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KRASNOSEL’SKII-SCHAEFER TYPE METHOD
IN THE EXISTENCE PROBLEMS

CALOGERO VETRO — DARIUSZ WARDOWSKI

ABSTRACT. We consider a general integral equation satisfying algebraic
conditions in a Banach space. Using Krasnosel’skii-Schaefer type method
and technical assumptions, we prove an existence theorem producing a pe-
riodic solution of some nonlinear integral equation.

1. Introduction and preliminaries

Let (B, || - ||) be the Banach space of continuous I'-periodic functions ¢: R—R
with I" > 0 and the supremum norm. In this paper, we study the following
integral equation

(1.1) o(t) = f(t,p(t)) — D(t,s)g(s, ¢(s)) ds,

t—a
where a > 0, f,g, D: RxR — R are continuous functions satisfying the following
assumptions:
(A1) f(t+T,2) = f(t,x), Dt+T,s+T) = D(ts), gt +T,z) = g(¢t,x) for
all s,t,z € R,
(A2) D(t,t—a) =0, Dg(t,s) <0, Ds(t,s) >0forallt € Rand s € (t—a,t),
(A3) the function Dg; is continuous,
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(A4) there exists v > 0 such that

Ftn) — fea)] < W foraltay R

+7lz -yl
(A5) zg(t,z) >0 for all t,z € R,
(A6) for each positive K such that K > |f(¢,0)| for all ¢t € R there exist P > 0
and > 0 such that
iIgc'scg(t x) < (=B —2K)|g(t,z)|+ P forallt,x €R
1+ || = ’ ’ '
Using the Krasnosel’skii-Schaefer type method (see Schaefer [4]), we prove an
existence theorem producing a periodic solution of problem (1.1). There is a wide
literature on the application of this methodology to the integral equations theory.
We mention here the important papers of Burton [1], Burton and Kirk [2], Liu
and Li [3], Wardowski [7], which are strongly related to our findings. In our
approach we derive new fixed point tools useful to deal with abstract existence
problems.

Recently Wardowski [6] initiated a concept of a contraction-type mapping,
characterized by the possibility of overcoming various situations (by hybridiza-
tion with well-known contractive conditions in the literature, see Vetro and
Vetro [5] and the references therein). Here, we recall the following version of
the notion of a Wardowski’s contraction mapping and related fixed-point result
for further use.

Let (X,d) be a metric space. A mapping T: X — X is called a (7, F)-
contraction if there exist the functions F': (0,00) — R and 7: (0,00) — (0, c0)
satisfying:

(i) F is strictly increasing,

(i) lim F(t) = —o0,

(iii) liminf7(s) > 0 for all ¢ > 0,
)

s—tt

(iv) 7(d(z,y))+F(d(Tz,Ty)) < F(d(z,y)) for all z,y € X such that Tz #Ty.

REMARK 1.1. Observe that (i), (iv) and the fact that 7 > 0 immediately
imply that for all 2,y € X d(Tx,Ty) < d(z,y), and this gives the continuity of T'.

THEOREM 1.2 ([7, Theorem 2.1]). Let (X,d) be a complete metric space and
let T: X — X be a (7, F)-contraction. Then T has a unique fixved point.

Finally, we recall the following Schaefer’s result in [4].

THEOREM 1.3. Let X be a normed space, H: X — X a continuous mapping,
compact on each bounded subset of X. Then either the equation x = Hx has
a solution or the set of all solutions of the equation x = NHx, for 0 < A < 1, is
unbounded.
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2. Auxiliary results
We start from our fixed point tool, that is a local version of Theorem 1.2.
THEOREM 2.1. Let (X,d) be a complete metric space and let T': B(xg,7)— X

be a (7, F)-contraction defined on the open ball centered at xy € X with radius
r > 0. If F is left-continuous, T nonincreasing and the following condition holds

F(r)— F(r —d(xo,Txo)) < 7(r),
then T has a fizved point.

PROOF. Since F' is left-continuous, we can find 0 < € < 7 such that
F(e) — F(e — d(wo, Txo)) < 7(r).

Consider the closed ball C = B(xg,). We show that T(C) C C. Take z € C
and observe that if d(Tx,z0) — d(Txo,zo) < 0 then we immediately get

ATz, z0) < d(Txp,x0) < €.
In other case we have the inequalities
F(d(Tx,z9) — d(Txo,20)) < F(d(Tx, Tx)) < F(d(z,20)) — 7(d(z, 20))
< F(e) —7(r) < F(e — d(xo, Txp)).
Hence, we get d(Tx, o) < &, which means that Tz € C. Completeness of C and

Theorem 1.2 end the proof. (]

THEOREM 2.2. Let X be a Banach space, U an open subset of X and let
T:U — X be a (1, F)-contraction. If F is left-continuous and T nonincreasing
then the mapping h(x) = x—T(x), x € U maps homeomorphically U onto h(U).

