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KRASNOSEL’SKĬI–SCHAEFER TYPE METHOD

IN THE EXISTENCE PROBLEMS

Calogero Vetro — Dariusz Wardowski

Abstract. We consider a general integral equation satisfying algebraic
conditions in a Banach space. Using Krasnosel’skĭı–Schaefer type method

and technical assumptions, we prove an existence theorem producing a pe-

riodic solution of some nonlinear integral equation.

1. Introduction and preliminaries

Let (B, ‖ · ‖) be the Banach space of continuous Γ-periodic functions ϕ : R→R
with Γ > 0 and the supremum norm. In this paper, we study the following

integral equation

ϕ(t) = f(t, ϕ(t))−
∫ t

t−α
D(t, s)g(s, ϕ(s)) ds,(1.1)

where α > 0, f, g,D : R×R→ R are continuous functions satisfying the following

assumptions:

(A1) f(t + Γ, x) = f(t, x), D(t + Γ, s + Γ) = D(t, s), g(t + Γ, x) = g(t, x) for

all s, t, x ∈ R,

(A2) D(t, t−α) = 0, Dst(t, s) ≤ 0, Ds(t, s) ≥ 0 for all t ∈ R and s ∈ (t−α, t),
(A3) the function Dst is continuous,
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(A4) there exists γ > 0 such that

|f(t, x)− f(t, y)| ≤ |x− y|
1 + γ|x− y|

for all t, x, y ∈ R,

(A5) xg(t, x) ≥ 0 for all t, x ∈ R,

(A6) for each positive K such that K > |f(t, 0)| for all t ∈ R there exist P > 0

and β > 0 such that

−2γ|x|
1 + γ|x|

xg(t, x) ≤ (−β − 2K)|g(t, x)|+ P for all t, x ∈ R.

Using the Krasnosel’skĭı–Schaefer type method (see Schaefer [4]), we prove an

existence theorem producing a periodic solution of problem (1.1). There is a wide

literature on the application of this methodology to the integral equations theory.

We mention here the important papers of Burton [1], Burton and Kirk [2], Liu

and Li [3], Wardowski [7], which are strongly related to our findings. In our

approach we derive new fixed point tools useful to deal with abstract existence

problems.

Recently Wardowski [6] initiated a concept of a contraction-type mapping,

characterized by the possibility of overcoming various situations (by hybridiza-

tion with well-known contractive conditions in the literature, see Vetro and

Vetro [5] and the references therein). Here, we recall the following version of

the notion of a Wardowski’s contraction mapping and related fixed-point result

for further use.

Let (X,d) be a metric space. A mapping T : X → X is called a (τ, F )-

contraction if there exist the functions F : (0,∞) → R and τ : (0,∞) → (0,∞)

satisfying:

(i) F is strictly increasing,

(ii) lim
t→0+

F (t) = −∞,

(iii) lim inf
s→t+

τ(s) > 0 for all t ≥ 0,

(iv) τ(d(x, y))+F (d(Tx, Ty))≤F (d(x, y)) for all x, y ∈ X such that Tx 6=Ty.

Remark 1.1. Observe that (i), (iv) and the fact that τ > 0 immediately

imply that for all x, y ∈ X d(Tx, Ty) ≤ d(x, y), and this gives the continuity of T .

Theorem 1.2 ([7, Theorem 2.1]). Let (X,d) be a complete metric space and

let T : X → X be a (τ, F )-contraction. Then T has a unique fixed point.

Finally, we recall the following Schaefer’s result in [4].

Theorem 1.3. Let X be a normed space, H : X → X a continuous mapping,

compact on each bounded subset of X. Then either the equation x = Hx has

a solution or the set of all solutions of the equation x = λHx, for 0 < λ < 1, is

unbounded.
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2. Auxiliary results

We start from our fixed point tool, that is a local version of Theorem 1.2.

Theorem 2.1. Let (X,d) be a complete metric space and let T : B(x0, r)→X

be a (τ, F )-contraction defined on the open ball centered at x0 ∈ X with radius

r > 0. If F is left-continuous, τ nonincreasing and the following condition holds

F (r)− F (r − d(x0, Tx0)) < τ(r),

then T has a fixed point.

Proof. Since F is left-continuous, we can find 0 < ε < r such that

F (ε)− F
(
ε− d(x0, Tx0)

)
< τ(r).

Consider the closed ball C = B(x0, ε). We show that T (C) ⊂ C. Take x ∈ C
and observe that if d(Tx, x0)− d(Tx0, x0) ≤ 0 then we immediately get

d(Tx, x0) ≤ d(Tx0, x0) ≤ ε.

