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ON THE EXISTENCE OF SKYRMIONS

IN PLANAR LIQUID CRYSTALS

Carlo Greco

Abstract. The study of topologically nontrivial field configurations is an

important topic in many branches of physics and applied sciences. In this
paper we are interested to the existence of such structures, the so-called

skyrmions, in the context of liquid crystals. More precisely, we consider

a two-dimensional nematic or cholesteric liquid crystal. In the nematic
case we use a Bogomol’nyi type decomposition in order to get a topological

lower bound on the configurations with a given degree for the full Oseen–

Frank energy functional, and so we can find a global minimum of degree
±1 for the energy. Then we consider the cholesteric case in presence of

an electric field under the one constant approximation assumption, and,

by using the concentration-compactness method, we prove the existence of
a minimum again on the configurations of degree ±1, for sufficiently large
electric fields.

1. Introduction

Let us consider a thin infinity plate of a nematic or cholesteric liquid crystal,

possibly in the presence of an orthogonal applied electric (or magnetic) field E.

In the Oseen–Frank model, the configurations of the liquid crystal are described

by means of functions u : R2 → S2, where S2 is the unit sphere of R3, and the

unit length vector u(x) is the the optical axis, namely the (average) direction

of the molecules at the point x ∈ R2. The energy density is given by 2W =

K1 div(u)2 + K2(u · curlu + τ)2 + K3|u × curlu|2 − εa(E · u)2, where K1, K2
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and K3 are respectively the elastic splay, twist and bend constants, εa > 0 is the

electric susceptibility. Moreover, we denote with · and × the scalar and vector

product on R3 respectively, and with |v| the norm on Rn, n ≥ 1.

The constant τ is = 0 for nematic liquid crystals, and is 6= 0 in the cholesteric

case; in this second case the director field tends to form a helicoid with period

2π/|τ | around a twist axis, and this helicoid is right-handed or left-handed de-

pending on the sign of τ (see, for instance [22]).

In the first part of the paper, we consider the nematic case without electric

field, so that the energy became:

E(u) =
1

2

∫
R2

(
K1 div(u)2 +K2(u · curlu)2 +K3|u× curlu|2

)
dx.

More precisely, we consider functions u ∈ L∞(R2, S2) and ∇u ∈ L2(R2,R6), so

that E(u) < +∞, and u(x) goes to a constant vector at infinity, and we assume

u(∞) = e3 = (0, 0, 1) (the north pole of the sphere S2). Then u can be identified

with a function u : S2 → S2 with a well defined topological degree given by

Q(u) =
1

4π

∫
R2

u · ux1
× ux2

dx

(see, for instance, [6]). Topologically non trivial configuration that minimizes the

energy E(u) are sometimes called skyrmions for the analogy with the Skyrme

model for mesons and baryons (see [20], [21], [5]). We are interested to find

an energy lower bound on every topological sector Qq = {u | Q(u) = q}, with

q ∈ Z, and to find if this lower bound is attained. Clearly, in the case of the

one constant approximation, namely if K1 = K2 = K3 = K > 0, the functional

E(u) reduces to Dirichlet integral, and we have the sigma model solved by [1],

with the classical lower bound

1

2

∫
R2

|∇u|2 dx ≥ 4π|Q(u)|

attained by the rational functions (see, for instance, [24]). In the case of the

functional E(u), we define the function

j(k) =


1 +

k

2
√

1− k
log

(
1 +
√

1− k
1−
√

1− k

)
if 0 < k < 1,

1 +
k√
k − 1

arcsin

(√
k − 1√
k

)
if k ≥ 1,

and we have the following result.

Theorem 1.1. Let u ∈ L∞(R2, S2) and ∇u ∈ L2(R2,R6). Then

E(u) ≥ 2παj

(
K3

α

)
|Q(u)|,

where α = min(K1,K2).
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Since j(1) = 2, in the case of one constant approximation we have the classical

lower bound E(u) ≥ 4πK|Q(u)|. On the topological sector Q−1 the previous

result can be improved. In fact, we have the following theorem.

Theorem 1.2. Let θi = θi(r), θi : [0,+∞[→ [0, π[, i = 1, 2, be two functions

such that θi(0) = π, θi(+∞) = 0 and

rθ′1 + sin θ1

√
cos2 θ1 +

K3

K2
sin2 θ1 = 0, rθ′2

√
cos2 θ2 +

K3

K1
sin2 θ2 + sin θ2 = 0.

Then, if we set

v1(x) = sin θ1(|x|)ê⊥r + cos θ1(|x|)e3, v2(x) = sin θ2(|x|)ê⊥r + cos θ2(|x|)e3,

where êr = x/|x|, we have Q(v1) = Q(v2) = −1, and:

min
u∈Q−1

E(u) =


E(v1) = 2πK2 j

(
K3

K2

)
if K2 < K1,

E(v2) = 2πK1 j

(
K3

K1

)
if K1 < K2.

The explicit expression of θ1 and θ2 will be given later (see Remark 2.7). Since

of course E(u) is invariant under translations and dilatation, the minimum of

E(u) is attained, in fact, on a family of functions contained in Q−1. Clearly, the

same conclusion is valid for the topological sector Q1 by changing u to −u; in

the Oseen–Frank model, u and −u are identified.

The existence of the axially symmetric skyrmion v1 has been found in [5]

and its stability has been studied. Moreover, in [5] has been introduced the

function j(k) as the energy value of v1. Theorem 1.1 uses the same function to

get a lower bound on every topological sector Qq and Theorem 1.2 identifies a

global minimum of E(u) on Q−1 for every value of the constants K1, K2, K3.

The lower bound in Theorem 1.1 derive from a Bogomol’nyi type decompo-

sition for the energy or, more precisely, for the expression |∇u|2 + k|u× curlu|2,

which turns out to be the sum of a topological term and a quadratic term. For

the functions v1 and v2 the quadratic term is equal to zero. Notice that, from [5],

we know that on topological sectors Qq, with |q| > 1, there are not simple axi-

ally symmetric skyrmions like vi, i = 1, 2, except in the case of the one constant

approximation.

In the second part of the paper we study a liquid crystal plate under the

action of the electric field E = (0, 0, E). In this case it is well know that critical

points of the energy are not allowed for nematics (τ = 0), since, for every u, the

energy E(uλ) of the scaled functions uλ(x) = u(λx) (λ > 0) is strictly decreasing.

Then we consider the cholesteric case (τ 6= 0). Moreover, we consider only the

one constant approximation case.

