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Abstract. By combining an approximation technique with the Leray–

Schauder continuation principle, we prove global existence results for
semilinear differential equations involving a dissipative linear operator,

generating an extendable compact C0-semigroup of contractions, and

a Carathéodory nonlinearity f : [0, T ] × E → F , with E and F two real
Banach spaces such that E ⊆ F , besides imposing other conditions. The

case E 6= F allows to treat, as an application, parabolic equations with

continuous superlinear nonlinearities which satisfy a sign condition.

1. Introduction

Let (E, ‖ · ‖E), (F, ‖ · ‖F ) be two real Banach spaces such that E ⊆ F . This

work deals with the study of mild solutions for semilinear differential equations
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of the form

(1.1)

u′(t) = Au(t) + f(t, u(t)), for a.e. t ∈ [0, T ],

u(0) = u0 ∈ E,

where A : D(A) ⊂ E → E is a linear operator generating a compact C0-

semigroup of contractions and f : [0, T ] × E → F is a Carathéodory map such

that for every bounded subset Ω ⊂ E there exists a function νΩ ∈ L1([0, T ],R+)

such that

(1.2) ‖f(t, v)‖F ≤ νΩ(t),

for almost every t ∈ [0, T ] and all v ∈ Ω.

Differential problems of the type (1.1) with E = F are often studied by

means of topological methods. In particular, assuming sublinear growth condi-

tions on the nonlinearity allows to apply directly classical fixed point theorems.

This is no longer the case for nonlinear terms for which only a local bounded

condition such as (1.2) is required. However, as showed in [1] where condition

(1.2) is assumed, it is again possible to use some topological techniques by con-

sidering the invariance of a suitable topological degree by an homotopic field.

We recall that, in order that such an invariance is satisfied, there must be no

fixed points on the homotopic field domain’s boundary. This is usually known as

the transversality condition (or property). Sufficient conditions for getting the

transversality property are introduced and discussed in [7] and [10], for finite di-

mensional systems. These techniques were then extended to infinite dimensional

Banach spaces in [1], when A : E → E is a linear and bounded operator. Very re-

cently, they have been generalized to generators of C0 semigroups in [3]. In [2], it

is showed that, in the particular case of a Banach space X with a strictly convex

dual X∗, the transversality property is given by the existence of two constants

r0 > 0 and R0 > max{r0, ‖u0‖X} such that

〈J(v), f(t, v)〉X ≤ 0,

for almost every t ∈ [0, T ] and all v ∈ X∩{r0 < ‖v‖X < R0}, where J : X → X∗

is the duality map (see (2.1) and Proposition 2.1); notice that since X∗ is strictly

convex, J is a single valued map. In the present paper, we use a similar sign

condition but taking into account that there are two different Banach spaces (see

condition (f4)).

The most common application of the mentioned results are partial differential

equations considering as Banach space E the space Lp(Ω;R), with p ≥ 1, and Ω

a domain in Rk, k ≥ 1. However, due to the Vainberg Theorem, the Nemytskĭı

operator associated to a Carathéodory function g : Ω×R→ R maps continuously

the space Lp(Ω) into itself if and only if g is sublinear, as stated in the following

theorem (see Theorem 19.1 in [12]).
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Theorem 1.1. Let B be a measurable set in a s-dimensional euclidean space

and g : B × R → R be a Carathéodory function, i.e. continuous with respect to

u ∈ R for almost every x ∈ B and measurable with respect to x ∈ B for every

u ∈ R. Then the Nemytskĭı operator associated to g, h(u)(x) = g(x, u(x)), is

a continuous and bounded operator from Lp(B;R) into Lq(B;R), p, q ∈ [1,+∞),

if and only if there exist a function a ∈ Lq(B;R) and a constant b ≥ 0 such that,

for every v ∈ R,

|g(x, v)| ≤ a(x) + b|v|p/q.

By considering two different Banach spaces, we overcome this difficulty han-

dling nonlinearities with superlinear growth. More precisely, we assume that the

semigroup generated by A on E can be extended to the space F (see hypothesis

(A2)) and, by means of an approximation technique, we prove an existence result

for mild solutions of (1.1) applying the Leray–Schauder continuation principle

below, see e.g. [6] or the original paper [9].

Theorem 1.2. Let Q be a closed subset of a Banach space B and let Σ: Q×
[0, 1]→ B be a continuous map sending bounded subsets of Q×[0, 1] into relatively

compact subsets of B. Assume that

(a) Σ(x, 0) = x0 ∈ int(Q), for all x ∈ Q;

(b) The fixed point set

F = {x ∈ Q, x = Σ(x, λ), for some λ ∈ [0, 1]}

is bounded and does not meet the boundary ∂Q of Q.

Then the map x 7→ Σ(x, 1) has a fixed point in Q.

As a consequence, we obtain the localization of this solution in the ball of

radius R0 and center 0.

Setting E = Lp(Ω;R) and F = Lq(Ω;R) with 2 ≤ q ≤ p < ∞, where

Ω ⊂ Rk, 2 ≤ k ≤ 2pq/(p− q), with 2 ≤ q < p <∞, (k ≥ 2, in the case p = q), is

a bounded domain with C2-boundary, and exploiting the Vainberg Theorem, we

obtain an existence result for mild solutions of the following class of parabolic

differential equations

(1.3)

ut = ∆u+ g(t, x, u(t, x)) for (t, x) ∈ ]0, T [× Ω,

u(t, x) = 0 for (t, x) ∈ ]0, T [× ∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

allowing g : [0, T ]× Ω× R→ R to have superlinear growth.

The paper is organized as follows: in Section 2, we recall some basic results

on semi-inner products, on the duality map, on the generator of semigroups,

and recall different notions of solutions, including their relations (which turn out

useful to prove the main result); the statement of the problem and the main
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result are contained in Section 3; in Section 4, the approximation technique is

described; the proof of the main result of the paper is contained in Section 5;

finally, in Section 6 the existence of mild solution of (1.3) is proved.

2. Preliminaries

Let (X, ‖ · ‖X) be a real Banach space and X∗ its dual, let x, y ∈ X and

h ∈ R \ {0}, define

[x, y]h :=
1

h
(‖x+ hy‖ − ‖x‖) .

