, we can compare them with the specific meaning of propositional quantifiers in
any other interpretation. Moreover, the formulep F — VpF and3dpF — EpF
are provable inPC?, hence they are generally valid. This fact suggests the question:
in which of the known models for propositional quantification—if there are any— are
the formulasEp F — 3p F andvp F — Ap F also valid, that is, to which of known
interpretations of propositional quantification—if there are any—is Pitts’ interpreta-
tion equivalent?

When looking for an appropriate interpretation of propositional quantification
in intuitionistic logic, one can begin with an arbitrary semantics for Heyting calculus
and extend it by an appropriate interpretation of the quantifiers. We follow this way
to specify the topological interpretation of propositional quantification which will be
considered in this paper.

First, we establish some terminology and notation.TBye will denote a topo-
logical space. IX C T, we write— X for the complement oX, int X and clX for the
interior and closure oX, respectively. As usual, we say that a poiiig anaccumula-
tion point of a subseX of T if x € cl (X\ {x}). Recall that a spack is dense-in-itself
if all the points ofT are its accumulation points.

The standard topological semantics for Heyting calculus can be defined as fol-
lows (see TarskiddJ). Given a topological spack, to each propositional variable we
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assign an open subsetbf p+— P,q+— Q,r— R,s— S, .... (Forconvenience we

shall always assume the appropriate correspondence of lower and uppercase letters as
above.) Relative to this assignment of the propositional variables, for each formula
F(q) of the standard language, we define, by induction on the complexify ah

open seF[Q], whereq, and@ denote finite sequences of propositional variables and

the open sets being assignedijtoespectively:

(=F)[Q] = int(-F[Q])_
(FVFHIQ = FIQUF'Q]
(FAFHIQ = FIQINFQ]

(F = FH[Q] = int(~F[QUF"[QD.

Now the idea of interpreting quantifiers as supremum and infimum leads us to the
following extension of the interpretation:

@EpPIQ = UFIP.Ql : P—open
(vpPIQl = int{F[P,Q] : P—open.

For brevity we shall sometimes wribé—Y instead of in{ — X U Y) and— X instead
of int (—X). Let F(p,q,...,r) be an arbitrary formula of the IanguagelBCz. In

the case that for all assignments for the propositional varidg€sQ, ..., R| =T,

that is, when the formul& is valid in T, wewrite T = F.

The topological semantics for intuitionistic logic are closely related to Kripke
semantics, in which to every propositional varialpleve assign an upward closed
subset of the frame and interpret propositional quantifiers as ranging over such sets
(seelLq). In fact, in every Kripke framé& = (K, <) for intuitionistic propositional
logic we can define a topology by assuming that a subskétisfopen if and only if it
is upward closed with respect to the ordering Thus, such an extension of Kripke
semantics can be regarded as a kind of topological semantics.

Notice that the topological space associated with a given Kripke frame need not
satisfy stronger separation properties, for exampje,In this paper, we generally
leave aside such spaces and direct toward the semantics over topological spaces with
strong separation properties. The reason is twofold. First, such spaces appear natu-
rally in mathematical context. Second, more importantly, they appear naturally when
intuitionistic propositional logic is concerned—recall that every dense-in-itself met-
ric space is a universal space for Heyting calculus, that is, for every dense-in-itself
metric spacd’, aformulaF is provable in Heyting calculus if and only if it is valid
in T (seePd)). On the other hand, the full binary tree which is the universal Kripke
model for Heyting calculus is, from the topological point of view, isomorphic to Can-
tor space and thus possesses very strong topological properties.

The semantics for propositional quantification in intuitionistic logic associated
with Kripke models was studied ii{]. There, it is shown that the set of all valid
formulas is recursively isomorphic to second-order predicate logic and hence, in par-
ticular, undecidable (see alddd). Of course, since Heyting calculus is decidable,
so is the set of the valid formulas for Pitts’ quantifiers. Thus, from undecidability of
the set of valid principles for quantifiers in the semantics of upward closed subsets
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in Kripke models follows that such quantifiers are very different from Pitts’ quanti-
fiers. In this paper—giving appropriate examples—we present direct arguments for
this fact. We show that this also holds for topological quantifiers in the semantics
of sufficiently regular spaces. More precisely, we show that there are forfu@s

of Heyting calculus involving two propositional variables such that in the class of
dense-in-themselves metric spaces the formilas = I3pF andApG=VpGare

not valid. It contrasts with the case of the monadic language where Pitts’ interpre-
tation coincides with topological interpretation of propositional quantification in the
class of sufficiently regular spaces (sl@].