PrOOF. The continuity of h is easily visible due to Remark 1.1. So, consider
u,v € X, u # v and suppose that h(u) = h(v). Consequently we get T'(u) #
T'(v). Moreover, we have

[7(u) = h(v)|| = [lu =T(u) v +T@)| = [lu—vl = [T (u) = T ()]
So, we obtain
F(llu=vll) < F(IT(w) = T()|)) < F(llu = vl)) = 7([lu = v]]),

which is impossible since 7 is positive. Therefore h is a one-to-one mapping.

In order to show the continuity of h~!, we verify that h is open. Let Q be an
open subset of U and let w € h(Q). Take v € @ such that w = h(v). There exists
r > 0 satisfying B(v,r) C Q. Since F' is left-continuous, there exists 0 <& < r
for which we get

(2.1) F(r)—F(r—mn) <7(r) forevery n € [0,¢].
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Now, take y € B(w, ) and define the mapping S: B(v,r) — X as follows
S(z) =y +T(x).

It is obvious that S is a (7, F)-contraction. Moreover, observe that, by (2.1), we
have

F(r) = F(r—llv =S| = F(r) = F(r = [ly + T(v) — )
=F(r)=F(r =y =h()|) <7(r).

Hence, applying Theorem 2.1 to the mapping S, there exists x € B(v,r) such
that z = S(x) = y + T'(z). In consequence y = h(x) € h(B(v,r)), which implies
B(w,e) C h(B(v,r)) C h(Q). Thus h(Q) is open. O

Now, we are interested in a special case of (7, F')-contractive mapping, where
F(t) = —1/t for all t € (0,00). We will show that the contractive condition for
such F', in the setting of Banach space X, gives the possibility to obtain the
extensions of some known results and new applications in the theory of integro-
differential equations. So, putting F'(t) = —1/t in (iv), we get

=~y
(22)  |T(x) - ()||*1+7—(|\x—y|\)||33—y”7

Now, we prove the following propositions.

z,y € X, x#y.

PROPOSITION 2.3. For every 0 < A < 1, if T satisfies inequality (2.2), then
AT(-/N) is (n, F)-contraction, with
1

t 1
n(t) = Y T()\) and F(t) = — for all t € (0,00).
Moreover, for every x € X \ {0}, we have

pr(5)] = vt 1o

PRrROOF. For z,y € X, z # y we have

AT(Z) AT <A yH
H (A> ( )H a ( xy> H 2 = yll
:1+AT(””E =Y, L=yl =l

Next, for every x € X \ {0}, using the above inequality, we obtain

(S < () = ar)| + o)) < — 2L L iroy). o
pr()l < pr(5) 7o) (e
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Following the Burton’s ideas, we state and prove next result.

THEOREM 2.4. Let X be a Banach space, T1: X — X continuous and map-
ping bounded sets into compact sets, and let To: X — X satisfy (2.2) with con-
stant 7 > 0. Then one of the following holds:

(a) the equation x = AT (z) + ATz (x/X) has a solution for A = 1;

(b) the set {x € X : x = AT (z) + NTa(z/\) for some 0 < A < 1} is un-

bounded.

PROOF. We observe that, by Proposition 2.3 and the fact that 7A~! > 7, the
mapping X 3 z — ATa(x/\) satisfies (2.2). Moreover, considering any y € X
the mapping X 3> = — ATa(x/A) + AT1(y) also satisfies the condition (2.2).
Therefore, by Theorem 1.2, there exists exactly one x € X satisfying

x = M1 (y) + ATy (;) .

Putting h(x) = x — Ta(x) and applying Theorem 2.2, the above equation can be
rewritten in the form

z=Ah"toTy)(y).
By Theorem 1.3 (the Schaefer’s result) the above equation with y = z has
a solution for A =1 or the set {x € X : x = A(h™! o T1)(x) for some 0 < X < 1}
is unbounded, which ends the proof. O

3. Periodic solution of integral equations

On account of Theorem 2.4, we prove the existence of a periodic solution for
the integral equation (1.1). Precisely, we build our existence theorem on two
key-lemmas.

LEMMA 3.1. The mapping T: B — B given by the formula
(Tp)(t) = f(t, o)),
with f fulfilling (A4), satisfies (2.2) with constant T = +y.

PROOF. We observe that for all {,n € B and any ¢t € R we have

) ) ) <) = n(t)
(TC)®) = (Ta)e)] = 1£0,60) = £t )] < 35 e

The function [0,00) 3 s — s/(1 + vs) is increasing, therefore we obtain

IT¢ =Tl = sup [(TC)(t) — (Tn)(t)]
telo,I]

. B 1) )
= Sup 17 C0) = FEm® < sup 12y @)
sup ¢(t) - n(®)]
e =l

1+~ sup [¢(t) — ()] 14+AlC—nl
te[0,I]
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LEMMA 3.2. There exists C > 0 such that if p € B is the solution of the
equation

(3.1) o) = Af (u “”f)) [ Dt 9)gls, ols)) ds,

t—a
for some 0 < A < 1, then ||p| < C.