Then, the energy density reduce to 2W = K|∇u|2 + 2Kτu · curlu + Kτ2 −
(εau ·E)2−K div(u · (∇u)t−div(u)u), and since the energy density of the trivial
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configurations u(x) = (0, 0,±1) is 2W0 = Kτ2 − εaE2, this leads us to consider

the energy density difference W −W0, and then the functional

E(u) =

∫
R2

(
1

2
|∇u|2 + τu · curlu+

εaE
2

2K

(
1− u2

3

))
dx,

where we have set u(x) = (u1(x), u2(x), u3(x)). Since |u| = 1, we have 1− u2
3 =

|u− e3|2 − 1/4|u− e3|4, so that we can write the potential term associated with

the external electric field into a slightly different form:

E(u) =

∫
R2

(
1

2
|∇u|2 + τu · curlu+

k

2

(
|u− e3|2 −

1

4
|u− e3|4

))
dx,

where k = εaE
2/K. Notice that E(u) < ∞ implies u(∞) = ±e3. We con-

sider E(u) defined on M = {u : R2 → R3 | u − e3 ∈ H1,2(R2,R3), |u(x)| = 1

almost everywhere} as in [17], and we prove the following theorem.

Theorem 1.3. If τ 6= 0, and k ≥ 14τ2, then the minimum of E on the

topological sector Q−1 = {u ∈M | Q(u) = −1} is attained.

Since the topological sectors are not closed with respect to the weak con-

vergence, in order to prove that a minimizing sequence (un)n ⊂ Q−1 converges

(modulo subsequences) to some u∗ ∈ Q−1, we use the concentration-compactness

method ([16]) as in the case of the Skyrme model ([9]–[11], [14], [15]).

Notice that chiral terms like u · curlu also appear on the study of ferro-

magnetic materials in connection to the Dzyaloshinskĭı–Moriya energy density,

which is composed of the Lifshitz invariants Lki,j = ui(∂uj/∂xk)− uj(∂ui/∂xk).

In fact, u · curlu = L1
3,2 + L2

1,3 (see [3], [4], [13]). However, in that case, the en-

ergy associated with an external magnetic field (Zeeman energy) is the L2-norm

of u − e3 instead of |u − e3|2 − 1/4|u − e3|4 as in our case. A functional of the

form Dirichlet integral + chiral term + Zeeman energy is studied in [17] with

concentration-compactness method. In this case, the minimum of the energy

on Q−1 is obtained under less restrictive assumptions on the coupling constants

between chiral term and Zeeman energy (see [17], Theorem 1.1. See also [8],

where the Zeeman energy is replaced by the more general expression |u − e3|p,
with 2 ≤ p ≤ 4).

In the liquid crystal case, the potential term has the form of the double-

vacuum potential as in some Skyrme model (see [23]), according to the fact that

the opposite orientations u(x) and −u(x) of the optical axis are indistinguishable,

and the function −u∗ minimize E(u) on Q1 = {u ∈ M | Q(u) = 1}, where

M = {u : R2 → R3 | u+ e3 ∈ H1,2(R2,R3), |u(x)| = 1 almost everywhere}.
Because of the chiral term, and the particular form of the potential, an impor-

tant ingredient of the concentration-compactness method, namely a lower bound

for the energy on the topological sectors Q(u) ≥ 1, is obtained for “large” electric
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field, namely for k ≥ 14τ2. For some other ingredients, as the coerciveness, the

assumption k > 4τ2 is enough.

Finally, we remark that axially symmetric skyrmions in a thin layer of chole-

steric liquid crystal are studied in [2], [12], [7], with analytic and numerical

methods.

2. Proofs of Theorems 1.1 and 1.2

In order to prove Theorems 1.1 and 1.2, we state some lemmas. We set

x = (x1, x2), and u = (u1, u2, u3).

Lemma 2.1. Let u ∈ L∞(R2, S2) with ∇u ∈ L2(R2,R6) and let k > 0. Then

we have:

|∇u|2 + (k − 1)|u× curlu|2

=
(
1 + (k − 1)u2

1

)
|ux1 |2 +

(
1 + (k − 1)u2

2

)
|ux2 |2 + 2(k − 1)u1u2ux1 · ux2 .

Proof. First of all we claim that

|u× curlu|2 = u2
1|ux1

|2 + u2
2|ux2

|2 + 2u1u2 ux1
· ux2

.

In fact, let us denote with ui,j the derivative of ui with respect to the spatial

variable xj (i = 1, 2, 3, j = 1, 2), and let (ei)i the canonical basis of R3. We have

u× curlu = eiεk,i,jεk,p,qujuq,p = ei(δi,pδj,q − δi,qδj,p)ujuq,p,

but, since |u| = 1, we get δj,qujuq,p = 0 for p = 1, 2, 3, so that

u× curlu = −eiδi,qδj,pujuq,p = −eiujui,j .

Then |u × curlu|2 = ujupui,jui,p = u2
1ui,1ui,1 + u2

2ui,2ui,2 + 2u1u2ui,1ui,2 =

u2
1|ux1

|2 + u2
2|ux2

|2 + 2u1u2ux1
· ux2

, and the claim is proved. Since |∇u|2 =

|ux1
|2 + |ux2

|2, the lemma follows immediately. �

Lemma 2.2. Let u ∈ L∞(R2, S2) with ∇u ∈ L2(R2,R6), and let k > 0. Let

a = a(x), b = b(x), c = c(x), d = d(x) be functions on R2 such that :

(2.1)


a2 + d2 = 1 + (k − 1)u2

1,

b2 + c2 = 1 + (k − 1)u2
2,

ab+ cd = (k − 1)u1u2.

Then we have

(2.2) |∇u|2 + (k − 1)|u× curlu|2

= 2(ac− bd)u · ux1
× ux2

+ |aux1
+ bux2

+ cu× ux2
+ du× ux1

|2,

(2.3) |∇u|2 + (k − 1)|u× curlu|2

= −2(ac− bd)u · ux1
× ux2

+ |aux1
+ bux2

− cu× ux2
− du× ux1

|2.
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Proof. Expanding the quadratic term in (2.2), and using some algebraic

identity such as |u× uxi
| = |uxi

|, u× ux1
· u× ux2

= ux1
· ux2

, we have

|aux1
+ bux2

+ cu× ux2
+ du× ux1

|2

= −2(ac−bd)u·ux1×ux2 +(a2 +d2)|ux1 |2 +(b2 +c2)|ux2 |2 +2(ab+cd)ux1 ·ux2 .

