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NONAUTONOMOUS CONLEY INDEX THEORY.

CONTINUATION OF MORSE-DECOMPOSITIONS

Axel Jänig

Abstract. In previous works the author established a nonautonomous

Conley index based on the interplay between a nonautonomous evolution

operator and its skew-product formulation. In this paper, the treatment
of attractor–repeller decomposition is refined. The more general concept

of partially ordered Morse-decompositions is used. It is shown that, in the

nonautonomous setting, these Morse-decompositions persist under small
perturbations. Furthermore, a continuation property for these Morse de-

compositions is established. Roughly speaking, the index of every Morse-

set and every connecting homomorphism continue as the nonautonomous
problem, depending continuously on a parameter, changes.

In previous works [5], [6] the author developed a nonautonomous Conley

index theory. The index relies on the interplay between a skew-product semi-

flow and a nonautonomous evolution operator. It can be applied to various

nonautonomous problems, including ordinary differential equations and semilin-

ear parabolic equations (see [5]).

There are multiple variants such as a homotopy index, a homology Conley

index or a categorial index. In [6], also attractor–repeller decompositions of

isolated invariant sets are introduced. In particular, every attractor–repeller

decomposition of an isolated invariant set gives rise to a long exact sequence
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involving the homology Conley index. The connecting homomorphism of this

sequence contains information on the connections between repeller and attractor.

In particular, the connecting homomorphism vanishes if a connecting orbit does

not exist.

Partially ordered Morse-decomposition have been developed as a generaliza-

tion of attractor–repeller decompositions (see [4], [3] or [1]). They are required to

define concepts such as homology index braids or the connection matrix. In this

paper, the theory of partially ordered Morse-decomposition, their persistence un-

der perturbations and a perturbation property are proved for the nonautonomous

Conley index.

The paper is structured as follows. We begin with a Preliminaries section

reviewing the required material and introducing weak index filtrations, which

slightly differ from the concept of index filtrations used by other authors. In

Section 2, a notion of convergence for Morse-decompositions is defined. Addition-

ally, it is proved that Morse-decompositions persists under small perturbations

of the nonautonomous problem (Theorem 2.2). In Section 3, the continuation

of the index, the convergence of connecting homomorphisms and even the con-

vergence of homology index braids are subsumed under a new concept, called

continuation class. The main result of this section is Theorem 3.4 stating an

abstract continuation principle. A continuation principle for attractor–repeller

decompositions is recovered as a special case in Corollary 3.5.

1. Preliminaries

The section starts with a collection of useful definitions and terminology,

mainly from [5] and [6]. Thereafter, we review the concept of partially ordered

Morse-decompositions as used in [3], [4] or [1] and adapt it to the current nonau-

tonomous setting. Finally, the notion of a weak index filtration is introduced.

1.1. Quotient spaces.

Definition 1.1. Let X be a topological space, and A,B ⊂ X. Denote

A/B := A/R ∪ {A ∩B},

where A/R is the set of equivalence classes with respect to the relation R on A

which is defined by xRy if and only if x = y or x, y ∈ B.

We consider A/B as a topological space endowed with the quotient topology

with respect to the canonical projection q : A→ A/B, that is, a set U ⊂ A/B is

open if and only if

q−1(U) =
⋃
x∈U

x

is open in A.
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Recall that the quotient topology is the final topology with respect to the

projection q.

Remark 1.2. The above definition is compatible with the definition used in

[1] or [7]. The only difference occurs in the case A ∩ B = ∅, where we add ∅,
which is never an equivalence class, instead of an arbitrary point.

1.2. Evolution operators and semiflows. Let X be a metric space. As-

suming that ♦ 6∈ X, we introduce a symbol ♦, which means “undefined”. The

intention is to avoid the distinction if an evolution operator is defined for a given

argument or not. Define A := A∪̇{♦} whenever A is a set with ♦ 6∈ A. Note

that A is merely a set, the notation does not contain any implicit assumption on

the topology.

Definition 1.3. Let ∆ := {(t, t0) ∈ R+ × R+ : t ≥ t0}. A mapping Φ: ∆×
X → X is called an evolution operator if

(a) D(Φ) := {(t, t0, x) ∈ ∆×X : Φ(t, t0, x) 6= ♦} is open in R+ × R+ ×X;

(b) Φ is continuous on D(Φ);

(c) Φ(t0, t0, x) = x for all (t0, x) ∈ R+ ×X;

d) Φ(t2, t0, x) = Φ(t2, t1,Φ(t1, t0, x)) for all t0 ≤ t1 ≤ t2 in R+ and x ∈ X;

(e) Φ(t, t0,♦) = ♦ for all t ≥ t0 in R+.

A mapping π : R+ × X → X is called semiflow if Φ̃(t + t0, t0, x) := π(t, x)

defines an evolution operator. To every evolution operator Φ, there is an asso-

ciated (skew-product) semiflow π on an extended phase space R+ ×X, defined

by (t0, x)πt = (t0 + t,Φ(t+ t0, t0, x)).

A function u : I → X defined on a subinterval I of R is called a solution of

(with respect to) Φ if u(t1) = Φ(t1, t0, u(t0)) for all [t0, t1] ⊂ I.

Definition 1.4. Let X be a metric space, N ⊂ X and π a semiflow on X.

The set Inv−π (N) := {x ∈ N : there is a solution u : R− → N with u(0) = x} is

called the largest negatively invariant subset of N .

The set Inv+
π (N) := {x ∈ N : xπR+ ⊂ N} is called the largest positively

invariant subset of N .

The set Invπ(N) := {x ∈ N : there is a solution u : R → N with u(0) = x}
is called the largest invariant subset of N .

Let X and Y be metric spaces, and assume that y 7→ yt is a global (1)

semiflow on Y , to which we will refer as t-translation.

Example 1.5. Let Z be a metric space, and let Y := C(R+, Z) be a metric

space such that a sequence of functions converges if and only if it converges

uniformly on bounded sets. The translation can now be defined canonically by

yt(s) := y(t+ s) for s, t ∈ R+.

(1) defined for all t ∈ R+
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A suitable abstraction of many non-autonomous problems is given by the

concept of skew-product semiflows introduced below.