The limits [x, y]+ = lim
h↓0

[x, y]h and [x, y]− = lim
h↑0

[x, y]h exist and are finite. In

addition, the function [ · , · ]+ is upper semicontinuous from X ×X into R, while

[ · , · ]− is lower semicontinuous from X ×X into R; the function [ · , · ]+ is called

the normalized upper semi-inner product on X and [ · , · ]− is called the nor-

malized lower semi-inner product on X (see Lemma 1.4.1 and Definition 1.4.2

of [13]). Denoting by 〈 · , · 〉 the duality product between X∗ and X and by

J : X ( X∗ the duality map, i.e.

(2.1) J(x) =
{
x∗ ∈ X∗ : ‖x∗‖X∗ = ‖x‖X and 〈x∗, x〉 = ‖x‖2X

}
for every x, y ∈ X, x 6= 0, we have

[x, y]+ =
1

‖x‖X
sup{〈x∗, y〉 : x∗ ∈ J(x)},

[x, y]− =
1

‖x‖X
inf{〈x∗, y〉 : x∗ ∈ J(x)}.

Moreover, we have

[x, y]+ = −[x,−y]− = −[−x, y]−,

see Lemmas 1.4.2 and 1.4.3 in [13]. The next proposition contains some useful

properties of the duality map, see Proposition 12.3 in [4] and Theorem 1 in [5].

Proposition 2.1. The following statements are true:

(a) For each x ∈ X, the set J(x) is convex and nonempty in X∗;

(b) J is monotone in the following sense

〈x∗ − y∗, x− y〉 ≥ 0 for every x, y ∈ X and x∗ ∈ J(x), y∗ ∈ J(y);

(c) for every λ ∈ R and x ∈ X, it holds J(λx) = λJ(x).

In particular, if X∗ is strictly convex then J is a single valued map, and if X

is reflexive then J is demicontinuous, i.e. if xn → x in X, J(xn) ⇀ J(x) in X∗,

see e.g. [5]. Thus, in the case of X∗ strictly convex, we get

(2.2) [x, y]+ =
1

‖x‖
〈J(x), y〉 = [x, y]−.
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Consider the linear problem

(2.3)

u′(t) = Au(t) + f(t), for a.e. t ∈ [0, T ],

u(0) = u0 ∈ X,

where A : D(A) ⊂ X → X is the infinitesimal generator of a semigroup {S(t)}t≥0

and f : [0, T ] → X is a given map. There are several definitions of solutions

of (2.3). For instance, if f ∈ L1([0, T ];X) we have the following definitions (see

Definition 3.5.1 in [8] and Definition 1.7.4 in [13]).

Definition 2.2. A function u : [0, T ] → X is called an integral solution

of (2.3) on [0, T ] if u ∈ C([0, T ];X) satisfies u(0) = u0 and

‖u(t)− x‖X ≤ ‖u(s)− x‖X +

∫ t

s

[u(τ)− x, f(τ)−Ax]+ dτ

for each x ∈ D(A) and 0 ≤ s ≤ t ≤ T .

To give the concept of ε-approximate solution we need the definition of Λε-

discretization.

Definition 2.3. Let ε > 0 be given. Then Λ(ε; t0, . . . , tn; f1, . . . , fn) is called

a Λε-discretization of (2.3) on [0, T ] if

(D1) 0 = t0 < t1 < . . . < tn = T , f1, . . . , fn ∈ X;

(D2) ti − ti−1 ≤ ε, for i = 1, . . . , n;

(D3)

n∑
i=1

∫ ti

ti−1

‖f(s)− fi‖X ds ≤ ε.

For the next two definitions see [8, pp. 96–97] and [13, pp. 33–34].

Definition 2.4. Let ε > 0 be given and Λ(ε; t0, . . . , tn; f1, . . . , fn) be a Λε-

discretization of (2.3) on [0, T ]. A function v : [0, T ] → X is called a ε-approxi-

mate solution of Λ(ε; t0, t1, . . . , tn; f1, . . . , fn) on [0, T ] if there exists v0, . . . , vn ∈
D(A) such that

(S1)
vi − vi−1

ti − ti−1
+Avi = fi for i = 1, . . . , n;

(S2) v(t0) = v0, v(t) = vi for t ∈ ]ti−1, ti] and i = 1, . . . , n.

Definition 2.5. A function u : [0, T ]→ X is called a limit solution of (2.3)

on [0, T ] if u ∈ C([0, T ];X), u(0) = u0 and for each ε > 0 there exists at least one

Λε-discretization Λ(ε; t0, . . . , tn; f1, . . . , fn) of (2.3) on [0, T ] and a ε-approximate

solution v : [0, T ]→ X of Λ(ε; t0, . . . , tn; f1, . . . , fn) on [0, T ] such that

‖u(t)− v(t)‖X ≤ ε for each t ∈ [0, T ].

For the next definition see [11, Definition 2.3, Chapter 4].
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Definition 2.6. A function u : [0, T ]→ X is called a mild solution of (2.3)

on [0, T ] if satisfies

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s) ds for each t ∈ [0, T ].

As a consequence of the next three theorems (see Theorems 1.7.3, 1.7.4, 1.8.2

in [13]), in the case of a m-dissipative operator A and a function f ∈ L1([0, T ];X)

all these type of solutions turn out to be equivalent.

Definition 2.7. An operator A : D(A) ⊂ X → X is called dissipative if

[x1 − x2, Ax1 −Ax2]− ≤ 0

for any x1, x2 ∈ D(A) and m-dissipative if it is dissipative and for every λ > 0

the range of the operator I − λA is equal to X.

Theorem 2.8. Let A : D(A) ⊂ X → X be a m-dissipative operator, let

f ∈ L1([0, T ];X). If u : [0, T ]→ X is a limit solution of (2.3) on [0, T ] satisfying

u(0) = u0 then u is the unique integral solution of (2.3) on [0, T ] satisfying

u(0) = u0.

Theorem 2.9. Let A : D(A) ⊂ X → X be a m-dissipative operator. Then,

for each u0 ∈ X and f ∈ L1([0, T ];X), there exists a unique limit solution u of

(2.3) on [0, T ].

Theorem 2.10. Let A : D(A) ⊂ X → X be a linear, densely defined, m-

dissipative operator and let f ∈ L1([0, T ];X). A function u : [0, T ] → X is

a mild solution of (2.3) if and only if u is a limit solution of (2.3) on [0, T ]

satisfying u(0) = u0.