Since the functions a, . . . , d satisfy (2.1), using Lemma 2.1 we have (2.2). The

proof of (2.3) is similar. �

Remark 2.3. Conditions (2.1) implies ac− bd = ±
√

1 + (k − 1)(u2
1 + u2

2) =

±
√
k + (1− k)u2

3. A possible choice for the functions a, . . . , d is

(2.4)



a =
√

1 + (k − 1)u2
1,

b =
(k − 1)u1u2√
1 + (k − 1)u2

1

,

c =

√
1 + (k − 1)(u2

1 + u2
2)√

1 + (k − 1)u2
1

,

d = 0.

Since 0 ≤ u2
1 ≤ 1, we have 1+(k−1)u2

1 ≥ min(1, k) > 0, and then the functions in

(2.4) are well defined on R2, and they belong to L∞(R2,R). Moreover, from (2.4)

we have ac− bd =
√
k + (1− k)u2

3.

Remark 2.4. We observe that, by an exchange of variables x1 and x2, or

arguing as in the previous Lemma, we have that the conditions
a2 + d2 = 1 + (k − 1)u2

2,

b2 + c2 = 1 + (k − 1)u2
1,

ab+ cd = (k − 1)u1u2,

implies that |∇u|2 + (k − 1)|u × curlu|2 is equal to 2(ac − bd)u · ux1
× ux2

+

|aux2
+ bux1

− cu× ux1
− du× ux2

|2 and to −2(ac− bd)u · ux1
× ux2

+ |aux2
+

bux1
+ cu× ux2

+ du× ux1
|2.

We can now prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let u ∈ L∞(R2, S2) with ∇u ∈ L2(R2,R6), and

let α = min(K1,K2), k = K3/α. Then, from the well known relations

(2.5)
(u · curlu)2 = | curlu|2 − |u× curlu|2

div(u)2 + | curlu|2 = |∇u|2 − div
(
u · (∇u)t − div(u)u

)
we have K1 div(u)2 +K2(u ·curlu)2 +K3|u×curlu|2 ≥ α(div(u)2 +(u ·curlu)2)+

K3|u × curlu|2 = α(|∇u|2 + (k − 1)|u × curlu|2) − α div(u · (∇u)t − div(u)u).
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Integrating on R2, and recalling that u is constant at infinity, we get

(2.6) E(u) ≥ α

2

∫
R2

(
|∇u|2 + (k − 1)|u× curlu|2

)
dx

and, from Lemma 2.2,

E(u) ≥ ±α
∫
R2

(ac− bd)u · ux1
× ux2

dx.

Choosing the functions a, . . . , d as in (2.4), we get

E(u) ≥ ±α
∫
R2

√
k + (1− k)u2

3 u · ux1
× ux2

dx.

In order to evaluate the last integral, we consider the volume form ν = y1dy2 ∧
dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2 on S2 and the two-form µ =

√
k + (1− k)y2

3 ν.

Moreover, by the density result of [19, Part 4], (see also [6]) we can assume

u smooth. Then, by the generalized integral formula of the degree (see, for

instance [18]), we have:∫
R2

√
k + (1− k)u2

3 u · ux1
× ux2

dx

=

∫
R2

µ ◦ u dx = Q(u)

∫
S2

µdy = Q(u)

∫
B

div(F ) dy1 dy2 dy3,

where F is the vector field F =
√
k + (1− k)y2

3 (y1, y2, y3), and B is the unit

ball of R3. A this point, by a direct calculation, we get:∫
B

div(F ) dy1 dy2 dy3 =

∫
B

3k + 4(1− k)y2
3√

k + (1− k)y2
3

dy1 dy2 dy3 = 2πj(k),

where j(k) is defined in the Introduction. Then E(u) ≥ ±2παj(k)Q(u), namely

E(u) ≥ 2παj(K3/α)|Q(u)|, and the theorem is proved. �

Let u ∈ L∞(R2, S2) with ∇u ∈ L2(R2,R6), let k > 0, and let us consider the

functional

Fk(u) =

∫
R2

(
|∇u|2 + (k − 1)|u× curlu|2

)
dx.

From Lemma 2.2, and from the calculations above it follows that, on the topo-

logical sector Q−1, namely if Q(u) = −1, we have

Fk(u) = 4πj(k) +

∫
R2

|aux1
+ bux2

− cu× ux2
|2 dx,

where the functions a, b, c, satisfy (2.4), and the minimum value 4πj(k) of Fk is

attained on Q−1 if and only if aux1 + bux2 − cu× ux2 = 0, namely if and only if

(2.7) |∇u|2 + (k − 1)|u× curlu|2 + 2
√
k + (1− k)u2

3 u · ux1
× ux2

= 0.

We have the following proposition.



574 C. Greco

Proposition 2.5. Let k > 0, and let θi = θi(r), θi : [0,+∞[→ [0, π[ be two

functions such that θi(0) = π, θi(+∞) = 0, and

sin θ1

√
cos2 θ1 + k sin2 θ1 + rθ′1 = 0, sin θ2 +

√
cos2 θ2 + k sin2 θ2 rθ

′
2 = 0,

and set

v1(x) = sin θ1(|x|)ê⊥r + cos θ1(|x|)e3, v2(x) = sin θ2(|x|)ê⊥r + cos θ2(|x|)e3,

where êr = x/|x|. Then, the minimum 4πj(k) of the functional Fk (defined

above) on Q−1 is attained on the functions v1 and v2.

Proof. Clearly vi ∈ Q−1, i = 1, 2, so that it will suffice to prove (2.7) for vi.

In fact, it is easy to check that the l.h.t. of (2.7), calculated for v1 and for v2 is

equal respectively, to

(sin θ1

√
cos2 θ1 + k sin2 θ1 + rθ′1)2

r2
,

(sin θ2 +
√

cos2 θ2 + k sin2 θ2 rθ
′
2)2

r2

where r = |x|, and the result follows immediately. �

Proof of Theorem 1.2. Let us suppose that the functions θi and vi,

i = 1, 2 are as in Theorem 1.2. Then v1 and v2 minimize on Q−1, respectively,

the functionals FK3/K2
and FK3/K1

, and we have FK3/K2
= 4πj(K3/K2), and

FK3/K1
= 4πj(K3/K1). Moreover, since div v1 = 0 and v2 · curl v2 = 0, using

again (2.5), we have E(v1)=(K2/2)FK3/K2
(v1), and E(v2)=(K1/2)FK3/K1

(v2).

Then, from (2.6) we get, for every u ∈ Q−1,

E(u) ≥ K2

2
FK3/K2

(u) ≥ K2

2
FK3/K2

(v1) = E(v1) = 2πK2j

(
K3

K2

)
in the case K2 < K1, and

E(u) ≥ K1

2
FK3/K1

(u) ≥ K1

2
FK3/K1

(v2) = E(v2) = 2πK1j

(
K3

K1

)
in the case K1 < K2, and the theorem is proved. �

Remark 2.6. Since the function t→ tj(K3/t) is strictly increasing, we have

that K2 ≶ K1 implies E(v1) ≶ E(v2).