Since the solution of our problem depends not only on the topological properties
of the considered space, but also on the number of variables, our considerations will
depend essentially on this parameter. First, let us consider the language with only the
variablep. The problem of monadic language was studied in detdilth [Here—as
TheorenZ}—we just present the relevant result. In the proof of Thedgéme shall
rely on the following, more general, fact. Its proof, however, is beyond the scope of
this short paper, so it will be omitted (s€&]).

Theorem 2 Let T be an arbitrary dense-in-itself metric space and let F(p) be
a quantifier-free monadic formula which is not provable in Heyting calculus. Then,
for every x € T, thereis an open set P, suchthat x ¢ F[Py].

We employ Theorer2las the basic tool in proving the following theorem.

Theorem 3 For every dense-in-itself metric space, the topological interpretation
of quantifiers coincides with Pitts' interpretation when restricted to the language of
onevariable.

Proof: We put aside the obvious case of formulagp) for which- F or = —F.

The case of the existential quantifier is trivial: for any forméan question we
have EpF = T and also in every topological spate T = 3dp F = T. Notice
that- Ap F = L. Assume thaT is a dense-in-itself metric space and fgtp) be a
monadic quantifier-free formula which is not provable in Heyting calculus. Then, by
Theoreni2] for everyx e T, there is an open sd¥, such thaix ¢ F[P,]. Thus we
have

int (J{F[P] : P—open Cint("\{F[PJ] : xeT}<int [ ]-{x}=o.

xeT

HenceT =VpF = L. (]

Let us note that the situation here differs drastically from the situation in the topology
associated with Kripke models. There, for example, the foriviplép v — p) defines

the set of top nodes, butAp (p Vv —p) = L. So, the semantics of upward closed sets
in Kripke models differ from Pitts’ interpretation of propositional quantification even
in the case of the monadic language.

Corollary 4 The semantics of upward closed sets in Kripke models differs from
the topol ogical semantics of dense-in-themsel ves metric spaceswhen restricted to the
monadic language and the universal quantifier. In the case of the monadic language
and the existential quantifier, the semantics in question coincide.
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Now consider the language of at least two variables. We shall prove that, in this case,
the standard topological meaning of quantifiers is not, in general, the same as the
meaning of Pitts’ quantifiers. However, instead of proving this negative result for
the existential quantifier only (which would imply the negative result for the univer-
sal quantifier), we divide the problem into two separate cases of the two quantifiers.
The reason is that in the definition of the existential quantifier,

dpF =vq(Vp(F - q) — ),

a new variable occurs and proceeding this way we would not be able to cover the
case of the universal quantifier and the language of two variables. In fact, we give the
solution of our problem in the latter case before we turn to the case of the existential
quantifier.

Theorem 5 For every topological space, the topological interpretation of the uni-
versal quantifier does not coincide with Pitts' interpretation when restricted to the
language of at least two variables.

Proof: We put
H(p,a)=pVv(p— Q.
Obviously,- Ap (@; p) = L and- Ap(2; p— Q) = g. Hence

FAP(@:pVv(pP— ) =Ap(@:p) VAP(Z; p— q) =q.
Thus, in every topological spadewe have

TE=ApH=q. (1)

Assume thafl is an arbitrary space ande T. Let Q = int (T \ {x}). Obviously,
Q C H[P, Q] for every openP C T. Take an arbitrary open s& There are two
possibilities:x € Porx ¢ P. Itisclear thatin the former cae= H[P, Q]. Assume
the latter. Observe that then, sinBeis open,—Q = cl{x} € —P. Consequently
P—Q =T and hencd = H[P, Q]. So, forallP, H[P, Q] = T. Thus we have

VpH[Q]=T. (2)
Finally, by {@J and(@) we getT j= VpH — ApH. O

Notice that in Theorerftlwe do not assume any topological properties. So, this
result is fully general, in particular, it is also valid for the semantics of upward
closed sets in Kripke models. Moreover, proving Theokgme show in fact that
under the standard topological interpretationllBC2 over any topological space
T (including the semantics of upward closed sets in Kripke models), the formula
Vp(Fv G) - VpF vVpGis not valid although, since Ap(F v G) =ApF v
ApG, itis valid under Pitts’ interpretation.