In other case we have the inequalities

F (d(Tx, x0)− d(Tx0, x0)) ≤ F (d(Tx, Tx0)) ≤ F (d(x, x0))− τ(d(x, x0))

≤ F (ε)− τ(r) ≤ F (ε− d(x0, Tx0)).

Hence, we get d(Tx, x0) ≤ ε, which means that Tx ∈ C. Completeness of C and

Theorem 1.2 end the proof. �

Theorem 2.2. Let X be a Banach space, U an open subset of X and let

T : U → X be a (τ, F )-contraction. If F is left-continuous and τ nonincreasing

then the mapping h(x) = x−T (x), x ∈ U maps homeomorphically U onto h(U).

Proof. The continuity of h is easily visible due to Remark 1.1. So, consider

u, v ∈ X, u 6= v and suppose that h(u) = h(v). Consequently we get T (u) 6=
T (v). Moreover, we have

‖h(u)− h(v)‖ = ‖u− T (u)− v + T (v)‖ ≥ ‖u− v‖ − ‖T (u)− T (v)‖.

So, we obtain

F (‖u− v‖) ≤ F (‖T (u)− T (v)‖) ≤ F (‖u− v‖)− τ(‖u− v‖),

which is impossible since τ is positive. Therefore h is a one-to-one mapping.

In order to show the continuity of h−1, we verify that h is open. Let Q be an

open subset of U and let w ∈ h(Q). Take v ∈ Q such that w = h(v). There exists

r > 0 satisfying B(v, r) ⊂ Q. Since F is left-continuous, there exists 0 < ε < r

for which we get

(2.1) F (r)− F (r − η) < τ(r) for every η ∈ [0, ε].
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Now, take y ∈ B(w, ε) and define the mapping S : B(v, r)→ X as follows

S(x) := y + T (x).

It is obvious that S is a (τ, F )-contraction. Moreover, observe that, by (2.1), we

have

F (r)− F (r − ‖v − S(v)‖) = F (r)− F (r − ‖y + T (v)− v‖)

= F (r)− F (r − ‖y − h(v)‖) < τ(r).

Hence, applying Theorem 2.1 to the mapping S, there exists x ∈ B(v, r) such

that x = S(x) = y + T (x). In consequence y = h(x) ∈ h(B(v, r)), which implies

B(w, ε) ⊂ h(B(v, r)) ⊂ h(Q). Thus h(Q) is open. �

Now, we are interested in a special case of (τ, F )-contractive mapping, where

F (t) = −1/t for all t ∈ (0,∞). We will show that the contractive condition for

such F , in the setting of Banach space X, gives the possibility to obtain the

extensions of some known results and new applications in the theory of integro-

differential equations. So, putting F (t) = −1/t in (iv), we get

(2.2) ‖T (x)− T (y)‖ ≤ ‖x− y‖
1 + τ(‖x− y‖)‖x− y‖

, x, y ∈ X, x 6= y.

Now, we prove the following propositions.

Proposition 2.3. For every 0 < λ < 1, if T satisfies inequality (2.2), then

λT ( · /λ) is (η, F )-contraction, with

η(t) =
1

λ
τ

(
t

λ

)
and F (t) = −1

t
for all t ∈ (0,∞).

Moreover, for every x ∈ X \ {0}, we have∥∥∥∥λT(xλ
)∥∥∥∥ ≤ ‖x‖

1 + η(‖x‖)‖x‖
+ ‖T (0)‖ .

Proof. For x, y ∈ X, x 6= y we have

∥∥∥∥λT(xλ
)
− λT

(
y

λ

)∥∥∥∥ ≤ λ
∥∥∥∥xλ − y

λ

∥∥∥∥
1 + τ

(∥∥∥∥xλ − y

λ

∥∥∥∥)∥∥∥∥xλ − y

λ

∥∥∥∥
=

‖x− y‖

1 +
1

λ
τ

(
‖x− y‖

λ

)
‖x− y‖

=
‖x− y‖

1 + η(‖x− y‖)‖x− y‖
.

Next, for every x ∈ X \ {0}, using the above inequality, we obtain∥∥∥∥λT(xλ
)∥∥∥∥ ≤ ∥∥∥∥λT(xλ

)
− λT (0)

∥∥∥∥+ λ‖T (0)‖ ≤ ‖x‖
1 + η(‖x‖)‖x‖

+ ‖T (0)‖. �
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Following the Burton’s ideas, we state and prove next result.

Theorem 2.4. Let X be a Banach space, T1 : X → X continuous and map-

ping bounded sets into compact sets, and let T2 : X → X satisfy (2.2) with con-

stant τ > 0. Then one of the following holds:

(a) the equation x = λT1(x) + λT2(x/λ) has a solution for λ = 1;

(b) the set {x ∈ X : x = λT1(x) + λT2(x/λ) for some 0 < λ < 1} is un-

bounded.