Remark 2.11. Notice that if A is the infinitesimal generator of a C0-semi-

group of contraction then D(A) is dense in X and A is a closed linear operator

(see Corollary 2.5 in [11]). Moreover by the Lumer–Phillips Theorem (see The-

orem 4.3, Chapter 1 in [11]) it is m-dissipative.

In what follows, we denote by ‖ · ‖p the norm in Lp(Ω;R), 1 ≤ p ≤ ∞, where

Ω is a domain in Rn, n ≥ 1 and with L(E) the space of linear and bounded

operators in E.

3. Statement of the problem and main result

Let (E, ‖·‖E), (F, ‖·‖F ) be two real Banach spaces such that E ⊆ F and assume

that E is reflexive with dual E∗ strictly convex and that there exists a constant

k > 0 such that

(3.1) ‖v‖F ≤ k‖v‖E , for every v ∈ E.
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Consider a semilinear differential equation of the form

(3.2)

u′(t) = Au(t) + f(t, u(t)), for a.e. t ∈ [0, T ],

u(0) = u0 ∈ E,

where A : D(A) ⊂ E → E and f : [0, T ] × E → F . Assume the following hy-

potheses on the linear operator:

(A1) A : D(A) ⊂ E → E is a linear operator, with 0 ∈ D(A), generating

a compact C0-semigroup of contractions {S(t)}t≥0 in E;

(A2) the semigroup {S(t)}t≥0 can be extended to a semigroup in F , i.e.

(i) there exists a semigroup {S∗(t)}t≥0 on F generated by A such that

for every w ∈ E, it holds S∗(t)w = S(t)w;

(ii) for every v ∈ F and t > 0, we have S∗(t)v ∈ E;

(iii) there exists a function c ∈ Lr([0, T ];R+), with 1 ≤ r ≤ ∞ such that

for any v ∈ F it holds

‖S∗(t)v‖E ≤ c(t)‖v‖F for every t ∈ (0, T ];

and the following hypotheses on the nonlinearity:

(f1) for every v ∈ E the map f( · , v) : [0, T ]→ F is measurable;

(f2) for almost every t ∈ [0, T ] the map f(t, · ) : E → F is continuous;

(f3) for every bounded subset D ⊂ E there exists a function νD ∈ Lr
′
([0, T ];

R+), with 1/r + 1/r′ = 1 and r′ =∞ if r = 1, such that

‖f(t, v)‖F ≤ νD(t), for a.e. t ∈ [0, T ] and all v ∈ D;

(f4) there exist constants r0 > 0, R0 > max{r0, ‖u0‖E} and n0 ∈ N such

that, for all n > n0,〈
JE(v), S∗

(
1

n

)
f(t, v)

〉
≤ 0,

for almost every t ∈ [0, T ] and for all v ∈ E such that r0 < ‖v‖E < R0,

where JE denotes the duality map on E.

Because of condition (A2), we can denote the C0-semigroup generated by A,

on the space E or on the space F , by the very same symbol {S(t)}t≥0. Moreover,

notice that, being {S(t)}t≥0 a C0-semigroup on the space F , there exists a

constant M > 0 such that

(3.3) ‖S(t)‖F ≤M, for every t ∈ [0, T ].

Conditions (A1) and (A2) might seem quite restrictive, but a simple example of

operator A that satisfies both these conditions is the Laplace operator subjected

to the Dirichlet boundary conditions as the following example shows.
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Example 3.1. Consider p ≥ 1 fixed and a bounded domain Ω ⊂ Rk, k ≥ 2,

with a C2-boundary. The Laplace operator Ap : D(Ap) ⊂ Lp(Ω;R) → Lp(Ω;R)

subjected to Dirichlet boundary conditions on Lp(Ω,R) and defined by

D(Ap) = W 1,p
0 (Ω,R) ∩W 2,p(Ω,R), Apw = ∆w,

is the generator of a C0-semigroup of contractions {Sp(t)}t≥0 (see e.g. Theo-

rem 4.1.3 and Remark 4.1.2 of [14]). Moreover, by Lemma 7.2.1 of [14], for each

p, q ∈ [1,+∞], each ξ ∈ C(Ω;R) and each t ≥ 0, we have Sp(t)ξ = Sq(t)ξ. Thus,

we can denote the C0-semigroup generated by the Laplace operator subjected to

the Dirichlet boundary conditions on any of the spaces Lp(Ω;R) by the very same

symbol {S(t)}t≥0. By Theorem 7.2.5 of [14], {S(t)}t≥0 is a compact semigroup.

Finally, by Theorem 7.2.6 of [14], for each 1 ≤ q ≤ p ≤ ∞, each ξ ∈ Lq(Ω;R),

and each t > 0, we have

‖S(t)ξ‖p ≤ (4πt)−k(1/q−1/p)/2‖ξ‖q.

Hence, Ap satisfies (A1) and (A2) with c(t) = (4πt)−k(1/q−1/p)/2. Notice that

k(1/q − 1/p)/2 < 1, provided 2 ≤ k < 2pq/(p− q), 2 ≤ q < p < ∞ and

k(1/q − 1/p)/2 = 0 for p = q, hence the function c ∈ L1([0, T ],R+).

We look for mild solutions of (3.2), i.e. functions u ∈ C([0, T ];E) that satisfy

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s, u(s))ds, for all t ∈ [0, T ].

Theorem 3.2. Let conditions (A1), (A2) and (f1)–(f4) hold, then the prob-

lem (3.2) admits at least one global mild solution u ∈ C([0, T ], E), satisfying

‖u(t)‖E < R0 for every t ∈ [0, T ].

The proof of the Theorem 3.2 is based on an approximation technique and

on a compactness result (see Section 5).

Given ξ ∈ E and g ∈ Lr′([0, T ];F ), where 1 ≤ r′ < ∞ is such that 1/r +

1/r′ = 1, where 1 ≤ r ≤ ∞ is defined in (A2) (iii), and r′ = ∞ if r = 1, denote

by F(ξ, g) : [0, T ]→ E the mild solution of the linear problem

(3.4)

u′(t) = Au(t) + g(t), for a.e. t ∈ [0, T ],

u(0) = ξ ∈ E,

that is

(3.5) F(ξ, g)(t) = S(t)ξ +

∫ t

0

S(t− s)g(s) ds, for all t ∈ [0, T ].