Validity of the formula in question is intuitively unacceptable which makes Pitts’
interpretation rather peculiar. The following formulas—in which validity is also in-
tuitively questionable—are valid under Pitts’ interpretation:

Ap—~(F - G) =-Vp(F - —=G),
dp——F =-Vp—F,
dp(-F > G)=Vp—-F —> 3pG.
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The next two theorems give the solution of the problem of the existential quantifier.
We now proceed as follows: first, we prove the negative result for the language of
(at least) three variables; then, strengthening the assumptions on the space, we give
the final solution in the language of two variables. It is perhaps worth noting that the
mentioned theorems are in fact incomparable in strength, that is, in particular, Theo-
remlgldoes not follow from Theorefil

Theorem 6  For every Hausdor ff space with a countable basisin at least one point,
thetopological interpretation of the existential quantifier doesnot coincidewith Pitts
inter pretation when restricted to the language of at least three variables.

Proof: We put
F(p.g)=—p—q, G(p,o)=p—q,

H(p,q,r) =@ — F(p,q) vG(p,q) —>r.

Obviously, q is the greatest lower interpolant of both the formukagp, q) and
G(p, q), thatis,- Ap(; F) =Ap(2; G) = g. Hence

FAp(@; FvG)=Ap(@; F) VAp(; G) =q.
Let us comput&Ep H(p, g,r):2

FEpH =(Ep(FVvG—->r)—> Ap(FVvG—r;r—-> FvG))— Epr
=Ap@;, (FVG—=r)— (r—>FVvG) —>r
=Ap@;r—>FVvG) —>r
= —>Ap(@;FVvG) —>r
=T —>q) —r.

Thus, in every topological spade
TEEpH=r—-q) —r.

Let T be a Hausdorff space andits point with a countable basldy 2 U; 2 ---.
For everyn € N, we choosez, € U, \ U1 and putZ = {z, : n e N}. Observe
thatx ¢ Z and 79 = {x}, that is, x is the only accumulation point of. Indeed,x
is an accumulation point af since for every open neighborhoodof x, U, € X
for a sufficiently largen; moreoverx is unique, since for every # x we can find
neighborhood« > xandY > y such thatX N Y = &, and henc&¥ N Uy, = @ for a
sufficiently largen and allm > n.

LetQ=T\clZandR=T\ {x}. Wehave((r - q) — r)[Q, R] =int (cl (R\
QY UR)=int(clZUR) =T. Hence

TE=EpPH[Q. R]. )

Of course,R € H[P, Q, R] for all P. Suppose thal = 3IpH[Q, R], that is,x €
dp H[Q, R]. Then, for someP,

x eint(cl(R\ F[P, Q] \ G[P, Q) UR),
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xecl(RNncl(int(—P)\ Q) ncl(P\ Q)
=cl(Rncl(int(=P)nclz)yncl(Pncl 2)).

LetZg=int(—P)NclZandZ; = PNcl Z. Wehavex € cl (RNcl Zgncl Z;). But,
sinceZy, Z1 € cl Z, wegetzd, ¢ 79 = {x} and, sinc&Z, C int (—P) andZ; C P,
we getZoN Z; = @. Hencex € ¢l (RN {x}) = @, acontradiction. Thus,

dpH[Q. RI=R, )

and consequently, bfflYand@) , T =EpH — 3pH. O

Now, to give the final solution of our problem, we turn to the case of the language of
two variables. However, as in Theor&gin this case, we shall restrict to the class of
dense-in-themselves metric spaces.

Theorem 7 For every dense-in-itself metric space, the topological interpretation
of the existential quantifier does not coincide with Pitts' interpretation when re-
stricted to the language of two variables.

Before we prove Theoreflet us state a useful property of dense-in-themselves met-
ric spaces (sedf]). Recall that a subset of a topological spac® is calleddense
if cl X=T; Xis calledregularly open, provided intclX = X.

Lemma8 Everyregularly open subset of a dense-in-itself metric space containsa
proper dense subset which isa union of two digoint regularly open sets.

Proof (sketch): Let W be a regularly open subset of a dense-in-itself metric space
T. Consider two cases: (1) every point of the ¥éhas a countable basis of closed
and open neighborhoods in the relative topology\gf(2) some poinx € W does

not have a countable basis of closed and open sets.