Definition 1.6. We say that π = ( · t,Φ) is a skew-product semiflow on

Y ×X if Φ: R+ × Y ×X → Y ×X is a mapping such that

(t, y, x)πt :=

(yt,Φ(t, y, x)) for Φ(t, y, x) 6= ♦,

♦ otherwise,

is a semiflow on Y ×X.

A skew-product semiflow gives rise to evolution operators.

Definition 1.7. Let π = ( · t,Φ) be a skew-product semiflow and y ∈ Y .

Define

Φy(t+ t0, t0, x) := Φ(t, yt0 , x).

It is easily proved that Φy is an evolution operator in the sense of Definition 1.3.

Definition 1.8. For y ∈ Y letH+(y) := clY {yt : t ∈ R+} denote the positive

hull of y. Let Yc denote the set of all y ∈ Y for which H+(y) is compact.

Definition 1.9. Let y0 ∈ Y and K ⊂ H+(y0) × X be an invariant set.

A closed set N ⊂ Y ×X (resp. N ⊂ H+(y0) ×X) is called an isolating neigh-

bourhood for (y0,K) (in Y ×X) (resp. in H+(y0)×X) provided that:

(a) K ⊂ H+(y0)×X
(b) K ⊂ intY×X N (resp. K ⊂ intH+(y0)×X N)

(c) K is the largest invariant subset of N ∩ (H+(y0)×X)

The following definition is a consequence of the slightly modified notion of

a semiflow (Definition 1.3) but not a semantical change compared to [1], for

instance.

Definition 1.10. We say that π explodes in N ⊂ Y ×X if xπ[0, t[ ⊂ N and

xπt = ♦.

Following [7], we formulate the following asymptotic compactness condition.

Definition 1.11. A set M ⊂ Y ×X is called strongly admissible provided

the following holds: whenever (yn, xn) is a sequence in M and (tn)n is a se-

quence in R+ such that (yn, xn)π[0, tn] ⊂M , then the sequence (yn, xn)πtn has

a convergent subsequence.

A very similar concept is called skew-admissibility and formulated as Defini-

tion 5.1 in [5].
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Definition 1.12. A subset M ⊂ Y ×X is called skew-admissible provided

that the following holds: whenever (yn, xn)n in N and (tn)n in R+ are sequences

such that tn → ∞, ytnn → y0 in Y and (yn, xn)π[0, tn] ⊂ N , the sequence

Φ(tn, yn, xn) has a convergent subsequence. M is called strongly skew-admissible

if it is skew-admissible and π does not explode in M .

1.3. Index pairs and index triples. The notion of (basic) index pairs

relies on [5] and was introduced in [6].

Definition 1.13. A pair (N1, N2) is called a (basic) index pair relative to

a semiflow χ in R +×X if

(IP1) N2 ⊂ N1 ⊂ R+ ×X, N1 and N2 are closed in R+ ×X.

(IP2) If x ∈ N1 and xχt 6∈ N1 for some t ∈ R+, then xχs ∈ N2 for some

s ∈ [0, t].

(IP3) If x ∈ N2 and xχt 6∈ N2 for some t ∈ R+, then xχs ∈ (R+ ×X) \N1 for

some s ∈ [0, t].

Definition 1.14. Let y0 ∈ Y and (N1, N2) be a basic index pair in R+ ×X
relative to χy0 . Define r := ry0 : R+ ×X → H+(y0) ×X by ry0(t, x) := (yt0, x).

Let K ⊂ ω(y0) × X be an (isolated) invariant set. We say that (N1, N2) is

a (strongly admissible) index pair (2) for (y0,K) if:

(IP4) there is a strongly admissible isolating neighbourhoodN ofK inH+(y0)×
X such that N1 \N2 ⊂ r−1(N).

(IP5) There is a neighbourhood W of K in H+(y0)×X such that r−1(W ) ⊂
N1 \N2.

Concepts such as attractor–repeller decompositions or connecting homomor-

phism rely on index triples as defined below.

Definition 1.15. Let y0 ∈ Y and K ⊂ H+(y0)×X be an isolated invariant

set admitting a strongly admissible isolating neighbourhood N . Suppose that

(A,R) is an attractor–repeller decomposition of K. A triple (N1, N2, N3) is

called an index triple for (y0,K,A,R) provided that:

(a) N3 ⊂ N2 ⊂ N1,

(b) (N1, N3) is an index pair for (y0,K),

(c) (N2, N3) is an index pair for (y0, A).

1.4. Partially ordered Morse-decompositions. Let (P,≺) be a strictly

partially ordered set, that is, ≺ is a relation on P which is irreflexive and tran-

sitive. Using the partial order ≺, one defines intervals and attracting intervals.

A subset I ⊂ P is an interval, I ∈ I(P,≺), if i, j, k ∈ P , i, k ∈ I and i ≺ j ≺ k

implies j ∈ I. An interval I ∈ I(P,≺) is called attracting, I ∈ A(P,≺), if

i, j ∈ P , j ∈ I and i ≺ j implies i ∈ I.

(2) Every index pair in the sense of Definition 1.14 is assumed to be strongly admissible.
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Definition 1.16. Let (y0,K) be a compact invariant pair. A family (Mp)p∈P
is called a ≺-ordered Morse-decomposition (for (y0,K)) provided that the follow-

ing holds:

(a) The sets Mp, p ∈ P are closed, invariant and pairwise disjoint.

(b) For every solution u : R→ K, either u(R) ⊂Mp for some p ∈ P , or there

are p, q ∈ P such that p ≺ q, ω(u) ⊂Mp and α(u) ⊂Mq.

Given an interval I ∈ I(P,≺), let M(I) denote the maximal invariant subset

of K such that (Mp)p∈I is a ≺-ordered Morse-decomposition. In other words,

M(I) contains every Morse-set Mp with p ∈ I and every connecting orbit (3)

between Morse-sets Mp and Mq with p, q ∈ I. The sets M(I) are closed (Corol-

lary 1.19) and hence isolated compact invariant sets.

An element p in (P,≺) is maximal (resp. minimal) if p ≺ q (resp. q ≺ p)

does hold fory any q ∈ P .