Proposition 3.3. If A : D(A) ⊂ E → E satisfies (A1) and (A2), for every

1 ≤ r′ < ∞ such that 1/r + 1/r′ = 1, where 1 ≤ r ≤ ∞ is defined in (A2) (iii),

and r′ =∞ if r = 1, the operator F : E×Lr′([0, T ];F )→ C([0, T ];E), F(ξ, g)(t)

given in (3.5), is well defined.
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Proof. First of all we prove that, for every ξ ∈ E and g ∈ Lr′([0, T ];F ),

the map F(ξ, g)( · ) has values in E. Let ξ ∈ E and g ∈ Lr′([0, T ];F ). By (A2),

for every v ∈ F and t > 0, we have S(t)v ∈ E, so S(t − s)g(s) ∈ E for almost

every s ∈ [0, t); F(ξ, g)(0) = ξ ∈ E, thus F(ξ, g)(t) ∈ E for every t ∈ [0, T ].

Now, we prove that for every ξ ∈ E and g ∈ Lr′([0, T ];F ) the map F(ξ, g)( · )
is continuous. Let ξ ∈ E and g ∈ Lr′([0, T ];F ). By the absolute continuity of

the integral function of ‖g‖r′F , for every ε > 0, there exists γ(ε) > 0 such that

(3.6)

∫
D

‖g(s)‖r
′

F ds ≤
εr
′

‖c‖r′Lr([0,T ];R+)

for every measurable subset D ⊂ [0, 1] such that µ(D) ≤ γ(ε), where µ denotes

the Lebesgue measure on R. We want to prove that, for every ε > 0, there exist

δ(ε) > 0 such that, for every t1, t2 ∈ [0, T ], with |t2 − t1| ≤ δ(ε) it holds

‖F(ξ, g)(t1)−F(ξ, g)(t2)‖ ≤ ε.

First assume the case t1 = 0. Let ε > 0 and γ(ε) > 0 satisfying (3.6). By the

continuity of the semigroup {S(t)}t≥0 we have that for the very same ε > 0,

there exists δ(ε) ∈ (0, γ(ε)] such that, for every 0 < t2 = t < δ(ε), we have

‖S(t)ξ − ξ‖E ≤ ε.

Thus we obtain∥∥F(ξ, g)(t) −F(ξ, g)(0)
∥∥
E
≤ ‖S(t)ξ − ξ‖E +

∫ t

0

‖S(t− s)g(s)‖E ds

≤ ε+

∫ t

0

c(t− s)‖g(s)‖F ds ≤ ε+

∫ δ(ε)

0

c(t− s)‖g(s)‖F ds

≤ ε+ ‖c‖Lr([0,T ];R+)

(∫ δ(ε)

0

‖g(s)‖r
′

F ds

)1/r′

≤ 2ε.

Consider now the case t1 > 0. Let ε > 0 and λ = λ(ε) > 0 such that t1− 2λ > 0

and 2λ ≤ γ(ε). Being compact, the semigroup {S(t)}t≥0 is equicontinuous,

i.e. the map t 7→ S(t) is continuous from (0,+∞) to L(E), endowed with the

uniform operator norm ‖ · ‖L(E), see Theorem 6.2.1 of [14]. Therefore, for the

very same ε > 0, there exists δ(ε) ∈ (0, λ] such that for every |h| < δ(ε) and

every s ∈ [0,min{t1 − λ, t1 + h− λ}], we have

‖S(t1 + h)− S(t1)‖L(E) ≤ min

{
ε

‖ξ‖E
,

ε

‖g‖Lr′ ([0,T ];F )c(λ)T 1/r

}
for ξ 6= 0,

‖S(t1 + h)− S(t1)‖L(E) ≤
ε

‖g‖Lr′ ([0,T ];F )c(λ)T 1/r
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for ξ = 0 and

‖S(t1 + h−λ− s)−S(t1−λ− s)‖L(E) ≤ min

{
ε

‖ξ‖E
,

ε

‖g‖Lr′ ([0,T ];F )c(λ)T 1/r

}
.

For each h ∈ (−δ(ε), δ(ε)), we have

F(ξ, g)(t1 + h) = S(λ+ h)F(ξ, g)(t1 − λ) +

∫ t1+h

t1−λ
S(t1 + h− s)g(s) ds.

Hence, denoting t1 = t and t2 = t+ h, we get

‖F(ξ, g)(t+ h)−F(ξ, g)(t)‖E ≤ ‖S(t+ h)− S(t)‖L(E)‖ξ‖E

+

∫ t−λ

0

‖(S(t+ h− s)− S(t− s))g(s)‖E ds

+

∫ t+h

t−λ
‖S(t+ h− s)g(s)‖E ds+

∫ t

t−λ
‖S(t− s)g(s)‖E ds

≤‖S(t+ h)− S(t)‖L(E)‖ξ‖E

+

∫ t−2λ

0

‖(S(t+ h− λ− s)− S(t− λ− s))S(λ)g(s)‖E ds

+

∫ t−λ

t−2λ

‖(S(t+ h− s)− S(t− s))g(s)‖E ds

+

∫ t+h

t−λ
‖S(t+ h− s)g(s)‖E ds+

∫ t

t−λ
‖S(t− s)g(s)‖E ds

≤‖S(t+ h)− S(t)‖L(E)‖ξ‖E

+

∫ t−2λ

0

‖(S(t+ h− λ− s)− S(t− λ− s))‖L(E)c(λ)‖g(s)‖F ds

+

∫ t−λ

t−2λ

c(t+ h− s)‖g(s)‖F ds+

∫ t−λ

t−2λ

c(t− s)‖g(s)‖F ds

+

∫ t+h

t−λ
c(t+ h− s)‖g(s)‖F ds+

∫ t

t−λ
c(t− s)‖g(s)‖F ds

≤ ε

‖ξ‖E
‖ξ‖E +

ε

c(λ)‖g‖Lr′ ([0,T ];F )T
1/r

c(λ)‖g‖Lr′ ([0,T ];F )T
1/r

+ 2‖c‖Lr([0,T ],R+)‖g‖Lr′ ([t−2λ,t−λ];F ) + ‖c‖Lr([0,T ],R+)‖g‖Lr′ ([t−λ,t+h];F )

+ ‖c‖Lr([0,T ],R+)‖g‖Lr′ ([t−λ,t];F ) ≤ 6ε.