Remark 2.7. Solving the first equation in Proposition 2.5, we get

θ1(r) =
π

2
+ arctan

(
K2 −K3c

2r2

2K2c r

)
with c > 0, the solution obtained in [5] (in our case it is decreasing because of the

reversed boundary conditions). Solving the second equation in Proposition 2.5

we have

θ2(r) =
π

2
− arctan

 η−1
K3/K1

(log(cr))√
1− (η−1

K3/K1
(log(cr)))2

 ,
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where η−1
K3/K1

is the inverse of the function

ηk(x) =



− log

(√
1− x2(

√
1− k x+

√
k + (1− k)x2)

√
1−k

x+
√
k + (1− k)x2

)
if 0 < k < 1,

− log

( √
1− x2

x+
√
k + (1− k)x2

)

+
√
k − 1 arctan

( √
k − 1x√

k + (1− k)x2

)
if k ≥ 1.

In fact, we have η′k(x) =
√
k + (1− k)x2/(1− x2), so that (sin θ2)∂rηk(cos θ2) +√

cos2 θ2 + k sin2 θ2 θ
′
2 = 0.

Let us consider now the quadratic terms in (2.2) and (2.3). As in the classic

sigma model, the stereographic projection reduce a vector equation to a system

of first order partial differential equations. In fact, let us denote with w1 =

u1/(1 + u3), w2 = u2/(1 + u3) the stereographic projection of the point u =

(u1, u2, u3) ∈ S2 in R2. Then, we have the following proposition.

Proposition 2.8. We have aux1 + bux2 ± cu × ux2 ± du × ux1 = 0 if and

only if the functions w1 and w2 satisfy the system

(2.8)

aw1,x1
∓ cw2,x2

+ bw1,x2
∓ dw2,x1

= 0,

aw2,x1 ± cw1,x2 + bw2,x2 ± dw1,x1 = 0.

Proof. Set, for brevity, s = (s1, s2, s3) = aux1 + bux2 + cu×ux2 + du×ux1 .

A direct calculation shows that

aw1,x1
− cw2,x2

+ bw1,x2
− dw2,x1

= (s1 − w1s3)/(1 + u3),

aw2,x1
+ cw1,x2

+ bw2,x2
+ dw1,x1

= (s2 − w2s3)/(1 + u3).

Now, if s = 0, clearly the system (2.8) is satisfied. Vice versa, (2.8) implies

s = (w1, w2, 1)s3, and since u · s = 0, and u · (w1, w2, 1) = 1, we get 0 = u · s =

u · (w1, w2, 1)s3 = s3, and then s = 0. The proof for the quadratic term in (2.3)

is similar. �

Remark 2.9. Clearly, from (2.4) we see that, in the case k = 1, namely in the

classical sigma model, the quadratic terms in (2.2), (2.3) becames ux1 ±u×ux2 ,

and (2.8) are reduced to the Cauchy–Riemann equations w1,x1
∓ w2,x2

= 0,

w2,x1
± w1,x2

= 0; for k 6= 1 the system (2.8) can not be solved explicitly.

3. Proof of Theorem 1.3

In order to minimize the functional

E(u) =

∫
R2

(
1

2
|∇u|2 + τu · curlu+

k

2

(
|u− e3|2 −

1

4
|u− e3|4

))
dx
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under the constraint Q(u) = −1, we assume the functional framework of [17],

namely we considerM = {u : R2 → R3 | u−e3 ∈ H1,2(R2,R3), |u(x)| = 1 almost

everywhere} (ei, i = 1, 2, 3 is the canonical basis on R3), which is a complete

metric space for the distance d(u, v) = ‖u − v‖H1,2 . The functionals E(u) and

Q(u) are well defined and continuous on M. The set M0 = {u : R2 → R3 |
u− e3 ∈ C∞0 (R2,R3), |u(x)| = 1} is dense in M. If u = (u1, u2, u3) ∈M0, then

u1 = u2 = 0, u3 = 1 outside a compact subset of R2.

Lemma 3.1. For every u ∈M and every λ > 0 we have∣∣∣∣ ∫
R2

u · curlu dx

∣∣∣∣ ≤ λ ∫
R2

(
1− u2

3

)
dx+

1

λ

∫
R2

|∇u3|2 dx.

Proof. Clearly we can assume u = (u1, u2, u3) ∈ M0. Since u · curlu =

u1u3,x2−u2u3,x1 +u3(u2,x1−u1,x2), integrating by parts, and using the inequality

2ab ≤ λa2 + (1/λ)b2, we have∣∣∣∣ ∫
R2

u · curlu dx

∣∣∣∣ = 2

∣∣∣∣ ∫
R2

(u1u3,x2 − u2u3,x1) dx

∣∣∣∣
≤ λ

∫
R2

(
u2

1 + u2
2

)
dx+

1

λ

∫
R2

|∇u3|2 dx,

and since u2
1 + u2

2 = 1− u2
3, the lemma is proved. �

Lemma 3.2. Let us suppose k > 4τ2. Then, there exists c1 > 0 such that,

for every u ∈M, we have∫
R2

(
|∇u|2 + (1− u2

3)
)
dx ≤ c1E(u).

Proof. Because of the previous lemma, we have

E(u) ≥
∫
R2

(
1

2
|∇u|2 − |τ |

(
λ(1− u2

3) +
1

λ
|∇u3|2

)
+
k

2

(
1− u2

3

))
dx

=

∫ (
1

2

(
|∇u1|2 + |∇u2|2

)
+

(
1

2
− |τ |

λ

)
|∇u3|2 +

(
k

2
− |τ |λ

)(
1− u2

3

))
dx.

Since k > 4τ2, we can assume 2|τ | < λ < k/2|τ |, so that 1/2 − |τ |/λ > 0 and

k/2− |τ |λ > 0, and the claim follows. �

Remark 3.3. With the choice λ = k/2|τ | in the previous lemma, we have

E(u) ≥
∫
R2

(
1

2

(
|∇u1|2 + |∇u2|2

)
+

1

2

(
1− 4τ2

k

)
|∇u3|2

)
dx,

so that

E(u) ≥ 4π

(
1− 4τ2

k

)
|Q(u)|,(3.1) ∫

R2

|∇u3|2 dx ≤
2k

k − 4τ2
E(u).(3.2)
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We want to show now the coercivity of E. For this we need the following

lemma.