Lemma 1.17. Let (y0,K) be a compact invariant pair, and let (Mp)p∈P be

a (P,≺)-ordered Morse-decomposition. Let I ⊂ P be an interval and p ∈ P \ I
be a maximal or minimal element with respect to (P,≺). Then

(clY×XM(I)) ∩Mp = ∅.

Proof. Suppose that the intersection is not empty. We will prove that p

can neither be minimal nor maximal.

If (clY×XM(I)) ∩Mp 6= ∅, there is a sequence un : R → M(I) of solutions

converging pointwise to a solution u0 : R→ K with u0(0) ∈Mp. Let

s−n := inf{s ≤ 0 : un([s, 0] ⊂ Np},

s+
n := sup{s ≥ 0 : un([0, s] ⊂ Np},

where Np is an isolating neighbourhood for Mp in H+(y0)×X.

It is easy to see that un(s−n ) ∈ ∂Np for all n ∈ N. Taking subsequences, we

can assume without loss of generality that either s−n → s0 or s−n → −∞. Setting

vn(t) := un(t + sn) and using the compactness of K, we can assume that there

is a solution v : R→ K and vn(t)→ v(t) pointwise for all t ∈ R. It follows that

ω(v) ⊂ Mp as well as v(0) ∈ ∂Np. Hence, v is a solution connecting a Morse

set Mq to Mp. Since (Mp)p∈P is a (P,≺)-ordered Morse-decomposition, one has

p ≺ q, which means that p is not maximal.

Analogously, using s+
n , one obtains that p is not minimal. �

Lemma 1.18. Let (y0,K) be a compact invariant pair, and let (Mp)p∈P be

a (P,≺)-ordered Morse-decomposition. Let p ∈ P be a maximal or minimal

element with respect to ≺. Then M(P \ {p}) is closed (compact).

(3) If u : R → K is a solution with α(u) ⊂ Mq and ω(u) ⊂ Mp for some p, q ∈ P , then

u(R) is a connecting orbit between Mp and Mq .
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Proof. For brevity, we consider only the case that p is maximal. One can

argue analogously if p is minimal.

Let un : R → M(P \ {p}) be a sequence of solutions converging pointwise

to a solution u0 : R → K with u0(0) 6∈ M(P \ {p}). It follows that α(u0) ⊂
Mp ∩ clY×XM(P \ {p}), so Mp ∩ clY×XM(P \ {p}) 6= ∅, in contradiction to

Lemma 1.17. �

Corollary 1.19. Let N ⊂ Y ×X be an isolating neighbourhood for a com-

pact invariant pair (y0,K), and let (Mp)p∈P be a (P,≺)-ordered Morse-decom-

position. For every I ∈ I(P,≺), the set M(I) is closed (compact).

Proof. The proof is conducted by induction on the number of elements of

P \ I. If P 6= I, there is a maximal or a minimal element p in P \ I. It follows

from Lemma 1.18 that M(P ′) is compact where we set P ′ := P \{p}. Moreover,

restricting ≺ to P ′ yields a (P ′,≺)-ordered Morse-decomposition of M(P ′). By

induction, it follows that M(I) is closed. �

Corollary 1.20. Let N ⊂ Y ×X be an isolating neighbourhood for a com-

pact invariant pair (y0,K), and let (Mp)p∈P be a (P,≺)-ordered Morse-decompo-

sition. For every I ∈ I(P,≺), there is an isolating neighbourhood N(I) ⊂ Y ×X
for (y0,M(I)) such that Mp ∩N(I) = ∅ for all p ∈ P \ I.

Proof. Since M(I) is compact, there exists a closed neighbourhood N(I) ⊂
N of M(I) which is disjoint from Mp for every p ∈ P \ I. Let u : R → N(I) be

a solution. It follows that u(R) ⊂ K. Because (Mp)p∈P is a Morse-decomposition

of K, we must have u(R) ⊂M(I). �

We are now in a position to introduce the notion of weak (4) index filtrations

(for the nonautonomous index).

Definition 1.21. Let (y0,K) be a compact invariant pair, and let (Mp)p∈P
be a Morse-decomposition for (y0,K). A weak index filtration for (y0,K, (Mp)p∈P )

is a family (N(A))A∈A(P,≺) of closed subsets of R+ ×X such that:

(a) For all A ∈ A(P,≺), (N(A), N(∅)) is an index pair for (y0,M(A)).

(b) A,B ∈ A(P,≺) and A ⊂ B implies N(A) ⊂ N(B).

For some n ∈ N, let I1, . . . , In be intervals. We say that the tuple (I1, . . . , In)

is increasingly ordered if the order imposed by the indices is compatible with ≺,

that is, there do not exist 0 ≤ l < k ≤ n and (p, q) ∈ Il×Ik such that q ≺ p. If it

holds additionally that I1, . . . , In are pairwise disjoint and I1 . . . In := I1∪. . .∪In
is an interval, we write (I1, . . . , In) ∈ In(P,≺).

(4) Compare this to the definition of an index filtration given in [1].
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Lemmas 1.22 and 1.23 together imply that a weak index filtration gives

rise to index triples index triples (5) for every attractor–repeller decomposition

(y0,M(IJ),M(I),M(J)) with (I, J) ∈ I2(P,≺).

Lemma 1.22. Let (N(A))A∈A(P,≺) be a weak index filtration, (I, J,K) ∈
I3(P,≺) and IJK ∈ A(P,≺). Then, (M(J),M(K)) is an attractor–repeller

decomposition of M(JK), and (N(IJK), N(IJ), N(I)) is an index triple for

(y0,M(JK),M(J),M(K)).

Proof. Suppose that u : R → M(JK) is a solution. Either u(R) ⊂ Mp for

some p ∈ P , or there are p ≺ q such that α(u) ⊂ Mq and ω(u) ⊂ Mp. Sup-

pose that neither u(R) ⊂ M(J) nor u(R) ⊂ M(K) hold. (J,K) is increasingly

ordered, so there are q ∈ K and p ∈ J such that α(u) ⊂ Mq and ω(u) ⊂ Mp.

The sets M(J) and M(K) are disjoint by definition and closed (hence compact)

by Corollary 1.19. We have proved that (M(J),M(K)) is an attractor–repeller

decomposition of M(JK).