The last inequality make sense only if ξ 6= 0. If ξ = 0,

‖S(t+ h)− S(t)‖L(E)‖ξ‖E = 0.

Thus, in any case, the continuity of the map F(ξ, g)( · ) follows. �

Proposition 3.4. If A : D(A) ⊂ E → E satisfies (A1) and (A2), then

for each bounded subset B of E and each subset G in Lr
′
([0, T ];F ) such that



Evolution Equations with Superlinear Growth 927

{‖g‖r′F , g ∈ G} is uniformly integrable, the set F(B ×G) is relatively compact in

C([δ, T ];E) for each δ ∈ (0, T ). If, in addition, B is relatively compact in E,

then F(B ×G) is relatively compact in C([0, T ];E).

The proof is quite similar to that of Theorem 8.4.1 [14], see also Remark 8.4.1

in [14].

Proof. First of all, the operator F : E ×Lr′([0, T ];F )→ C([0, T ];E) maps

bounded subsets in E × Lr′([0, T ];F ) into bounded subsets in C([0, T ];E). In-

deed, by (A2), for (ξ, g) ∈ E × Lr′([0, T ];F ), we have

‖F(ξ, g)(t)‖E ≤ ‖S(t)ξ‖E +

∫ t

0

‖S(t− s)g(s)‖E ds

≤ ‖ξ‖E +

∫ t

0

c(t− s)‖g(s)‖F ds

≤ ‖ξ‖E + ‖c‖Lr([0,T ];R+)‖g‖Lr′ ([0,T ];F )

for every t ∈ [0, T ].

Now we prove that the set F(B × G)(t) is relatively compact for every t ∈
(0, T ]. To this aim, let t ∈ (0, T ] and λ > 0 with t−λ ≥ 0. For every (ξ, g) ∈ B×G
we have

F(ξ, g)(t) = S(t)ξ + S(λ)

∫ t−λ

0

S(t− λ− s)g(s) ds+

∫ t

t−λ
S(t− s)g(s) ds.

Since S(λ) is compact and the fact that the operator F maps bounded subsets

in E × Lr
′
([0, T ];F ) into bounded subsets in C([0, T ];E) we deduce that the

operator Pλ : F(B,G)(t)→ E defined by

Pλ(F(ξ, g)(t)) = S(t)ξ + S(λ)

∫ t−λ

0

S(t− λ− s)g(s) ds, (ξ, g) ∈ B ×G,

maps the set F(B,G)(t) into a relatively compact set in E. In addition, for

every (ξ, g) ∈ B ×G we have

‖Pλ(F(ξ, g)(t))−F(ξ, g)(t)‖E

≤
∫ t

t−λ
‖S(t− s)g(s)‖E ds ≤ ‖c‖Lr([0,T ];R+)‖g‖Lr′ ([t−λ,t];F ).

Thus, by the uniform integrability of the set {‖g‖r′F , g ∈ G} we obtain

lim
λ↓0
‖Pλ(F(ξ, g)(t))−F(ξ, g)(t)‖E = 0,

uniformly for g ∈ G, it follows that F(B × G)(t) is relatively compact in E for

each t ∈ (0, T ].

Now we prove that the set F(B × G) is equicontinuous. By the uniform

integrability of the set {‖g‖r′F , g ∈ G}, for every ε > 0 there exists γ(ε) > 0 such
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that ∫
D

‖g(s)‖r
′

F ds ≤
εr
′

‖c‖r′Lr([0,T ];R+)

for every measurable subset D ⊂ E such that µ(D) ≤ γ(ε) and uniformly with

respect to g ∈ G, where µ denotes the Lebesgue measure on R. Let ε > 0,

t ∈ (0, T ], and let us fix λ = λ(ε) > 0 such that t− λ > 0 and 2λ ≤ γ(ε). Since

F(B × G)(t − λ) is relatively compact in E, for each ε > 0 there exists a finite

family {(ξ1, g1), . . . , (ξJ , gJ)} in B ×G such that for every (ξ, g) ∈ B ×G there

exists i ∈ J = {1, . . . , J} such that

‖F(ξ, g)(t− λ)−F(ξi, gi)(t− λ)‖E ≤ ε.

On the other hand, the family {F(ξ1, g1), . . . ,F(ξJ , gJ)} is equicontinuous at t,

so being a finite family of continuous functions in [0, T ]. Hence, for the very

same ε > 0, there exists δ(ε) ∈ (0, λ] such that

‖F(ξi, gi)(t+ h)−F(ξi, gi)(t)‖E ≤ ε.

for every i = 1, . . . , J and every h ∈ R with |h| ≤ δ(ε). We then have

‖F(ξ, g)(t+ h)−F(ξ, g)(t)‖E ≤ ‖F(ξ, g)(t+ h)−F(ξi, gi)(t+ h)‖E
+ ‖F(ξi, gi)(t+ h)−F(ξi, gi)(t)‖E + ‖F(ξi, gi)(t)−F(ξ, g)(t)‖E .

As before notice that, for every (ξ, g) ∈ B ×G,

F(ξ, g)(t+ h) = S(λ+ h)F(ξ, g)(t− λ) +

∫ t+h

t−λ
S(t+ h− s) g(s) ds.

Thus we have

‖F(ξ, g)(t+ h)−F(ξi, gi)(t+ h)‖E

≤
∥∥∥∥S(λ+ h)F(ξ, g)(t− λ) +

∫ t+h

t−λ
S(t+ h− s) g(s) ds

− S(λ+ h)F(ξi, gi)(t− λ)−
∫ t+h

t−λ
S(t+ h− s) gi(s) ds

∥∥∥∥
E

≤
∥∥F(ξ, g)(t− λ)−F(ξi, gi)(t− λ)

∥∥
E

+

∫ t+h

t−λ
‖S(t+ h− s)(g(s)− gi(s))‖E ds

≤ ε+ ‖c‖Lr([0,T ];R+)(‖g‖Lr′ ([t−λ,t+h];F ) + ‖gi‖Lr′ ([t−λ,t+h];F )) ≤ 3ε.
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Analogously, we have

‖F(ξ, g)(t)−F(ξi, gi)(t)‖E

≤
∥∥∥∥S(λ)F(ξ, g)(t− λ) +

∫ t

t−λ
S(t− s) g(s) ds

− S(λ)F(ξi, gi)(t− λ)−
∫ t

t−λ
S(t− s) gi(s) ds

∥∥∥∥
E

≤‖F(ξ, g)(t− λ)−F(ξi, gi)(t− λ)‖E

+

∫ t

t−λ
‖S(t− s)(g(s)− gi(s))‖E ds

≤ ε+ ‖c‖Lr([0,T ];R+)

(
‖g‖Lr′ ([t−λ,t+h];F ) + ‖gi‖Lr′ ([t−λ,t+h];F )

)
≤ 3ε.