Casel: Letx e W and let{Y, : n > 1} be a countable basis of closed and open
neighborhoods ok. We may assume that- & Y11 & Yan & -+ & Yi. In this case

[o¢] o
we defineYo = W\ Yy andU = [J (Yan \ Yans1), V = U (Yani1\ Yoni2).

n=0 n=0
Case2: LetU be an open neighborhood wkuch thau is regularly open but not
closed. Then we definé = W\ clU.

In both cases, one can show thieandV are regularly openanduV ¢ W c cl (UU
V), that is,U andV satisfy the required property. O

Proof of TheoremZ] The idea of the proof is to construct both the sétaind R,
which occur in the proof of Theoref using only one set. Recall that we wapto
beT \ Z for somex € T andZ C T such thax ¢ Z, Z9 = {x}, andRto beT \ {x}.
Let T be a dense-in-itself space with a meicWe fixx € T and put

R=T\{x.

Let{Ln : ne N} be a countable basis (of neighborhoodsj such that the diameters
of Ly's, forming a strictly decreasing series, converge to O (recall that the diameter of
L, is defined as syp(x, y) : y € Ln}, wherep is the metric of the spacg).
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We define inductively open setsy, such that, cK, € L, \ Lyr1 and clKp N
clKm=@foralln,me N, n# m. Itis dear that a construction df,’s can ke car-
ried out in every metric space (using the fact that the diameters of thesats de-
creasing).

Now, for everyn € N we choose an open s&i, that W, C cIW, C K,. We
can assume thadj,’s are regularly open, that i8\, = intcl W, for all n € N. By
Lemmag] for everyW, there is an open and dense proper subset which is the union
of two disjoint regularly open sets. Let, for evange N, U, andV, be such that

Un#@#Vn, IntC| Un:Un, |ntC|Vn:Vn,

UnﬂVnZg, UnUVn;ancl(UnUVn).

For everyn e N we takez, € Up and putZ = {z, : n e N}. Obviously, 24 = {x},
that is,x is the only point of accumulation of the s&t

We put
Q=T\clZ
Now we can define
S=JUn\ (z).
neN

We show how the set§) and R can be constructed from the setLet
F(s) = ——sVv (—m—s— 9), G(s) = ——S—s.
Note that- G — F and- (F — G) = G hence
F(F—-G)—> F. Q)
We shall show that
F[§ = ——SU(=-S—S =R and G[Y§=--S—-S=0Q.

First, we show that

cls= [ JclUnu{x. 2)
neN
Observe that
Uclunc [JelWUn\tzh Sl [JWUn\ {zh) =cl's
neN neN neN

Moreoverx € cl S, since an arbitrary open neighborhooda@ontains all but finitely

many setd , 2 Uz, \ {z.}; hencex € cl | (Un\ {zn}). To prove the converse in-
neN
clusion, assume that¢ | J clU, andy # x andY is an arbitrary neighborhood of
neN
y. Then, for a sufficiently large, L, Y = @ for all m > n, and consequently
UnNY =g, hencey & cl | Up.
neN

By (2) weget——S=intcl S=int (| clUpU{x}). Note that every open neigh-

neN
borhood ofx contains all but finitely many sets,; hence, sinc&/, C L,, we get
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xecl |J Vn. But, sincel J Vs and | J U, are open and disjoint arilc ) Uy, we

neN neN neN neN
getcl | J Whnintcl S=@. Thus,x g intcl S, that is,
neN

intcl S= int U clUp.

neN
Lety e int | clU,. We show, thaty € | J Un. Obviously,y € clW, € K, for

neN neN
somen € N. If y e ¢l (Kp \ ¢l W,), then every neighborhood gfwould contain ele-

ments of the se,, \ ¢l W, which is disjoint from|_J ¢l U,; hencey could not belong
neN
toint | clU,—a contradiction. Soy € int (—Kp U ¢l Wy), and becausg € Ky, it
neN

impliesy € intcl W, = W,. By the assumption, all the sétk, andV, are pairwise
disjoint, regularly open, and, U V,, € W, C cl (U, U V,) for all n € N. Therefore,
forallne N, (clUny\ Uy) N W, = (¢l Vi \ Va) N Wh. Now, sincey € Wy, we have
y € cl (UyU V,) =clUyUclV,. Observe thay ¢ clUp \ Uy, because otherwise it

would contradict with the fact that € int | clU,. Moreover,y ¢ cl V,. Indeed,
neN
y &€ V, sinceV, NclU, = &, andy € cl V,, \ V, because otherwise we would have

y € WL N (€l Vh \ Vh) = Wy N (clUp \ Up) and hencey € clUy \ Uy which, as we
have shown, is impossible. Consequenylg U,. And hence

—=S=intclS= JU,2 Z (3)
neN
Observe that
G[§ = ~—~S—S=int(~ | JUnU [ JUn\ (z}) @)
neN neN

=int(-Z)=—-clZ=R\Z=T\clZ=Q,
as we need. Hence, Hgj(and [,

F[§ = —=SU(==S-9 = | JU,UR\Z=R, ()

neN

as we require. Now, we put
D(p,s) = (F(s) = (=p—> G(5) vV p—~ G(9)) = F(9).