It is easy to see that IJ is an attracting interval. Hence, (N(IJK), N(IJ),

N(∅)) is an index triple simply because (N(A))A∈A(P,≺) is a weak index fil-

tration. It follows from Lemma 4.4 in [6] that (N(IJK), N(IJ)) is an index

pair for (y0,M(K)). Analogously, one obtains that (N(IJ), N(I)) is an in-

dex pair for (y0,M(J)), whence it follows immediately (Definition 1.15) that

(N(IJK), N(IJ), N(I)) is an index triple for (y0,M(JK),M(J), (K)). �

Lemma 1.23. Let J ∈ I(P,≺), A := {p ∈ P : p � q for some q ∈ J} and

I := A \ J , where p � q if p ≺ q or p = q. Then, I ∈ A(P,≺), (I, J) is

increasingly ordered and IJ ∈ A(P,≺).

Proof. Let p, q, r ∈ P . If q ∈ A and r ≺ q, then q � q′ for some q′ ∈ J , so

r ≺ q′ and thus r ∈ A, showing that A is an attracting interval.

Suppose that (I, J) is not increasingly ordered, that is, there are q ∈ I and

p ∈ J such that p ≺ q. We have q ≺ q′ for some q′ ∈ J , so q ∈ J since J is an

interval. As q ∈ I ∩ J = ∅ cannot hold, (I, J) must be increasingly ordered.

If I is not an attracting interval, there are q ∈ I and r ∈ P such that r ≺ q

but r 6∈ I. The interval A, however, is attracting, so r ∈ J . Since (I, J) is

increasingly ordered, such r and q cannot exist, showing that I is an attracting

interval. �

Fix a weak index filtration (N(A))A∈A(P,≺). Suppose (I, J) is an increas-

ingly ordered tuple of intervals and IJ is an attracting interval. According to

Lemma 1.22, (N(IJ), N(J)) is an index pair for (y0,M(I)). Now let (A0, I, J,K)

be increasingly ordered intervals such that A0IJK is an attracting interval (6), let

(5) not necessarily unique

(6) A0 always exists in view of Lemma 1.23.
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(A0, I, J,K) =: (I1, . . . , I4) and set H∗(Ik . . . Il) := H∗[N(I1 . . . Il), N(I1 . . . Ik−1)]

for brevity. One obtains a commutative diagram

(1.1)

H∗(I)
iI,IJ

//

��

H∗(IJ)
pIJ,J

//

��

H∗(J)
∂J,I

//

��

H∗−1(I)

��

H∗(I)
iI,IJK

//

��

H∗(IJK)
pIJK,JK

//

��

H∗(JK)
∂JK,I

//

��

H∗−1(I)

��

H∗(IJ)
iIJ,IJK

// H∗(IJK)
pIJK,K

// H∗(K)
∂K,IJ

// H∗−1(IJ)

H∗(J)
iJ,JK

//

OO

H∗(JK)
pJK,K

//

OO

H∗(K)
∂K,J

//

OO

H∗−1(J)

OO

Except for the connecting homorphism, every morphism is inclusion induced

and every row is a part of the long exact sequence associated with the respective

index triple (Definition 4.13 in [6]).

An aesthetically more pleasing variant of the above diagram is the so-called

homology index braid, which is depicted in (1.2). Using (1.1), one easily proves

its commutativity.

(1.2)

�� ��
ss ++

H∗−1(I)

iI,IJK

��

iI,IJ

**

H∗(K)

∂K,J

��

∂K,IJ

tt

H∗−1(IJ)iIJ,IJK

tt
pIJ,J

**

H∗−1(IJK)

pIJK,K

��

pIJK,JK

**

H∗−1(J)

∂J,I

��

iJ,JK

tt

H∗−1(JK)
pJK,K

tt

∂JK,I

**

H∗−1(K)

∂K,J

��

∂K,IJ

**

H∗−2(I)

iI,IJK

��

iI,IJ

tt

H∗−2(IJ)
pIJ,J

tt

iIJ,IJK

**

H∗−2(J)

��

++

H∗−2(IJK)

��

ss

2. Persistence of attractor–repeller-decompositions

As in the previous section, let P be a finite set equipped with a strict partial

order ≺.

We will now formulate the main result of this section: the convergence (or

persistence) of Morse-decompositions.
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Definition 2.1. For all n ∈ N, let yn ∈ Yc (resp. y0 ∈ Yc), Kn ⊂ H+(yn)×X
(resp. K ⊂ H+(y0) × X) be an isolated invariant set, and for each n ∈ N let

(Mn,p)p (resp. (Mp)p) be a (P,≺)-ordered Morse-decomposition of Kn (resp. K).

We say that the Morse-decompositions converge, i.e. (yn,Kn, (Mn,p)p) →
(y0,K, (Mp)p), provided that the following holds: There is an isolating neigh-

bourhood N (resp. Np) of (y0,K) (resp. (y0,Mp)) in Y × X, and there is an

n0 ∈ N such that for all n ≥ n0, it holds that N (resp. Np) is an isolating

neighbourhood for (yn,Kn) (resp. (yn,Mn,p)).

The following theorem concerning the convergence of Morse-decompositions

is the main result of this section. Roughly speaking, we claim that a convergence

of yn in the sense of (2.1) below implies the convergence of a certain Morse

decomposition (7).

Theorem 2.2. Suppose that (yn)n is a sequence in Y , y0 ∈ Yc and (8)

(2.1) d
(
ytn,H+(y0)

)
→ 0 as t, n→∞.

Let N (resp. Np, p ∈ P ) be a strongly skew-admissible isolating neighbourhood

for (y0,K) (resp. (y0,Mp), p ∈ P ), and let (Mp)p be a (P,≺)-ordered Morse-

decomposition of K. Then there is an n0 ∈ N such that for all n ≥ n0:

(a) There is an invariant subset Kn ⊂ H+(yn)×X (resp. Mn,p ⊂ H+(yn)×
X) such that N (resp. Np) is an isolating neighbourhood for (yn,Kn)

(resp. (yn,Mn,p)).

(b) (Mn,p)p is a (P,≺)-ordered Morse-decomposition of Kn.

The proof uses two auxiliary lemmas stated and proved below.