Proof. We observe that, by Proposition 2.3 and the fact that τλ−1 > τ , the

mapping X 3 x 7→ λT2(x/λ) satisfies (2.2). Moreover, considering any y ∈ X
the mapping X 3 x 7→ λT2(x/λ) + λT1(y) also satisfies the condition (2.2).

Therefore, by Theorem 1.2, there exists exactly one x ∈ X satisfying

x = λT1(y) + λT2

(x
λ

)
.

Putting h(x) = x− T2(x) and applying Theorem 2.2, the above equation can be

rewritten in the form

x = λ(h−1 ◦ T1)(y).

By Theorem 1.3 (the Schaefer’s result) the above equation with y = x has

a solution for λ = 1 or the set {x ∈ X : x = λ(h−1 ◦ T1)(x) for some 0 < λ < 1}
is unbounded, which ends the proof. �

3. Periodic solution of integral equations

On account of Theorem 2.4, we prove the existence of a periodic solution for

the integral equation (1.1). Precisely, we build our existence theorem on two

key-lemmas.

Lemma 3.1. The mapping T : B → B given by the formula

(Tϕ)(t) = f(t, ϕ(t)),

with f fulfilling (A4), satisfies (2.2) with constant τ = γ.

Proof. We observe that for all ζ, η ∈ B and any t ∈ R we have

|(Tζ)(t)− (Tη)(t)| = |f(t, ζ(t))− f(t, η(t))| ≤ |ζ(t)− η(t)|
1 + γ|ζ(t)− η(t)|

.

The function [0,∞) 3 s 7→ s/(1 + γs) is increasing, therefore we obtain

‖Tζ − Tη‖ = sup
t∈[0,Γ]

|(Tζ)(t)− (Tη)(t)|

= sup
t∈[0,Γ]

|f(t, ζ(t))− f(t, η(t))| ≤ sup
t∈[0,Γ]

|ζ(t)− η(t)|
1 + γ|ζ(t)− η(t)|

=

sup
t∈[0,Γ]

|ζ(t)− η(t)|

1 + γ sup
t∈[0,Γ]

|ζ(t)− η(t)|
=

‖ζ − η‖
1 + γ‖ζ − η‖

. �
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Lemma 3.2. There exists C > 0 such that if ϕ ∈ B is the solution of the

equation

(3.1) ϕ(t) = λf

(
t,
ϕ(t)

λ

)
− λ

∫ t

t−α
D(t, s)g(s, ϕ(s)) ds,

for some 0 < λ < 1, then ‖ϕ‖ ≤ C.

Proof. Let ϕ ∈ B denote a solution of (3.1) for some 0 < λ < 1. Using the

Burton’s method consider the following function of Liapunov type

V (t) = λ2

∫ t

t−α
Ds(t, s)

(∫ t

s

g(v, ϕ(v))dv

)2

ds.

We have

V ′(t) =λ2

∫ t

t−α

[
Dst(t, s)

(∫ t

s

g(v, ϕ(v)) dv

)2

+ 2Ds(t, s)g(t, ϕ(t))

∫ t

s

g(v, ϕ(v)) dv

]
ds

+ λ2Ds(t, t)

(∫ t

t

g(v, ϕ(v)) dv

)2

− λ2Ds(t, t− α)

(∫ t

t−α
g(v, ϕ(v)) dv

)2

.

We get
∫ t
t
g(v, ϕ(v)) dv = 0, moreover using (A2) we deduce that

V ′(t) ≤ 2λ2g(t, ϕ(t))

∫ t

t−α
Ds(t, s)

∫ t

s

g(v, ϕ(v)) dv ds

− λ2Ds(t, t− α)

(∫ t

t−α
g(v, ϕ(v)) dv

)2

.

Due to Ds(t, t− α) ≥ 0 (see again (A2)) we get the following inequality

V ′(t) ≤ 2λ2g(t, ϕ(t))

∫ t

t−α
Ds(t, s)

∫ t

s

g(v, ϕ(v)) dv ds.