PROOF. Let ¢ € B denote a solution of (3.1) for some 0 < A < 1. Using the
Burton’s method consider the following function of Liapunov type

V(t) = A2 /:a Ds(t,s)</Stg(v,<p(v))dv)2ds.

We have

Vi -3 [ Dates)( [ gl o) )

2D, (1 s)glte(0) | g(w(v))dv} ds

+ A2D,(t,t) ( /ttg(v, o(v)) dv) 2— N D, (t,t — a)(/ttag(v, ©o(v)) dv)Q.

We get ftt g(v, p(v)) dv = 0, moreover using (A2) we deduce that

2

Vi) < 28%(t.00) [ Dultes) [ otw.p(w) dods

— AN2D,(t,t — a)(/tia g(v, o(v)) dv>2.

Due to Ds(t,t —a) > 0 (see again (A2)) we get the following inequality
V'(t) < 2X%g( / Dy(t,s / g(v, o(v)) dvds.

Integration by part and D(t,t — ) = 0 (see (A2)) yield

V'(t) < 2X\%g(t [/ D(t,s)g(s,¢(s))ds — D tt—a/ g(v, p(v ]
= 2321, (1) / " Dtslgtonple)) ds = 2rgte.o(0) 37 (1. 50 ) 0]



EXISTENCE PROBLEM OF INTEGRAL EQUATION

137
Next, using (A4), we have

‘Af(t,@)’ = A‘f t,“of\t)> —f(t,0)+f(t,0)’

) - 10|+ 170

A

o(t)
- X e el
1+7<P§\t)’ = 1+le()]

for some K > |f(t,0)|. Observe that the choice of K does not depend on ¢ since
f(-,x) is periodic. By using (A5), it follows that

V() < 2| ZOE 4 Klgte,o(0)] - o(0alt.o(0)]
= 2| O 0. 000) + Klale, (0]

From (A6) we obtain

VI(t) < MP = Blg(t, o(t))])-

From the above facts and since V' is a periodic function, we have

O:WD—V@:/JV@ﬁ

In consequence, we get

I T
<x [ 1P - Bl el ar - A[Pr 5 [ lattselo)) dt].

T
/ lg(t, o(t))] dt < %.
0

Next, by (Al) and the continuity of g we have g(¢, p(t)) € B. Therefore, there
exists IV > 0 chosen independently from ¢ such that

/t lg(s, p(s))]ds < N.

—x
Denote M := max _|D(t,s)|. Summarizing we have
—a<s<t<I'

(1B e [ intsgate st as
()

1
<————+4+K+MN<-+K+ MN.
L+ 7le(®)] gl

So, it is easy to deduce that

|o(2)]

IN

1
ol < C = ;+K+MN,
which ends the proof.
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Before we announce the main result of this section, for the convenience of
the reader, we recall the following result due to Burton and Kirk.

LEMMA 3.3 ([2, Lemma3.3]). Let T be defined as follows:

/ D(t,s)g(s,0(s))ds, ¢€B.

Then T(B) C B, T is continuous and T maps bounded sets into compact sets.

THEOREM 3.4. If (A1)—(A6) hold for some T' > 0, then the equation (1.1)
has a I'-periodic solution.

PROOF. In the light of Theorem 2.4 we put
t

X =B, (Tl(oo)(t) = D(t, S) g(s, 90(3)) ds, (T290)(t) = f(t7 (p(t)).

t—«
By Lemma 3.3, the mapping T} is continuous and maps bounded sets into com-
pact subsets of B. Using Lemma 3.2, we get that condition (b) of Theorem 2.4
does not hold and hence (a) is satisfied. O

ExXAMPLE 3.5. Consider the following equation:

O
T+ Jo(0)] /( i+ a)pls)ds,

where o > 0 is taken arbitrarily and fixed. The existence of a I'-periodic solution

(3.2) p(t) =

of the equation (3.2) for any T" > 0 is guaranteed by Theorem 3.4. Indeed, it is
enough to consider f(t,z) = |z|/(1 + |z|), g(t,x) = z, D(t,s) = s —t + a and
v = 1. Then, the conditions (A1)—(A5) are easy to be observed. In order to
get (A6) it is enough for any K > 0 to take 3 = K and P = (9K? + 24K)/8.

On the other hand, observe that the function f in the equation (3.2) does not
allow to reduce the problem to the most known case of F-contraction, i.e. Banach
contraction. If it was possible then we would have the existence of k € (0,1)
such that

lf(t,z) — f(t,y)| <k|lx—y| forall z,y,teR.

In consequence, taking y = 0 and any x # 0 we would have:

k>|f(t7x)_f(t70)|: 1
- |z L+ [a]’

which is impossible.
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