Lemma 2.3. Assume the hypotheses of Theorem 2.2, let A ∈ A(P,≺), and let

NA be a strongly skew-admissible isolating neighbourhood for (y0,M(A)). Then,

for all n ∈ N sufficiently large,

(2.2) NT
A := {(y, x) ∈ NA : (y, x)π[0, T ] ⊂ N}

is an isolating neighbourhood for (yn,K
′
n) and (y0,M(A)), where K ′n := (InvNT

A )∩
(H+(yn) ×X). Moreover, NT

A ∩Kn is positively invariant provided that T and

n are sufficiently large.

Proof. First of all, it is easy to see that NT
A is closed for every T >0.

Fix some T > 0, and assume that NT
A is not an (isolating) neighbourhood for

(7) Replacing isolated invariant sets by their respective isolating neighbourhoods, one could

define Morse-decompositions of isolating neigbourhoods. Theorem 2.2 could now be rephrased

in the following way: The Morse-decomposition with respect to y0 is a Morse-decomposition

with respect to yn for all n ∈ N sufficiently large.

(8) By an abuse of notation, we write d(y,H+(y0)) := inf
ỹ∈H+(y0)

d(y, ỹ).
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(y0,M(A)). There must be a sequence (y′n, xn) ∈ NA \NT
A with

d((y′n, xn),M(A))→ 0 as n→∞.

Consequently, one has (y′n, xn)πsn ∈ ∂NA for some sn ≤ T . Taking subse-

quences, we may assume without loss of generality that (y′n, xn)→ (y, x) ∈M(A)

and sn → s0. We thus have (y, x)πs0 ∈ M(A) ∩ ∂NA, but NA is an isolating

neighbourhood for M(A), so (y, x) cannot exist. We have proved that NT
A is

an isolating neighbourhood for (y0,M(A)). Subsequently, Theorem 5.6 in [5]

implies that NT
A is an isolating neighbourhood for (yn,K

′
n) provided that n is

sufficiently large. This proves our first claim.

We still need to prove the positive invariance property for T and n large.

Suppose to the contrary that we are given sequences Tn → ∞ and (y′n, xn) ∈
Kn ∩ NTn

A such that sn := sup{s ∈ R+ : (y′n, xn)π[0, s] ⊂ NTn

A } < ∞ for all

n ∈ N. We must have (y′n, xn)π(sn + Tn) ∈ ∂NA by the choice of sn.

In view of Lemma 5.7 in [5], there is a solution u : R− → K ∩ NA with

(y′n, xn)π(sn + Tn) → u(0), so u(0) ∈ ∂NA. Hence, u can be extended to a full

solution u′ : R → K with α(u) ⊂ M(A). Since A is an attracting interval, we

conclude that u′(R) ⊂ M(A), which is a contradiction since NA is an isolating

neighbourhood for (y0,M(A)). �

Lemma 2.4. Assume the hypotheses of Theorem 2.2, let A ∈ A(P,≺), and

let NA be an isolating neighbourhood for (y0,M(A)). Define NT
A by (2.2). Then,

for all n ∈ N and T ∈ R+ sufficiently large as well as for every solution u : R→
(H+(yn)×X)∩N , it holds that either (9) α(u)∩ intY×X N

T
A = ∅ or u(R) ⊂ NT

A .

Proof. Choose n and T large enough that the conclusions of Lemma 2.3

hold. In particular, Kn ∩NT
A is positively invariant. If α(u) ∩ intY×X N

T
A 6= ∅,

then there is a sequence tn → −∞ such that u(tn) ∈ NT
A ∩Kn. It follows from

the positive invariance of NT
A ∩Kn that u(tn+ s) ∈ NT

A ∩Kn for all s ∈ R+, and

thus u(t) ∈ NT
A ∩Kn for all t ∈ R because tn → −∞. �

Proof of Theorem 2.2. (a) This is barely more than a restatement of

Theorem 5.6 in [5].

(b) In view of (a), one can assume without loss of generality that for all

p ∈ P , the set Np ⊂ Y ×X is an isolating neighbourhood for (yn,Mn,p) for all

n ∈ N.

We are going to prove that for n ∈ N large, (Mn,p)p∈P is a (P,≺)-ordered

Morse-decomposition of Kn by induction on the cardinality of P . Let p0 ∈ P

(9) It is easy to see that the two following conditions are mutually exclusive for large n.

Namely, u(R) ⊂ NT
A implies that α(u) ⊂ NT

A . If the latter set is an isolating neighbourhood,

one immediately obtains that α(u) ⊂ intY×X NT
A .
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be a maximal element, so A := P \ {p0} is an attracting interval. By Corol-

lary 1.20 and Lemma 5.5 in [5], there exists a strongly skew-admissible isolating

neigbhorhood NA ⊂ N for (y0,M(A)) such that NA ∩Mp0 = ∅.
Thus, we can assume by induction that, for all n ≥ n0(A), (Mn,p)p∈A is

a Morse-decomposition of K ′n := (InvNA)∩(H+(yn)×X). Replacing NA by NT
A

and choosing T large, we can additionally assume that NA ∩Kn is positively in-

variant, and NA satisfies the conclusions of Lemma 2.4 for all n ≥ n0 := n0(P ) ≥
n0(A). Set N ′p0 := N \ intY×X NA and Mn,p0 := (InvNp0) ∩ (H+(yn)×X). It

is easy to see that N ′p0 is another isolating neighbourhood for (y0,Mp0). Hence,

there exists an n0 = n0(p0, A) ≥ n0(A) such that for all n ≥ n0, N ′p0 is an

isolating neighbourhood for Mn,p0 .

Let n ≥ n0(p0, A), and let u : R → N ∩ (H+(yn) × X) be a solution. Ei-

ther u(R) ⊂ NT
A , in which case the induction argument applies, or α(u) ∩

intY×X N
T
A = ∅.

In the second case, one has α(u) ⊂ N ′p0 , so α(u) ⊂ Mn,p0 by the choice

of n0. Either u(R) ⊂ N ′p0 , implying that u(R) ⊂ Mn,p0 , or ω(u) ⊂ NA since

NA∩Kn is positively invariant for all n ≥ n0. Hence, for n ≥ n0(p0, A), (Mn,p)p
is a (P,≺)-ordered Morse-decomposition of Kn. �

3. Continuation

Let P be a finite set and ≺ a strict partial order on P . Consider an isolated

invariant set and a (P,≺)-ordered Morse-decomposition of this invariant set.