In conclusion, we have obtained

‖F(ξ, g)(t+ h)−F(ξ, g)(t)‖E ≤ 7ε

for every (ξ, g) ∈ B × G and h ∈ R with |h| ≤ δ(ε). Thus, F(B × G) is an

equicontinuous family of maps on (0, T ] and, by the Ascoli–Arzelà Theorem, we

have that it is relatively compact in C([δ, T ];E) for every δ ∈ (0, T ). Moreover,

if B ⊂ E is a relatively compact set then the set F(B ×G)(0) = B is relatively

compact and the family F(B ×G) is equicontinuous at 0 as well. Again by the

Ascoli–Arzelà theorem, we have the relative compactness of the family F(B×G)

in C([0, T ];E). �

4. Approximating problems

In this section, we introduce a family of approximating problems. For n ∈ N,

we consider the following semilinear problem

(Pn)

u
′(t) = Au(t) + S

(
1

n

)
f(t, u(t)), for a.e. t ∈ [0, T ],

u(0) = u0 ∈ E,

where A : [0, T ] → E, A satisfies (A1), (A2) and f satisfies (f1)–(f4). We will

prove that there exists n0 > 0 such that for every n > n0 problems (Pn) admits

at least one mild solution.

Lemma 4.1. If A : D(A) ⊂ E → E satisfies (A1), (A2) and f : [0, T ]×E → F

satisfies (f1)–(f4), then there exists n0 ∈ N such that for every n > n0 problems

(Pn) have at least one mild solution un ∈ C([0, T ];E), satisfying ‖un(t)‖E < R0

for every t ∈ [0, T ].

Proof. For n ∈ N and R ∈ (r0, R0), R ≥ ‖u0‖E , define

Q1 = {q ∈ C([0, T ];E) : ‖q(t)‖E ≤ R for all t ∈ [0, T ]}
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and the operator Σn : Q1 × [0, 1]→ C([0, T ];E) as

Σn(q, λ)(t) = λS(t)u0 + λ

∫ t

0

S(t− τ)S

(
1

n

)
f(τ, q(τ)) dτ, t ∈ [0, T ].

Reasoning as in Proposition 3.3 it is possible to prove that the operator Σn is

well defined. Moreover, a fixed point q = Σn(q, 1) is a mild solution of the

problem (Pn). We will prove the existence of such fixed points using the Leray–

Schauder continuation principle (see Theorem 1.2). In what follows, we denote

by BR = {v ∈ E : ‖v‖E ≤ R}. Now, we divide the proof in several steps.

Step 1. For each n ∈ N, the operator Σn : Q1 × [0, 1] → C([0, T ];E) is

continuous.

Let {qk} ⊂ Q1 and {λk} ⊂ [0, 1] two convergent sequences qk → q in

C[0, T ];E) and λk → λ in [0, 1]. By (f2) we have that

‖f(t, qk(t))− f(t, q(t))‖F → 0 for all t ∈ [0, T ],

hence, by (A2) (iii) it follows∥∥∥∥S(t)S

(
1

n

)
(f(t, qk(t))− f(t, q(t)))

∥∥∥∥
E

≤ c
(

1

n

)
‖f(t, qk(t))− f(t, q(t))‖F → 0

for all t ∈ [0, T ]. Moreover, by (A2) (iii) and (f3) we get∥∥∥∥S(t)S

(
1

n

)
f(t, qk(t))

∥∥∥∥
E

≤ c
(

1

n

)
νBR

(t) for a.e. t ∈ [0, T ].

Thus, by the Lebesgue’s dominated convergence theorem we conclude that, for

every t ∈ [0, T ],

‖Σn(qk, λk)(t) − Σn(q, λ)(t)‖E ≤ |λk − λ|‖S(t)u0‖E

+ |λk − λ|
∫ t

0

∥∥∥∥S(t− τ)S

(
1

n

)
f(τ, q(τ))

∥∥∥∥
E

dτ

+ λk

∫ t

0

∥∥∥∥S(t− τ)S

(
1

n

)
(f(τ, qk(τ))− f(τ, q(τ))

∥∥∥∥
E

dτ

≤ |λk − λ|‖u0‖E + |λk − λ| c
(

1

n

)
‖νBR

‖Lr′ ([0,T ],R+)

+ λk

∫ T

0

∥∥∥∥S(t− τ)S

(
1

n

)
(f(τ, qk(τ))− f(τ, q(τ))

∥∥∥∥
E

dτ → 0

Hence Σn(qk, λk) → Σn(q, λ) in C([0, T ];E), obtaining the continuity of the

operator Σn.

Step 2. For every n ∈ N, the operator Σn send Q1 × [0, 1] into a relatively

compact set of C([0, T ];E).

First of all notice that Σn(Q1 × [0, 1])(0) is a compact set, since it coincides

with u0. Moreover, by (f3) and (3.3), there exist a function νBR
∈ Lr′([0, T ];R+)
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such that∥∥∥∥S( 1

n

)
f(t, q(t))

∥∥∥∥
F

≤MνBR
(t), for a.e. t ∈ [0, T ] and for every q ∈ Q1,

implying that the set {S(1/n)f( · , q( · )), q ∈ Q1} is a family of maps in

Lr
′
([0, T ], F ) such that {‖S(1/n)f( · , q( · ))‖r′F , q ∈ Q1} is uniformly integrable.

Therefore, observing that Σn(q, λ) = λF(u0, S(1/n)f(( · ), q( · ))) for every (q, λ)

in Q1 × [0, 1] we obtain, by Proposition 3.4, that the set Σn(Q1 × [0, 1]) is rela-

tively compact in C([0, T ];E).