Lemma 3.4. Let α, β be such that 0 < α < β < 1. Then, for every u =

(u1, u2, u3) ∈M0, we have

|A| ≤ 1

16πα2(β − α)2
‖v‖4H1,2

where |A| is the Lebesgue measure of the level set A = {x ∈ R2 | u3(x) < α},
and v = (u1, u2, 0) is the planar component of u.

Proof. We observe firstly that∫
R2

|u3∇u3| dx ≤
1

2
‖v‖2H1,2 ,

in fact we have u·∇u = v ·∇v+u3∇u3, and since u·∇u = 0 because of |u(x)| = 1,

we get |u3 · ∇u3| ≤ |v||∇v| ≤
(
|v|2 + |∇v|2

)
/2, and, integrating on R2, we have

the previous the inequality. We set now B = {x ∈ R2 | α < u3(x) < β}. Then,

from the coarea formula,∫ β

α

H1(Γy) dy =

∫
B

|∇u3| dx ≤
1

α

∫
R2

|u3∇u3| dx ≤
1

2α
‖v‖2H1,2 ,

where Γy = {x ∈ R2 | u3(x) = y}. Then we have H1(Γy0) ≤ ‖v‖2H1,2/(2α(β−α))

for some suitable y0 ∈ [α, β]. Set C = {x ∈ R2 | u3(x) < y0}. Since on C we

have 1− u3(x) ≥ 1− β > 0, C is contained in the support of 1− u3 so it is open

and bounded, and, for the isoperimetric inequality,

|C| ≤ 1

4π
H1(Γy0)2 ≤ 1

16πα2(β − α)2
‖v‖4H1,2 .

Since A ⊂ C, the lemma is proved. �

Remark 3.5. Notice that, with α = 1/2 and β = 3/4, the previous lemma

implies that, for every u ∈ M0, we have
∣∣{x ∈ R2 | u3(x) < 0}

∣∣ ≤ ∣∣{x ∈ R2 |
u3(x) < 1/2}

∣∣ ≤ 4‖v‖4H1,2/π.

Proposition 3.6. Let us suppose k > 4τ2. Then for every u ∈M, we have∫
R2

(
|∇u|2 + |u− e3|2

)
dx ≤ 16c21

π
E(u)2 + 3c1E(u)

(c1 is the constant in Lemma 3.2), so that E(u) is coercive on M.

Proof. Clearly, because of the density of M0 in M, we can limit us to

prove the lemma for every u ∈ M0. In fact, let u = (u1, u2, u3) ∈ M0. From

Lemma 3.2 we have

(3.3)

∫
R2

|∇u|2 dx ≤ c1E(u).
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Set now A = {x ∈ R2 | u3(x) < 0}. Clearly∫
R2

|u− e3|2 dx = 2

∫
R2

(1− u3) dx = 2

(∫
A

(1− u3) dx+

∫
R2\A

(1− u3) dx

)
.

From Remark 3.5 and from Lemma 3.2 we have:

|A| ≤ 4

π
‖v‖4H1,2 =

4

π

(∫
R2

(
|∇u1|2 + |∇u2|2 + 1− u2

3

)
dx

)2

≤ 4c21
π
E(u)2,

so that ∫
A

(1− u3) dx ≤ 2|A| ≤ 8c21
π
E(u)2.

On the other hand, using again Lemma 3.2,∫
R2\A

(1− u3) dx ≤
∫
R2\A

(1 + u3)(1− u3) dx ≤
∫
R2

(1− u2
3) dx ≤ c1E(u)

therefore

(3.4)

∫
R2

|u− e3|2 dx ≤
16c21
π

E(u)2 + 2c1E(u).

From (3.3) and (3.4) we have the result. �

Let us consider now a minimizing sequence (un)n ⊂M∩Q−1:

lim
n→+∞

E(un) = I−1 = inf
Q−1

E(u).

For the coerciveness of E (Proposition 3.6), un → u∗ weakly (modulo subse-

quences) in M, that is un − e3 → u∗ − e3 weakly in H1,2(R2,R3). In order to

prove Theorem 1.3, we set, as in [17], ρn = |∇un|2 + |un − e3|2, so that (ρn)n
is a sequence of positive functions in L1(R2,R) with (‖ρn‖L1)n bounded, and

‖ρn‖L1 ≥ 8π for the classical topological lower bound. Then, passing eventually

to a subsequence, and modulo translations, the following cases may occur ([16]):

(1) compactness: for every ε > 0, there exists R > 0, such that∫
|x|>R

ρn dx < ε;

(2) vanishing: for every R > 0

lim
n→+∞

sup
x∈R2

∫
DR(x)

ρn dx = 0;

(here, and in the following, DR(x) is the disk {y ∈ R2 | |x − y| < R},
and DR = DR(0));

(3) dichotomy: there exists t, with 0 < t < 1 such that, for every ε > 0

there exist R > 0, (Rn)n ⊂ R with Rn → +∞, and two sequences

(ρ1
n)n, (ρ2

n)n ⊂ L1(R2,R) such that: 0 ≤ ρ1
n + ρ2

n ≤ ρn, Supp(ρ1
n) ⊂ DR,

Supp(ρ2
n) ⊂ R2 \DRn

, and∣∣∣∣ ∫
R2

ρ1
n dx− t‖ρn‖L1

∣∣∣∣ < ε,

∣∣∣∣ ∫
R2

ρ2
n dx− (1− t)‖ρn‖L1

∣∣∣∣ < ε.
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The proof of Theorem 1.3 consists, as usual, in showing that in the com-

pactness case we have actually u∗ ∈ Q−1, so that the minimum of E on Q−1 is

achieved, and that vanishing and dichotomy do not occur.

In the following we set

E(u) = E0(u)− k

8

∫
R2

|u− e3|4 dx

where

E0(u) =

∫
R2

(
1

2
|∇u|2 + τu · curlu+

k

2
|u− e3|2

)
dx.

Since
∫
R2 e3 · curlu dx = 0 onM, the functional E0 has the same form as in [17],

and we will take advantage of its results.

Let us suppose that the compactness case occurs. From [17, Lemma 4.1],

we have that E0(u∗)± 4πQ(u∗) ≤ lim inf
n→+∞

(E0(un)± 4πQ(un)), and since, by the

compactness assumption,∫
R2

|un − e3|4 dx→
∫
R2

|u∗ − e3|4 dx

along subsequences, we have also E(u∗)± 4πQ(u∗) ≤ lim inf
n→+∞

(E(un)± 4πQ(un)),

namely E(u∗) + 4π|1 + Q(u∗)| ≤ I−1, where, as before, I−1 = inf
Q−1

E(u). From

[17, Lemma 3.1], we know that inf
Q−1

E0(u) < 4π, and since E(u) ≤ E0(u) we have

also I−1 < 4π. Then Q(u∗) = −1. For if not, we would have |1 + Q(u∗)| ≥ 1,

and then 4π ≤ E(u∗) + 4π|1 + Q(u∗)| ≤ I−1, which is not possible. So, in the

compactness case, the minimum of E(u) on Q−1 is achieved.