A continuous change of a dynamical system which preserves the invariant set

and its Morse-decomposition preserves the categorial Conley index — and thus

also the homotopy index and every other index which can be obtained from it. It

also preserves the homology index braid and, in particular, its homomorphisms.

We will make the following standing assumptions on Y :

(L1) Y is a linear metric space (over the reals), and the metric d on Y is

invariant, that is, d(y1, y2) = d(y1 − y2, 0) for all y1, y2 ∈ Y .

(L2) The translation y 7→ yt is linear, that is, (y1 + y2)t = yt1 + yt2 for all

y1, y2 ∈ Y , t ∈ R+ and λyt = (λy)t for all λ ∈ R, y ∈ Y , t ∈ R+.

We will now, mutatis mutandis, proceed as in the proof of the continuation

property given in [5]. The first step is to find an appropriate replacement for the

homotopy index, which is called continuation class. Note the mixture between

homotopy and homology in the definition below.

Definition 3.1. Let Ω be a set. Consider the set P of all tuples (Y,X, π, y0,

K,M), whereX,Y ⊂ Ω are metric spaces, π is a skew-product semiflow on Y×X,

y0 ∈ Yc, N ⊂ Y ×X is a skew-admissible isolating neighbourhood for (y0,K) and

(Mp)p∈P a (P,≺)-ordered Morse-decomposition. Define an equivalence relation
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on P as follows: (Y,X, π, y0,K,M) and (Y ′, X ′, π′, y′0,K
′,M ′) are related if there

exists a family (θI)I∈I(P,≺) such that:

(a) θ(I) : C(y0,M(I))→ C(y′0,M ′(I)) is an isomorphism.

(b) For every (I, J) ∈ I2(P,≺), the following ladder, the rows of which are

attractor–repeller sequences, is commutative.

(3.1)

//H∗ C(y0,M(I)) //

H∗ θ(I)

��

H∗ C(y0,M(IJ)) //

H∗ θ(IJ)

��

H∗ C(y0,M(J)) //

H∗ θ(J)

��

H∗−1 C(y0,M(I)) //

H∗−1 θ(I)

��
//H∗ C(y′0,M ′(I)) //H∗ C(y′0,M ′(IJ)) //H∗ C(y′0,M ′(J)) //H∗−1 C(y′0,M ′(I)) //

The continuation class

ContCl(y0,K,M) := ContCl(π, y0,K,M) := ContCl(Y,X, π, y0,K,M)

is the equivalence class of (Y,X, π, y0,K,M) under the above relation. The

notation of Y , X and π is omitted whenever possible.

Usually the skew-product semiflow π remains unchanged. As before, there is

a technically motivated exception, stated below.

Lemma 3.2. Let Y ′ :=
(
{1/n : n ∈ N} ∪ {0}

)
× Y and π′ a skew-product

semiflow on Y ′ × X such that ((λ, y), x)π′t := ((λ, yt),Φ(t, (λ, y), x)). Define

semiflows πn on Y ×X by (y, x)πnt := (y,Φ(t, (λ, y), x)) for λ = 1/n if n ∈ N
and λ = 0 if n = 0. Suppose that y0 ∈ Yc and

((1/n, y0),Kn, (Mn,p)p∈P )→ ((0, y0),K0, (Mp)p∈P ).

Then, there is an n0 ∈ N such that for all n ≥ n0, one has

ContCl(πn, y0,Kn, (Mn,p)p∈P ) = ContCl(π0, y0,K0, (Mp)p∈P ).

Proof. This lemma serves primarily as an interface to the results of [2]. By

Theorem 3.4 in [2], there is an n0 ∈ N such that every n ≥ n0, there are index

filtrations
(
N̂n(I)

)
I∈I(P,≺)

and
(
N̂ ′n(I)

)
I∈I(P,≺)

for (πn,Kn, (Mn,p)p∈P ) (resp.

(π0,K0, (Mp)p∈P )) possessing the required nesting property, that is,

(3.2) N̂n(I) ⊂ N̂0(I) ⊂ N̂ ′n(I) ⊂ N̂ ′0(I), A ∈ A(P,≺).

By using weak index filtrations, we may limit our attention to attracting inter-

vals.

For every A ∈ A(P,≺), define

N(A) := {(t, x) : (yt0, x) ∈ N̂(A)}, N ′(A) := {(t, x) : (yt0, x) ∈ N̂ ′(A)}

For all A ∈ A(P,≺), it holds that
(
N̂n(A), N̂n(∅)

) (
resp.

(
N̂ ′n(A), N̂ ′n(∅)

))
is an FM-index pair for Mn(A), so by Lemma 2.4 in [6] (Nn(A), Nn(∅)) and

(N ′n(A), N ′n(∅)) are index pairs for (y0,Mn(A)) – with respect to πn.
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Let (I, J) ∈ I2(P,≺) and IJ, I ∈ A(P,≺). By Lemma 1.22, (Nn(IJ), Nn(I))

and (N ′n(IJ), N ′n(I)) (resp. (N(IJ), N(I)) and (N ′(IJ), N ′(I))) are index pairs

for (y0,Mn(I)) := (y0,M(I)) with respect to the skew-product semiflow πn (resp.

(y0,M(I)) with respect to the skew-product semiflow π0). From (3.2), we obtain

the following inclusion induced morphisms:

[Nn(IJ), Nn(I)]
i−→ [N(IJ), N(I)]

j−→ [N ′n(IJ), N ′n(I)]
k−→ [N ′(IJ), N ′(I)].

Lemma 2.5 in [6] implies that each of the morphisms j ◦ i, k ◦ j is a homotopy

equivalence. Hence, i, j, k are homotopy equivalences, and

θ(J) := [j] : C(π0, y0,Mn(J))→ C(πn, y0,M(J))

is an isomorphism in the homotopy category of pointed spaces.