Integration by part and D(t, t− α) = 0 (see (A2)) yield

V ′(t) ≤ 2λ2g(t, ϕ(t))

[ ∫ t

t−α
D(t, s)g(s, ϕ(s)) ds−D(t, t− α)

∫ t

t−α
g(v, ϕ(v)) dv

]
= 2λ2g(t, ϕ(t))

∫ t

t−α
D(t, s)g(s, ϕ(s)) ds = 2λg(t, ϕ(t))

[
λf

(
t,
ϕ(t)

λ

)
− ϕ(t)

]
.
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Next, using (A4), we have∣∣∣∣λf(t, ϕ(t)

λ

)∣∣∣∣ = λ

∣∣∣∣f(t, ϕ(t)

λ

)
− f(t, 0) + f(t, 0)

∣∣∣∣
≤ λ

∣∣∣∣f(t, ϕ(t)

λ

)
− f(t, 0)

∣∣∣∣+ |f(t, 0)|

≤ λ

∣∣∣∣ϕ(t)

λ

∣∣∣∣
1 + γ

∣∣∣∣ϕ(t)

λ

∣∣∣∣ +K ≤ |ϕ(t)|
1 + γ|ϕ(t)|

+K

for some K > |f(t, 0)|. Observe that the choice of K does not depend on t since

f( · , x) is periodic. By using (A5), it follows that

V ′(t) ≤ 2λ

[
ϕ(t)g(t, ϕ(t))

1 + γ|ϕ(t)|
+K|g(t, ϕ(t))| − ϕ(t)g(t, ϕ(t))

]
= 2λ

[
−γ|ϕ(t)|

1 + γ|ϕ(t)|
ϕ(t)g(t, ϕ(t)) +K|g(t, ϕ(t))|

]
.

From (A6) we obtain

V ′(t) ≤ λ(P − β|g(t, ϕ(t))|).
From the above facts and since V is a periodic function, we have

0 = V (Γ)− V (0) =

∫ Γ

0

V ′(t) dt

≤ λ
∫ Γ

0

[P − β|g(t, ϕ(t))|] dt = λ

[
PΓ− β

∫ Γ

0

|g(t, ϕ(t))| dt
]
.

In consequence, we get ∫ Γ

0

|g(t, ϕ(t))| dt ≤ PΓ

β
.

Next, by (A1) and the continuity of g we have g(t, ϕ(t)) ∈ B. Therefore, there

exists N > 0 chosen independently from ϕ such that∫ t

t−α
|g(s, ϕ(s))| ds ≤ N.

Denote M := max
−α≤s≤t≤Γ

|D(t, s)|. Summarizing we have

|ϕ(t)| ≤
∣∣∣∣λf(t, ϕ(t)

λ

)∣∣∣∣+ λ

∫ t

t−α
|D(t, s)g(s, ϕ(s))| ds

≤ |ϕ(t)|
1 + γ|ϕ(t)|

+K +MN ≤ 1

γ
+K +MN.

So, it is easy to deduce that

‖ϕ‖ ≤ C :=
1

γ
+K +MN,

which ends the proof. �
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Before we announce the main result of this section, for the convenience of

the reader, we recall the following result due to Burton and Kirk.

Lemma 3.3 ([2, Lemma 3.3]). Let T be defined as follows:

(Tϕ)(t) = −
∫ t

t−α
D(t, s) g(s, ϕ(s)) ds, ϕ ∈ B.

Then T (B) ⊂ B, T is continuous and T maps bounded sets into compact sets.

Theorem 3.4. If (A1)–(A6) hold for some Γ > 0, then the equation (1.1)

has a Γ-periodic solution.

Proof. In the light of Theorem 2.4 we put

X = B, (T1ϕ)(t) = −
∫ t

t−α
D(t, s) g(s, ϕ(s)) ds, (T2ϕ)(t) = f(t, ϕ(t)).

By Lemma 3.3, the mapping T1 is continuous and maps bounded sets into com-

pact subsets of B. Using Lemma 3.2, we get that condition (b) of Theorem 2.4

does not hold and hence (a) is satisfied. �

Example 3.5. Consider the following equation:

(3.2) ϕ(t) =
|ϕ(t)|

1 + |ϕ(t)|
−
∫ t

t−α
(s− t+ α)ϕ(s) ds,

where α > 0 is taken arbitrarily and fixed. The existence of a Γ-periodic solution

of the equation (3.2) for any Γ > 0 is guaranteed by Theorem 3.4. Indeed, it is

enough to consider f(t, x) = |x|/(1 + |x|), g(t, x) = x, D(t, s) = s − t + α and

γ = 1. Then, the conditions (A1)–(A5) are easy to be observed. In order to

get (A6) it is enough for any K > 0 to take β = K and P = (9K2 + 24K)/8.

On the other hand, observe that the function f in the equation (3.2) does not

allow to reduce the problem to the most known case of F -contraction, i.e. Banach

contraction. If it was possible then we would have the existence of k ∈ (0, 1)

such that

|f(t, x)− f(t, y)| ≤ k|x− y| for all x, y, t ∈ R.

In consequence, taking y = 0 and any x 6= 0 we would have:

k ≥ |f(t, x)− f(t, 0)|
|x|

=
1

1 + |x|
,

which is impossible.
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