In the vanishing case we would have that lim inf
n→+∞

E0(un) ≥ 4π (see [17,

Lemma 4.2]) and also, by the covering argument, that∫
R2

|un − e3|4 dx→ 0,

so that I−1 = lim
n→+∞

E(un) ≥ 4π, whereas I−1 < 4π, so this case do not occur.

In order to ruling out dichotomy, we need, first of all, a topological lower

bound for the energy. We start with a lemma.

Lemma 3.7. Let u = (u1, u2, u3) ∈ M0, and let α, β be such that −1 < α <

β < 1. Then we have

|A| ≤ |B|
4π(β − α)2

∫
B

|∇u3|2 dx,

where A = {x ∈ R2 | u3(x) < α}, and B = {x ∈ R2 | α < u3(x) < β}.

Proof. Clearly |A| < +∞ and |B| < +∞. For the coarea formula and

Cauchy–Schwarz inequality∫ β

α

H1(Γy) dy =

∫
B

|∇u3| dx ≤
√
|B|

√∫
B

|∇u3|2 dx,
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where Γy = {x ∈ R2 | u3(x) = y}, so that

H1(Γy0) ≤
√
|B|

β − α

√∫
B

|∇u3|2 dx

for some y0 ∈ [α, β]. From the isoperimetric inequality we have∣∣{x ∈ R2 | u3(x) < y0}
∣∣ ≤ 1

4π
H1(Γy0)2 ≤ |B|

4π(β − α)2

∫
B

|∇u3|2 dx,

and since A ⊂ {x ∈ R2 | u3(x) < y0}, the lemma is proved. �

We observe now that, for every u ∈M we have ([17, Lemma 3.2]):

1

2
|∇u|2 + τu · curlu = u · ux1

× ux2
− τ2

2
(1− u3)2 + τ(u2,x1

− u1,x2
)

+
1

2
|ux1 − τe1 × u+ u× (ux2 − τe2 × u)|2,

so that

(3.5)
1

2
|∇u|2 + τu · curlu+

k

2
(1− u2

3) = u · ux1
× ux2

+ f(u3)

+ τ(u2,x1 − u1,x2) +
1

2
|ux1 − τe1 × u+ u× (ux2 − τe2 × u)|2,

were we have set, for brevity,

f(u3) =
k + τ2

2
(1− u3)

(
k − τ2

k + τ2
+ u3

)
.

Since f(u3) < 0 for −1 ≤ u3 < −(k − τ2)/(k + τ2), an inequality like |∇u|2/2 +

τu · curlu + k(1 − u2
3)/2 ≥ u · ux1 × ux2 + τ(u2,x1 − u1,x2) (which leads us to

the lower bound E(u) ≥ 4πQ(u)) does not hold for every x ∈ R2. However,

from (3.5) we have

(3.6) E(u) ≥ 4πQ(u) +

∫
R2

f(u3(x)) dx

and the last integral is positive for k large enough. More precisely, we have the

following proposition.

Proposition 3.8. Let us suppose k ≥ 14τ2. Then, for every u = (u1, u2, u3)

in M, with Q(u) > 0, we have E(u) ≥ 4π.

Proof. If Q(u) ≥ 2 the claim follows immediately from (3.1). In the case

Q(u) = 1 we argue by contradiction, and suppose that E(u) < 4π for some

u ∈M with Q(u) = 1. Without loss of generality we can assume u ∈M0. Set

α =
τ2 −

√
k2 − 7τ2(k + τ2)

k + τ2
, β =

τ2 +
√
k2 − 7τ2(k + τ2)

k + τ2
.

Then −2τ2 ≤ f(u3) < 0 for −1 ≤ u3 < −(k − τ2)/(k + τ2), and f(u3) ≥ 7τ2/2

for α ≤ u3 ≤ β, where f(u3) is the function defined above.
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If we set A = {x ∈ R2 | u3(x) < α} and B = {x ∈ R2 | α < u3(x) < β},
then, from Lemma 3.7 and (3.2), we have:

|A| ≤ |B|
4π(β − α)2

∫
B

|∇u3|2 dx ≤
2k|B|E(u)

4π(β − α)2(k − 4τ2)

<
2k|B|

(β − α)2(k − 4τ2)
=

k(k + τ2)2|B|
2(k2 − 7kτ2 − 7τ4)(k − 4τ2)

.

We set now A0 = {x ∈ R2 | −1 ≤ u3(x) < −(k − τ2)/(k + τ2)}. Since A0 ⊂ A,

we get∫
R2

f(u3(x)) dx ≥
∫
A0

f(u3(x)) dx+

∫
B

f(u3(x)) dx

≥ −2τ2|A|+ 7τ2

2
|B| ≥

(
−τ2k(k + τ2)2

(k2 − 7kτ2 − 7τ4)(k − 4τ2)
+

7τ2

2

)
|B|.

For k ≥ 14τ2 the last term in the previous inequality is ≥ τ2|B|/26 > 0 and,

from (3.6) follows E(u) ≥ 4π, a contradiction. �

The next lemma is a simple version of a truncation lemma that will be enough

in our case (see also [15], [14], [8]).

Lemma 3.9. Let u ∈ M0, 0 < ε < 1/8, a, b ∈ R, be such that 1 ≤ a < b,

b− a ≥ 1 and ∫
a<|x|<b

(
|∇u|2 + |u− e3|2

)
dx < ε.

Then, there exist σ ∈ [a, b] and functions u1, u2 ∈M, such that:

u1(x) =

u(x) if |x| ≤ σ,
e3 if |x| ≥ σ + 1,

u2(x) =

e3 if |x| ≤ σ,
u(x) if |x| ≥ σ + 1,

and ∫
σ<|x|<σ+1

(
|∇ui|2 + |ui − e3|2

)
dx < 42ε, i = 1, 2.

Proof. We sketch the proof for the function u1, because the construction

of u2 is similar. Set v(x) = |∇u(x)|2 + |u(x)− e3|2, and, using polar coordinates,

set û(r, θ) = u(r cos θ, r sin θ), v̂(r, θ) = v(r cos θ, r sin θ). Since∫
a<|x|<b

v(x) dx =

∫ b

a

∫ 2π

0

v̂(r, θ)r dθ dr < ε

and since b− a ≥ 1, we have

(3.7)

∫ 2π

0

v̂(σ, θ)σ dθ < ε

for some σ ∈ [a, b]. Since σ ≥ 1, we have also v̂(σ, θ0) ≤ ε/2π < ε for some

θ0 ∈ [0, 2π]. Let g(θ) = û(σ, θ)−e3. We claim that |g(θ)|2 < 2ε for all θ ∈ [0, 2π].