Step 3. Σn(Q1 × {0}) ⊂ int(Q1).

Since Σn(Q1 × {0}) ≡ 0 the conclusion follows trivially.

Step 4. The operator Σn( · , λ) has no fixed points on ∂Q1 for every λ ∈ [0, 1]

and n > n0, where n0 is from (f4).

By contradiction, assume that there exists λ ∈ [0, 1], u ∈ Q1 and t0 ∈ [0, T ]

such that u = Σn(u, λ) and ‖u(t0)‖E = R. Since λ = 0 implies u ≡ 0 and λ = 1,

gives the existence of at least one fixed point u = Σn(u, 1), we may assume

λ ∈ (0, 1). Notice that t0 6= 0. Indeed, if t0 = 0 we have

R = ‖u(0)‖E = ‖Σn(u, λ)(0)‖E = λ‖u0‖E < R.

Hence, there exists δ > 0 such that r0 < ‖u(t)‖E ≤ R for every t ∈ [t0−δ, t0] and

‖u(t0 − δ)‖E < R. Denoting by gn(t) = S(1/n)f(t, u(t)), t ∈ [0, T ], we consider

the linear problem

(4.1)

u′(t) = Au(t) + gn(t), for a.e. t ∈ [0, T ],

u(0) = u0 ∈ E.

By the fact that ‖u(t)‖E ≤ R for every t ∈ [0, T ], by (A2) and (f3), we have that

‖gn(t)‖E =

∥∥∥∥S( 1

n

)
f(t, u(t))

∥∥∥∥
E

≤ c
(

1

n

)
νBR

(t) for a.e. t ∈ [0, T ],

obtaining that gn ∈ Lr
′
([0, T ];E). We denote by u ∈ C([0, T ], E) the unique

mild solution of (4.1), i.e.

u(t) = S(t)u0 +

∫ t

0

S(t− s)gn(s) ds, t ∈ [0, T ].

By Theorems 2.8 and 2.10, we have that u is the unique integral solution of

(4.1), i.e.

‖u(t)− x‖E ≤ ‖u(s)− x‖E +

∫ t

s

[u(τ)− x, gn(τ)−Ax]+ dτ

for each x ∈ D(A) and 0 ≤ s ≤ t ≤ T . Since E is reflexive with a strictly convex

dual, bearing in mind (2.2), we have that

‖u(t)− x‖E ≤ ‖u(s)− x‖E +

∫ t

s

1

‖u(τ)− x‖E
〈JE(u(τ)− x), gn(τ)−Ax〉 dτ



932 I. Benedetti — E.M. Rocha

for each x ∈ D(A) and 0 ≤ s ≤ t ≤ T . By the definition of the operator Σn( · , λ)

and the fact that u is a fixed point of it, for every t ∈ [0, T ], we obtain

u(t) = S(t)u0 +

∫ t

0

S(t− τ)gn(τ) ds

= S(t)u0 +

∫ t

0

S(t− τ)S

(
1

n

)
f(τ, u(τ)) dτ =

u(t)

λ
.

Now, considering x = 0 ∈ D(A) and observing that ‖u(s)‖E > 0 for every

s ∈ [t0 − δ, t0], it follows that

0 <
‖u(t0)‖E − ‖u(t0 − δ)‖E

λ
= ‖u(t0)‖E − ‖u(t0 − δ)‖E

≤
∫ t0

t0−δ

1

‖u(τ)‖E
〈JE(u(τ)), gn(τ)〉 dτ

=

∫ t0

t0−δ

1

‖u(τ)‖E

〈
JE(u(τ)), S

(
1

n

)
f(τ, u(τ))

〉
dτ

=

∫ t0

t0−δ

1

‖u(τ)‖E

〈
JE

(
u(τ)

λ

)
, S

(
1

n

)
f(τ, u(τ))

〉
dτ

=

∫ t0

t0−δ

1

λ ‖u(τ)‖E

〈
JE(u(τ)), S

(
1

n

)
f(τ, u(τ))

〉
dτ,

where the last equality follows from the Proposition 2.1 part (c). Now, by (f4)

for every n > n0 we get the contradiction

0 <
‖u(t0)‖E − ‖u(t0 − δ)‖E

λ
≤ 0.

By Theorem 1.2, for every n > n0, we obtain the existence of a fixed point

u = Σn(u, 1). Thus for every n > n0, we get a mild solution of (Pn). �

5. Proof of Theorem 3.2

By Lemma 4.1, we know that there exists n0 > 0 such that problems (Pn)

have at least one mild solution for every n > n0. We consider now the set of these

mild solutions. More precisely, by the characterization introduced in Lemma 4.1,

we consider the set

M1 =
{
un ∈ C([0, T ];E) ∩Q1 : un = Σn(un, 1), n > n0

}
.

Let un ∈ M1. By the fact that un ∈ Q1, we have that ‖un(t)‖E ≤ R for every

t ∈ [0, T ]. Thus, by (f3) and (3.3), there exist a function νBR
∈ Lr′([0, T ];R+)∥∥∥∥S( 1

n

)
f(t, un(t))

∥∥∥∥
F

≤MνBR
(t), for a.e. t ∈ [0, T ],

implying that the set G1 = {S(1/n)f( · , un( · )), n > n0} is a family of maps in

Lr
′
([0, T ], F ) such that

{
‖S(1/n)f( · , un( · ))‖r′F , n > n0

}
is uniformly integrable.
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Hence, applying Proposition 3.4 with B = {u0} and G = G1, we obtain the

relative compactness of M1 in C([0, T ];E), i.e. without loss of generality, we

can assume that for {un} ⊂ M1 there exists u∗ ∈ C([0, T ];E) such that {un}
converges to u∗ in C([0, T ];E). We will prove that u∗ is a mild solution of

problem (3.2).

First of all notice that un(t)
E−→ u∗(t) for every t ∈ [0, T ]. Moreover, by the

continuity of S(1/n) for every n ∈ N we have, for every t ∈ [0, T ], that

S

(
1

n

)
f(t, un(t))

F−→ f(t, u∗(t)), for a.e. t ∈ [0, T ],

moreover, the convergence is dominated∥∥∥∥S( 1

n

)
f(t, un(t))

∥∥∥∥
F

≤MνBR
(t) for a.e. t ∈ [0, T ],

where M > 0 is defined in (3.3). Thus we get

un(t) = S(t)u0 +

∫ t

0

S(t− τ)S

(
1

n

)
f(τ, un(τ)) dτ

→ S(t)u0 +

∫ t

0

S(t− τ)f(τ, u∗(τ)) dτ.