In view of Lemma 1.23, we can always find an interval I such that the

above construction of θ(J) is possible. The next step is to prove that θ(J)

is well-defined, that is, independent of I. Suppose that (I ′, J) ∈ I2(P,≺) and

I ′J, I ′ ∈ A(P,≺). Then I0 := I ′ ∩ I is again an attracting interval and so is

I0J = I ′J ∩ IJ . Thus it is s sufficient to prove that the morphisms θ(J) defined

by I0 and I agree. This follows easily from the commutativity of the diagram

below because the vertical (inclusion-induced) morphisms are inner morphisms

of the categorial Conley index,

[N(I0J), N(I0)]
j0
//

��

[N ′n(I0J), N ′n(I0)]

��

[N(IJ), N(I)]
j
// [N ′n(IJ), N ′n(I)]

so [j] = [j0].

Finally, let (I, J,K) ∈ I3(P,≺) and consider (3.3), where every morphism

is inclusion induced except for the connecting homomorphism of the respective

attractor–repeller sequence.

(3.3)

H∗[N(IJ),N(I)] //

��

H∗[N(IJK),N(I)] //

��

H∗[N(IJK,N(IJ)]
∂n
//

��

H∗−1[N(IJ),N(I)]

��

H∗[N
′
n(IJ),N ′n(I)] // H∗[N

′
n(IJK),N ′n(I)] // H∗[N

′
n(IJK,N ′n(IJ)]

∂
// H∗−1[N ′n(IJ),N ′n(I)]

It is clear that inclusion induced morphisms commute. From Lemma 4.11 in [6],

one obtains that the square with the connecting homomorphisms is commutative

as well. The commutativity of (3.1) follows. �

For the rest of this section, we will make the following assumptions. Let

P be a finite set and ≺ a strict partial order on P , Γ a metric space and f =

(y(γ),K(γ), (Mp(γ))p∈P )γ∈Γ a family such that, for all γ ∈ Γ,
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(1) y(γ) ∈ Yc
(2) there is a strongly-skew-admissible isolating neighbourhood for (y(γ),

K(γ)),

(3) (Mp(γ))p∈P is a (P,≺)-ordered Morse-decomposition of K(γ)

Definition 3.3. We say that f is continuous at γ0 ∈ Γ if whenever γn → γ0

in Γ:

(C1) (y(γn),K(γn), (Mp(γn))p∈P )→ (y(γ0),K(γ0), (Mp(γ0))p∈P ).

(C2) d(ytγn , y
t
γ0)→ 0 as n, t→∞.

f is continuous if it is continuous in every point γ0 ∈ Γ.

The rest of this section is devoted to the proof of the following continuation

theorem.

Theorem 3.4. Suppose that Γ is connected and

f = (y(γ),K(γ), (Mp(γ))p∈P )γ∈Γ

is continuous. Then ContCl ◦f is constant.

The reason behind the definition of a continuation class and the significance

of Theorem 3.4 can be seen in the following corollary since its proof is almost

trivial. Roughly speaking, if the continuation class agrees, then all connecting

homomorphisms agree up to conjugacy.

Corollary 3.5. Suppose that Γ is connected and

f = (y(γ),K(γ), (Mp(γ))p∈P )γ∈Γ

is continuous. Let I ∈ I(P,≺) and let M(γ, I) denote the set M(I) relative

to (y(γ),K(γ) and the Morse-decomposition (Mp)p∈P . Let ∂(y(γi), J, I) denote

the connecting homomorphism of the attractor repeller sequence of (y(γi),K(γi),

M(γi, I),M(γi, J)) as defined in [6], following Theorem 4.13. Then, for all

γ1, γ2 ∈ Γ and all (I, J) ∈ I2(P,≺), there is a commutative diagram:

H∗ C(y(γ1),M(γ1, J))
∂∗(γ1,J,I)

//

H∗ θ(J)

��

H∗−1 C(y(γ1),M(γ1, I))

H∗−1 θ(I)

��

H∗ C(y(γ2),M(γ2, J))
∂∗(γ2,J,I)

// H∗−1 C(y(γ2),M(γ2, I))

Furthermore, H∗(θ(I)) and H∗(θ(J)) are isomorphisms.

Proof. This follows from Theorem 3.4 and (3.1). �

At first glance, the following lemma appears technical. However, it perfectly

outlines the strategy of the following proof of Theorem 3.4 since it reduces the
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problem to the local constantness of the continuation class. Moreover, the defi-

nition of y(γ, λ), which is possible due to assumptions (L1) and (L2), allows for

an application of Lemma 3.2.

Lemma 3.6. Let γ0 ∈ Γ, and let N (resp. Np) be a strongly skew-admisible

isolating neighbourhood for (y(γ0),K(γ0)) (resp. (y(γ0), (Mp(γ0))p∈P )). Then

there is a neighbourhood U of γ0 in Γ such that for all γ ∈ U and all λ ∈ [0, 1]:

(a) There is a set Kγ,λ (resp. Mγ,λ,p, p ∈ P ) such that N (resp. Np, p ∈ P )

is an isolating neighbourhood for

(λy(γ0) + (1− λ)y(γ)︸ ︷︷ ︸
=:y(γ,λ)

,Kγ,λ)

(resp. (y(γ, λ),Mγ,λ,p), p ∈ P ).

(b) (Mγ,λ,p)p∈P is a (P,≺)-ordered Morse-decomposition of Kγ,λ

(c) f(γ) = (y(γ, 0),Kγ,0, (Mγ,0,p)p∈P ).

We need an auxiliary lemma to prove Lemma 3.6.

Lemma 3.7. Let N and N ′ be strongly admissible isolating neighbourhoods

for (y0,K), and let

d
(
ytn, y

t
0

)
→ 0 as t, n→∞.

Then Kn := Inv(N) ∩ (H+(yn) ×X) = Inv(N ′) ∩ (H+(yn) ×X) =: K ′n for all

but finitely many n ∈ N.

Proof. Arguing by contradiction, we can assume without loss of generality

that there exists a sequence xn ∈ Kn \ K ′n. By using Theorem 5.6 in [5], one

obtains that N ′ is an isolating neighbourhood for (yn,K
′
n) for all but finitely

many n ∈ N. Hence, the solution through xn leaves N ′ at least once. Therefore,

one can choose a sequence (x′n)n≥n0
with x′n ∈ Kn \ N ′ for all n ≥ n0. By

Lemma 5.7 in [5], there is a convergent subsequence x′′n → x0 ∈ Inv(N).