In fact, we have |g(θ0)|2 ≤ v̂(σ, θ0) < ε, and moreover, for the derivative ∂θ|g(θ)|2
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we have (setting ∇u = ∇u(σ cos θ, σ sin θ) for brevity) |∂θ|g(θ)|2| = |2g(θ) · (∇u ·
(−σ sin θ, σ cos θ, 0))| ≤ 2σ|g(θ)||∇u| ≤ (|∇u|2 + |g(θ)|2)σ = v̂(σ, θ)σ. Then,

from (3.7) and |g(θ0)|2 < ε, we get |g(θ)|2 < 2ε, as claimed. In other words, the

curve θ → u(σ cos θ, σ sin θ) is near to the north pole of the sphere S2.

We set now

w(x) =


u(x) if |x| ≤ σ,
(σ + 1− |x|)u(σx/|x|) + (|x| − σ)e3 if σ < |x| < σ + 1,

e3 if |x| ≥ σ + 1.

Clearly |w(x)| ≤ 1. Moreover, for σ < |x| < σ + 1, we have |w(x) − e3| =

(σ+ 1− |x|)|u(σx/|x|)− e3| ≤ |u(σx/|x|)− e3| and 1− |w(x)| = ||e3| − |w(x)|| ≤
|e3 − w(x)| ≤ |u(σx/|x|)− e3|, so that |w(x)| ≥ 1−max |g(θ)| > 1−

√
2ε > 1/2

(because of ε < 1/8). Then we can normalize w by setting u1(x) = w(x)/|w(x)|.
Clearly u1 ∈M.

We now proceed to estimate |u1(x) − e3|. For σ < |x| < σ + 1, we have

|u1(x)− e3| ≤ |w(x)/|w(x)| −w(x)|+ |w(x)− e3| = (1− |w(x)|) + |w(x)− e3| ≤
2|u(σx/|x|)− e3|, so that

(3.8)

∫
σ<|x|<σ+1

|u1(x)− e3|2 dx ≤ 4

∫ 2π

0

∫ σ+1

σ

|û(σ, θ)− e3|2 r dr dθ

= 4

(
1

2σ
+ 1

)∫ 2π

0

|û(σ, θ)− e3|2σ dθ < 4

(
1

2σ
+ 1

)
ε < 6ε.

We estimate now |∇u1|2. For σ < |x| < σ + 1, we have |∇u1|2 = (|∇w|2|w|2 −
(w.∇w)2)/|w|4 ≤ |∇w|2/|w|2, and since 1/4 ≤ |w|2, |∇u1|2 ≤ 4|∇w|2. It is easy

to check that, for σ < |x| < σ + 1 we have

wx1(x) = − x1

|x|

(
u

(
σx

|x|

)
− e3

)
+ σ

σ + 1− |x|
|x|

(
ux1

(
σx

|x|

)
x2

2

|x|2
− ux2

(
σx

|x|

)
x1x2

|x|2

)
.

Since σ(σ + 1 − |x|)/|x| ≤ 1, using the fact that (a + b + c)2 ≤ 3(a2 + b2 + c2),

we get

|wx1
(x)|2 ≤ 3

(∣∣∣∣u(σx|x|
)
− e3

∣∣∣∣2 +

∣∣∣∣ux1

(
σx

|x|

)∣∣∣∣2 +

∣∣∣∣ux2

(
σx

|x|

)∣∣∣∣2),
and a similar result holds for wx2

(x), so that, for σ < |x| < σ + 1, we have

|∇u1(x)|2 ≤ 4|∇w(x)|2 ≤ 24

(∣∣∣∣u(σx|x|
)
− e3

∣∣∣∣2 +

∣∣∣∣∇u(σx|x|
)∣∣∣∣2).
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Then, integrating in polar coordinates, we have

(3.9)

∫
a<|x|<b

|∇u1(x)|2 dx ≤ 24

∫ σ+1

σ

∫ 2π

0

v̂(σ, θ)r dr dθ

= 24

(
1

2σ
+ 1

)∫ 2π

0

v̂(σ, θ)σ dθ < 24

(
1

2σ
+ 1

)
ε ≤ 36ε.

From (3.8) and (3.9) we get∫
a<|x|<b

(|∇u1|2 + |u1 − e3|2) dx < 42ε,

and the lemma is proved for the function u1. �

Lemma 3.10. There exists c2 > 0 such that, if 0 < a < b, ε > 0 and u ∈M,

ui ∈M, i = 1, 2 are such that u1 = u for |x| ≤ a, u2 = u for |x| ≥ b, and∫
a<|x|<b

(
|∇u|2 + |u− e3|2

)
dx < ε∫

|x|>a

(
|∇u1|2 + |u1 − e3|2

)
dx < ε,

∫
|x|<b

(
|∇u2|2 + |u2 − e3|2

)
dx < ε,

then we have

|E(u)− E(u1)− E(u2)| < 3c2ε, |Q(u)−Q(u1)−Q(u2)| < 3ε.

Proof. We set

F (u,Ω) =

∫
Ω

(
1

2
|∇u|2 + τ(u− e3) · curlu+

k

2
(1− u2

3)

)
dx.

Clearly, since for every u ∈ M,
∫
R2 e3 · curlu dx = 0, we have F (u,R2) = E(u).

Moreover, from |(u−e3)·curlu| ≤ (|u−e3|2 +|∇u|2)/2, and |u−e3|4 ≤ 4|u−e3|2,

we get, for every u ∈M and Ω ⊂ R2:

|F (u,Ω)| ≤ c2
∫

Ω

(
|∇u|2 + |u− e3|2

)
dx,

where c2 = |τ |/2 + max(1/2, k). Then

|E(u)− F (u1, |x| ≤ a)− F (u2, |x| ≥ b)|

= |F (u,R2)− F (u, |x| ≤ a)− F (u, |x| ≥ b)| ≤ c2ε.