Notice that the formuld (p, s) results in substituting in the formulld (p, g, r) of
the proof of Theorer&] formulasF (s) for r andG(s) for g, respectively. So, since
Pitts’ quantifiers commute with substitution, we §geEp D = (F - G) — F. So,
by (I, - Ep D and hence

TE=EpD. (6)
On the other hand, similarly as in the proof of Theol&hwe show that
ApD[f=F[f§ =R (7)

Finally, by &) and(Z) we getT = EpD — 3pD. O
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Let us note that the property stated in Leniglia not necessary to prove TheorEn
However, it allows us to consider a relatively simple formula as the counter-example.
On the other hand, in the semantics of upward closed sets in Kripke models there is
asimpler solution. Consider

H(p.r)=( - (pv—p) —r.

Notice that—- Ep H = ——r, but in Kripke modelsdp H is not generally equivalent

to ——r. Moreover, the topological space corresponding to a frame of the required

countermodel need not g (the two-element model withbeing forced only at the

top node suffices). This, however, does not work when we consider the topological
semantics of dense-in-themselves metric spaces. The following proposition shows
this more specifically.

Proposition 9  The formula 3p H = ——r isvalid in every dense-in-itself metric
space.

Proof: Notice that the formul@p H — ——r is generally true. So, it is enough to
show that for every open subdetof a given dense-in-itself metric spate

intcl RS (_J{H[P. Rl : P— open.

Let us fixT with a metricp and an open subs&of T. PutZ = cl (intcl R\ R). We
show that there is a s&€tC Rsuchthaff® = Z, thatis,Z is the set of the accumulation
points of T. Of course, sincd C R, it follows thatT is disjoint from Z.

Consider the following property which may be possessed by sulbsetshe
setR:

1

Notice that ) is afinite property. Hence, by virtue of Tukey's Lemma, there is a
maximal set (with respect to inclusion) satisfying) ( Fix such a seT.

First we show thaff c Z. Take an arbitrant € T9 and supposé ¢ Z.
Then, sinceZ is closed,p(t, Z) > 0. Consider the open ball = {v : p(t,v) <
%p(t, Z)}. By the assumption, we can fingly € T such thak, y € K. Thus we have
p(t, Z2) < 3p(t, 2) + p(x, Z) andp(t, Z) < 3p(t, Z) + p(y. Z) whence$p(t, Z) <
$(p(x, Z) + p(y, Z)). Hence we get

1 1 1
P(X, y) < pt,X) + p(t,y) < §p(t, Z)+ ép(t, Z) < é(p(x, Z)+ p(y, 2)),

acontradiction, since, y € T.

Now we prove thaZ < TY. Suppose that there ise Z andd > 0 such that
the ballL = {v : p(z v) < d} is disjoint fromT. SinceZ C clI R, there isy € R
with p(y, 2) < %. Obviously,y ¢ T and sinceT is a maximal set satisfyindr(), we
have 2(x, ¥) < p(X, Z) + p(y, Z) forsomex € T. Moreover,p(X, Z) < p(Xx, z) and

p(y. Z) < p(¥,2) < §. Thus

d d d
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which means that(x, y) < 3. Hence we geb(x, 2) < p(x, ¥) +p(y,2) < 3+ 3 < d
which contradicts the suppositiamN T = &. So, we havd € Rsuch thaffd = Z,
thatis, clT =ZUT.