By the uniqueness of the limit, we obtain the claimed result. Moreover, for every

t ∈ [0, T ], it holds

‖u∗(t)‖E = lim
n→∞

‖un(t)‖E ≤ R < R0. �

6. Applications

In this section, we show how the above abstract existence result directly

applies to partial differential equations of parabolic type. Consider the following

nonlinear heat equation

(6.1)

ut = ∆u+ g(t, x, u(t, x)) for (t, x) ∈ ]0, T [× Ω,

u(t, x) = 0 for (t, x) ∈ ]0, T [× ∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

where Ω ⊂ Rk, 2 ≤ k < 2pq/(p− q), with 2 ≤ q < p < ∞, (k ≥ 2, in the case

p = q), is a bounded domain with C2-boundary and g : [0, T ] × Ω × R → R is

such that

(g1) g is a continuous function;

(g2) there exists b > 0 and a ∈ Lq(Ω;R+) such that

|g(t, x, v)| ≤ a(x) + b|v|p/q, for every (t, x, v) ∈ [0, T ]× Ω× R

with 2 ≤ q ≤ p <∞;

(g3) v g(t, x, v) ≤ 0 for every v ∈ R.
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As expected, the problem (6.1) can be rewritten as an abstract evolution equation

of the form (3.2) satisfying the hypotheses of Theorem 3.2 with E = Lp(Ω;R)

and F = Lq(Ω;R), 2 ≤ q ≤ p <∞.

In fact, by Example 3.1, we have that the Laplace operator subjected to the

Dirichlet boundary conditions A : D(A) ⊂ E → E defined as

D(A) = W 1,p
0 (Ω,R) ∩W 2,p(Ω,R), Aw = ∆w,

satisfies conditions (A1) and (A2) with c(t) = (4πt)−k(1/q−1/p)/2. Notice that

0 < k(1/q − 1/p)/2 < 1, provided 2 ≤ k < 2pq/(p− q), 2 ≤ q < p < ∞ and

k(1/q− 1/p)/2 = 0 for p = q, hence the function c ∈ L1([0, T ];R+). By (g1) and

the Vainberg Theorem (see Theorem 1.1) we have that the Nemytskĭı operator

f : [0, T ]× E → F defined as f(t, u)(x) = g(t, x, u(x)) maps the space E into F

and is continuous. Moreover, by (g2), we get

‖f(t, u)‖qq =

∫
Ω

|g(t, x, u(x))|q dx ≤ C
(
‖a‖qq + b‖v‖pp

)
,

where C > 0 is a suitable constant. Hence for every bounded subset D of E,

we have that ‖f(t, u)‖F ≤ C1, for every u ∈ D, with C1 > 0 another suitable

constant. So assumption (f3) is satisfied with νD ∈ L∞([0, T ];R+). We recall

that, for every w ∈ E with ‖w‖p > 0, we have

〈JE(w), v〉 =
1

‖w‖p−2
p

∫
Ω

|w(ξ)|p−2w(ξ)v(ξ) dξ,

see e.g. Example 1.4.4 in [13].

Let w ∈ E with ‖w‖p > 0 and t ∈ [0, T ]. Denoting by Ω+ = {x ∈ Ω : w(ξ) >

0} and by Ω− = {x ∈ Ω : w(ξ) < 0} and considering the function sign: R → R
defined as

sign(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0,

we have that〈
JE(w), S

(
1

n

)
f(t, w)

〉
=

1

‖w‖p−2
p

∫
Ω

|w(ξ)|p−2w(ξ)S

(
1

n

)
g(t, ξ, w(ξ)) dξ

=
1

‖w‖p−2
p

∫
Ω

|w(ξ)|p−1sign(w(ξ))S

(
1

n

)
g(t, ξ, w(ξ)) dξ

=
1

‖w‖p−2
p

∫
Ω+

|w(ξ)|p−1S

(
1

n

)
g(t, ξ, w(ξ)) dξ

− 1

‖w‖p−2
p

∫
Ω−
|w(ξ)|p−1S

(
1

n

)
g(t, ξ, w(ξ)) dξ



Evolution Equations with Superlinear Growth 935

= − 1

‖w‖p−2
p

∫
Ω+

|w(ξ)|p−1S

(
1

n

)
(−g(t, ξ, w(ξ))) dξ

−
∫

Ω−
|w(ξ)|p−1S

(
1

n

)
g(t, ξ, w(ξ)) dξ.

The semigroup {S(t)} generated by the Laplace operator subjected to the Dirich-

let boundary conditions is a positive semigroup in Lp(Ω;R) with p ≥ 2, i.e. for

each t > 0 we have S(t)ϕ ≥ 0 almost everywhere in Ω, provided ϕ ∈ Lp(Ω;R) is

a nonnegative function, see [14, Lemma 7.2.3]. Moreover, by (g3),

−g(t, ξ, w(ξ)) ≥ 0 for a.e. ξ ∈ Ω+,

g(t, ξ, w(ξ)) ≥ 0 for a.e. ξ ∈ Ω−.

Thus, we have that

S

(
1

n

)
(−g(t, ξ, w(ξ))) ≥ 0 for a.e. ξ ∈ Ω+,

S

(
1

n

)
g(t, ξ, w(ξ)) ≥ 0 for a.e. ξ ∈ Ω−.

Hence we get 〈
JE(w), S

(
1

n

)
f(t, w)

〉
≤ 0

for every n ∈ N , for almost every t ∈ [0, T ] and for every w ∈ Lp(Ω;R). Thus A

and f satisfy all the hypotheses of Theorem 3.2. Hence there exists a solution

u ∈ C([0, T ];Lp(Ω;R)) of problem (6.1).

Remark 6.1. A trivial example of a superlinear function that satisfies all

the conditions (g1)–(g3) is g(t, x, u) = −u3(sin(u) + 2). Indeed, all the required

assumptions are satisfied for instance for 2 ≤ q <∞, p = 3q and 2 ≤ k < 3q.
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