Likewise we get |E(u1)−F (u1, |x| ≤ a)| ≤ c2ε and |E(u2)−F (u2, |x| ≥ b)| ≤ c2ε,
so that∣∣E(u)− E(u1)− E(u2)

∣∣ ≤ ∣∣E(u)− F (u1, |x| ≤ a)− F (u2, |x| ≥ b)
∣∣

+
∣∣E(u1)− F (u1, |x| ≤ a)

∣∣+
∣∣E(u2)− F (u2, |x| ≥ b)

∣∣ ≤ 3c2ε,

and the first part of the lemma is proved. Moreover, using |u · ux1
× ux2

| ≤
|∇u|2/2, we can argue in a similar way for Q(u). �
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Let us suppose now that a minimizing sequence (un)n ⊂ M ∩ Q−1 verifies

the dichotomy condition. Because of the density ofM0, we can assume, without

loss of generality, that (un)n ⊂ M0 ∩ Q−1. Clearly we can assume also R ≥ 1,

Rn ≥ R+ 4.

The dichotomy condition implies∫
R<|x|<Rn

ρn dx < 2ε

so that, for the truncation lemma with [a, b] = [R,R+ 1] and u = un, there exist

σn ∈ [R,R+ 1] and a function u1
n ∈M such that

u1
n(x) =

un(x) if |x| ≤ σn,
e3 if |x| ≥ σn + 1,

∫
σn<|x|<σn+1

(
|∇u1

n|2+|u1
n−e3|2

)
dx < 84ε.

For the same lemma, with [a, b] = [Rn− 2, Rn− 1] and again u = un, there exist

δn ∈ [Rn − 2, Rn − 1] and a function u2
n ∈M such that

u2
n(x) =

e3 if |x| ≤ δn,
un(x) if |x| ≥ δn + 1,

∫
δn<|x|<δn+1

(
|∇u2

n|2 + |u2
n−e3|2

)
dx < 84ε.

Clearly u1
n(x) = un(x) for |x| ≤ R, u2

n(x) = un(x) for |x| > Rn, and we have∫
|x|>R

(
|∇u1

n|2 + |u1
n − e3|2

)
dx =

∫
R<|x|<σn

(
|∇u1

n|2 + |u1
n − e3|2

)
dx

+

∫
σn<|x|<σn+1

(
|∇u1

n|2 + |u1
n − e3|2

)
dx < 86ε,

and, in the same way,∫
|x|<Rn

(
|∇u2

n|2 + |u2
n − e3|2

)
dx < 86ε.

From Lemma 3.10 applied to [a, b] = [R,Rn] and to the functions un, uin, i = 1, 2,

there exists a constant c > 0 such that |E(un) − E(u1
n) − E(u2

n)| < cε and

|Q(un)−Q(u1
n)−Q(u2

n)| < cε for every n.

Then, for ε small enough, we have Q(un) = Q(u1
n) +Q(u2

n), so that Q(u1
n) +

Q(u2
n) = −1. Set, for brevity, Q(u1

n) = qn. Then Q(u2
n) = −(1 + qn). We claim

that qn ∈ {−1, 0} for n large enough. For if not, there exists a subsequence

(qnk
)k such that, for every k ∈ N, qnk

≥ 1 or −(1 + qnk
) ≥ 1, then, for the

Proposition 3.8, we have E(u1
nk

) ≥ 4π or E(u2
nk

) ≥ 4π. In both cases 4π ≤
E(u1

nk
) + E(u2

nk
), so that 4π ≤ E(u1

nk
) + E(u2

nk
) ≤ E(unk

) + cε, namely 4π ≤
E(unk

) + cε. Passing to the limit we get 4π ≤ I−1 + cε, and since ε is arbitrarily

small, we get 4π ≤ I−1, a contradiction because we know that I−1 < 4π.

Then we can assume (modulo subsequences) qn = −1. We claim now that

there exists δ > 0 such that, for every n ∈ N, we have E(u2
n) ≥ δ. In fact, from
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ρ2
n ≤ ρ1

n + ρ2
n ≤ ρn, the definition of ρn and Proposition 3.6, we have∫

|x|>Rn

ρ2
n dx ≤

∫
|x|>Rn

ρn dx =

∫
|x|>Rn

(
|∇u2

n|2 + |u2
n − e3|2

)
dx

≤
∫
R2

(
|∇u2

n|2 + |u2
n − e3|2

)
dx ≤ 16c21

π
E(u2

n)2 + 3c1E(u2
n).

Moreover, ∫
R<|x|<Rn

ρ2
n dx ≤

∫
R<|x|<Rn

ρn dx < 2ε,

so that ∫
R2

ρ2
n dx < 2ε+

16c21
π

E(u2
n)2 + 3c1E(u2

n).

On the other hand, from |
∫
R2 ρ

2
n dx− (1− t)‖ρn‖L1 | < ε, and from ‖ρn‖L1 ≥ 8π,

we get

8π(1− t) ≤ (1− t)‖ρn‖L1 <

∫
R2

ρ2
n dx+ ε < 3ε+

16c21
π

E(u2
n)2 + 3c1E(u2

n).

Since we can assume 8π(1 − t) − 3ε > 0, the previous inequality shows that

E(u2
n) is bounded away from zero by some δ > 0 (that does not depend on ε),

as claimed.

Finally, we are in the position to complete the proof. In fact, from |E(un)−
E(u1

n)−E(u2
n)| < cε, we get I−1 ≤ E(u1

n) ≤ E(un)−E(u2
n)+cε ≤ E(un)−δ+cε,

namely I−1 ≤ E(un)− δ + cε, and, passing to the limit, I−1 ≤ I−1 − δ + cε, so

that I−1 ≤ I−1 − δ. This is impossible, and dichotomy can not occur.
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[17] C. Melcher, Chiral skyrmions in the plane, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.

Sci. 470 (2014), 20140394.

[18] L. Nirenberg, Topics in nonlinear functional analysis, Courant Lect. Notes Math., vol. 6,

New York University Courant Institute of Mathematical Sciences, New York (2001).

[19] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for har-

monic maps, J. Differential Geom. 18 (1983), 253–268.

[20] T.H.R. Skyrme, A non-linear field theory, Proc. Roy. Soc. London Ser. A 260 (1961),

127–138.

[21] T.H.R. Skyrme, A unified field theory of mesons and baryons, Nuclear Phys. 31 (1962),

556-569.

[22] I.W. Stewart, The static and dynamic continuum theory of liquid crystals, Taylor

& Francis, London, 2004.

[23] T. Weidig, The baby Skyrme models and their multi-skyrmions, Nonlinearity 12 (1999),

1489–1503.

[24] Y. Yang, Solitons in field theory and nonlinear analysis, Springer Monographs in Math-

ematics, Springer–Verlag, New York, 2001.

Manuscript received July 3, 2018

accepted October 9, 2018

Carlo Greco
Department of Mechanics, Mathematics and Management

Politecnico di Bari
Via Orabona, 4
Bari, 70125, ITALY

E-mail address: carlo.greco@poliba.it

TMNA : Volume 54 – 2019 – No 2A