Now considerP = R\ T. Notice that, sincd®> = R\ T = R\ cl T, the setP is
open. MoreoverRN —PNcl P =T and, consequently,

H[P, Rl =int(cl(RN—PNclP)UR)=int(cl TUR) =int(ZUR) Dintcl R.
SinceRwas chosen arbitrarily, we gé&tl= ——r — IpH. (]

By Propositiord] in the interpretation over any dense-in-itself metric space the for-
muladp (r — (pVv —p)) — r)isequivalentt&Ep (r — (pv—p)) —r).(The
same can be asserted of any formula of the farm> F(p)) — r whereF is an ar-
bitrary monadic formula with- pv —p — F.) Again, it contrasts with the case of
topological semantics in general; in particular with the semantics of upward closed
subsets of Kripke models.

Corollary 10  The semantics of upward closed sets in Kripke models differs from
the topol ogical semantics of dense-in-themsel ves metric spaceswhen restricted to the
language of at least two variables.

To conclude, we shed some more light on the topological interpretation of intuition-
istic logic. The problem of new intuitionistic operators was investigated by Fried-
man [B], Goad[7], and Kreisel[p]. In [[9] an operatorx defined by means of propo-
sitional quantification as

*(@)=3p@=—-pVv—-—p)

is considered. As Kreisel shows, the operatoris not definable by means of
{—, v, A, =} with regard to, for example, topological models. The investigations
are continued in Troelstr&]], Wojtylak [23], and [IZ], [[15], [[ZE]. The main result

of [23] states that wheA pF is interpreted as the disjunction

\/{F[ p/G] : G —amonadic formula inp},

then the formuldp (q = F) is equivalent to dinite disjunction of its instances if

and only if (=p v =—p) — F is not derivable. This result holds not only in the
case of the standard language, but also when we consider the language extended
by some nonstandard operator. [J, it is shown that definability of the opera-

tor x depends on the topological space considered. Namely, in some spaces, such
as (0, 1) and Cantor space, the operatqq) is definable by——q while in [0, 1]

% is not definable with respect to the standard connectives. It should be noted that
FEp(g=—-pV ——p) = ——q, 20 definability of the operatox by ——qin a topo-

logical model means that the topological interpretatiodpfq = —p v ——p) coin-

cides with PittsE p (g = —p v —=—p). This problem seems to require more attention.
Consequently, if[6] the following is proved.

Theorem 11 Let T be a dense-in-itself metric space whose every open and dense
subset isa union of two digoint regularly open sets. Then all the operatorsof theform
g+~ 3p(q= F(p)), where F(p) isan arbitrary monadic formula of the language
of Heyting calculus, are definable in T by means of {—, v, A, —}. Moreover, T =
dp(@@=F(p)=Ep@=F(p).
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This means that in every sufficiently regular topological space (such as Cantor space
or the reals) Pitts’ quantifidf coincides with the standard quantifiewith respect to

all the formulasy = F(p) in question. Note that these formulas involve two distinct
variables and, according to TheorEdtheir definability by formulas of Heyting cal-

culus depends on the properties of the space. Particularly, none of the operators of the
formgr— Ap (q= F(p)), for F suchthat- ——pv —p — F, isdefinable inthe stan-

dard language in the topological semantics associated with the upward closed subsets
of Kripke models.

Acknowledgments | wish to thank the anonymous referee for the valuable comments
which helped me to improve the previous version of the paper. In particular, | am grateful
for the remarks and examples involving Kripke semantics which are included in the paper.

NOTES

1. This fact can also be seen in the following two ways:q(i maximal in the Rieger—
Nishimura Lattice o belowH; (ii) consider a Kripke mode{ (on atoms not involving
p) with root b and supposée I Ap H. We show thatb I- g. Add a new rooty’ below
K with the same forcing as. Sob’ bisimulates withb. Now extend the forcing on the
new model by stipulating thatforcesp precisely ifxis in the old model, that iss # b'.
Sinceb’ bisimulates withb (with respect to the atoms distinct frop) we have, by the
Shavrukov-Ghilardi-Zawadowski-Visser semantiesf- pv (p — q). Henceb I g.

2. One can also use the bisimulation semantics. Consider any Kripke iddeh forc-
ing not involving p. Multiply K with the modelM on mp, My, m, generated byng <
my, My < mp andnmy |- p. The forcing on the new model, s&j; is dictated by the forc-
ing onK for the variables except and by the forcing oM as far asp is concerned.
It is easy to see thai is a bisimulation extension ¢€. Moreover, forA not involving
p and everyn of N we have:n - Aifand onlyifnl- (p— A) v (—mp— A). So, for
every formulaB(q) not involving p and for anyk of the modelK, whenever we have
k- B(q), wealso hav&kIFEpB((p— q) vV (—p — Q)).
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