Because N is an isolating neighbourhood for K, one has x0 ∈ K. On the

other hand, x′′n ∈ (Y ×X) \N ′ for all n ∈ N implies that x0 ∈ (Y ×X) \ intN ′.

However, K ⊂ intN ′, which is a contradiction. �

Proof of Lemma 3.6. (a), (b) Otherwise, there are sequences γn → γ0

and λn ∈ [0, 1] such that (a) or (b) are not satisfied. However,

d(y(γn, λn)t, y(γ0)t)→ 0 as t, n→∞,

so in particular d(y(γn, λn)t,H+(y(γ0))) → 0 as t, n → ∞. This is a contradic-

tion to Theorem 2.2.

(c) First of all, it is clear that y(γ, 0) = y(γ). By (C1), there is an isolat-

ing neighbourhood N ′ (resp. N ′p, p ∈ P ) for (y(γ),K(γ)) (resp. (y(γ),Mp(γ)),

p ∈ P ). It follows from Lemma 3.7 that Kγ,0 = K(γ) (resp. Mγ,0,p = Mp(γ),

p ∈ P ) for all γ in a sufficiently small neighbourhood of γ0. �
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Lemma 3.8. Let γ0 ∈ Γ, and let N (resp. Np, p ∈ P ) be a strongly skew-ad-

misible isolating neighbourhood for (y(γ0),K(γ0)) (resp. (y(γ0),Mp)). Let U⊂Γ

as well as Kγ,λ and Mγ,λ,p be given by Lemma 3.6. Let γ ∈ U , y0 := y(γ0),

h := y(γ) − y(γ0), and consider the spaces Y ′ := H+(y0) × H+(h) and Y ′′ :=

[0, 1]× Y ′. On Y ′ ×X, define a family (πλ)λ∈[0,1] of semiflows by

(y, h, x)πλt := (yt, ht,Φ(t, y + λh, x)).

On Y ′′ × X, one defines (λ, y, h, x)π′t := (λ, (y, h, x)πλt). Define j : H+(y0) ×
X → Y ×X by j(y0, h, x) := (y0 + h, x), and fix an arbitrary γ ∈ U . Then:

(a) The sets (M ′λ,p)p := (j−1(Mγ,λ,p))p form a Morse-decomposition of K ′λ :=

j−1(Kγ,λ) relative to πλ. Furthermore,

((λn, y0, h),K ′λn
, (M ′λn,p)p)→ ((λ, y0, h),K ′λ, (M

′
λ,p)p)

whenever λn → λ in [0, 1].

(b) ContCl(πλ, (y0, h),K ′λ, (M
′
λ,p)p) is independent of λ ∈ [0, 1].

(c) ContCl(π, f(γ)) = ContCl(π1, (y0, h),K ′1, (M
′
1,p)p) = ContCl(π0, (y0, h),

K ′0, (M
′
0,p)p) = ContCl(π, f(γ0)).

Proof. By Lemma 3.6 respectively the choice of U , N ⊂ Y ×X (resp. Np ⊂
Y ×X) is an isolating neighbourhood for (y(γ, λ),Kγ,λ) (resp. (y(γ, λ),Mγ,λ,p))

for all λ ∈ [0, 1] and all γ ∈ U .

It is easy to see (10) that for all λ ∈ [0, 1], the closed set N ′ := j−1(N)

(resp. N ′p := j−1(Np)) is an isolating neighbourhood for (λ, y0, h,K
′
λ) (resp.

(λ, y0, h,M
′
λ,p)).

(a) Let u : R → K ′λ be a solution of πλ. It follows that j ◦ u is a solution

of π, so either j ◦ u ⊂ Mγ,λ,p for some p ∈ P or there are p ≺ q in P such

that α(j ◦ u) ⊂ Mγ,λ,q and ω(j ◦ u) ⊂ Mγ,λ,p. In the first case, we immedi-

ately conclude that u ⊂ M ′λ,p. In the second case, one has u(t) ∈ N ′λ,q for all

t sufficiently small and u(t) ∈ N ′λ,p for all t sufficiently large. Since N ′q and N ′p
are isolating neighbourhoods for (λ, y0, h,M

′
λ,q) and (λ, y0, h,M

′
λ,p), it follows

that α(u) ⊂ M ′λ,q and ω(u) ⊂ M ′λ,p. Since N ′ and N ′p are isolating neighbour-

hoods regardless of λ ∈ [0, 1], one trivially has ((λn, y0, h),K ′λn
, (M ′λn,p

)p) →
((λ, y0, h),K ′λ, (M

′
λ,p)p) whenever λn → λ as claimed.

(b), (c) Recall the notation of Lemma 3.6. For every interval I ⊂ P ,

there is an isolated invariant subset My(γ,λ)(I). If (N1, N2) is an index pair

for (y(γ, λ),My(γ,λ)(I)) relative to π, then (N1, N2) is also an index pair for

((y0, h),M ′λ(I)) relative to πλ, where M ′λ(I) is defined with respect to the Morse-

decomposition (M ′λ,p)p∈P . Consequently,

ContCl(π, y(γ, λ),Kγ,λ, (Mγ,λ,p)p) = ContCl(πλ, (y0, h),K ′λ, (M
′
λ,p)p).

(10) Firstly, the set j−1(Kλ) is invariant because H+(y0, h) is compact. Secondly, InvN ′∩
(H+(y0, h)×X) ⊂ j−1(Kλ). One can argue analogously for Mλ,p, p ∈ P .
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Suppose that χ(λ) := ContCl(πλ, (y0, h),Kλ, (Mλ,p)p) is not constant for

λ ∈ [0, 1]. There must exist a sequence λn → λ0 such that χ(λn) 6= χ(λ0), in

contradiction to Lemma 3.2. �

Proof of Theorem 3.4. Firstly, we will prove that ContCl ◦f is locally

constant. Let γ0 ∈ Γ, and let the isolating neighbourhoods N and Np, p ∈ P
be determined by (C1). It follows from Lemma 3.8 above, that ContCl ◦f is

constant in a neighbourhood U of γ0.

We have shown that ContCl ◦f is locally constant. Moreover, Γ is connected,

so the proof is complete. �
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