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INTEGRABILITY OF THE DERIVATIVE OF SOLUTIONS
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To the memory of Professor Marek Burnat

Abstract. We study integrability of the derivative of a solution to a sin-
gular one-dimensional parabolic equation with initial data in W 1,1. In

order to avoid additional difficulties we consider only the periodic bound-

ary conditions. The problem we study is a gradient flow of a convex, linear
growth variational functional. We also prove a similar result for the elliptic

companion problem, i.e. the time semidiscretization.

1. Introduction

We study a one-dimensional parabolic equation

(1.1)
ut = (Wp(ux))x, (x, t) ∈ QT := T× (0, T ),

u(x, 0) = u0(x), x ∈ T,

where W : R→ R, Wp = dW (p)/dp and T is a flat one-dimensional torus, which

we identify with [0, 1). In other words, for the sake of simplicity we consider the

periodic boundary conditions, but the same argument with little change applies

to the zero Neumann data.

Equation (1.1) is formally a gradient flow of the following functional,

E(u) =


∫
T
W (ux) dx for u ∈W 1,1(T),

+∞ for u ∈ L2(T) \W 1,1(T).
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Our main assumption on W , apart from convexity, is the linear growth of W .

We also consider a companion of this equation, namely, the time semidis-

cretization of (1.1),

(1.2)
1

h
(u− f) = (Wp(ux))x in T.

Even though it makes sense to consider u0 ∈ BV(T) for equation (1.1) we

study here the propagation of regularity, i.e. we show that the integrability of

du0/dx (denoted by u0,x) implies that the derivative of the weak solution is also

integrable, ux( · , t) ∈ L1(T), see Theorem 4.2 in Section 4. Apparently, such

results are not known in the general context. We are only aware of the paper

by Bellettini et al. [4], on the parabolic minimal surface equation, for which the

authors show that the solutions are eventually regularized, i.e. there is a positive

waiting time. We stress that our assumptions on W are more general, since we

need only convexity and the linear growth. The precise formulation of these

conditions is in the statement of Theorem 4.2.

What we prove in Theorem 4.2 shows that equation (1.1) does not create

singularities like jumps. Such a result is known in a multidimensional setting

for W (p) = |p|. In particular, the jumps present in the data persist, see [6], and

Hölder continuity of the data propagates, [7]. We also note that our method

is essentially restricted to one dimension. We are not able to address the same

question in higher dimensions.

Our Theorem 3.1 is a companion result on a closely related elliptic prob-

lem (1.2). But we prove it first, because it is slightly simpler than Theorem 4.2.

Here, in equation (1.2) f plays the role of initial conditions, hence f ∈ Lp(T),

p ≥ 1 implies only that u ∈ BV(T). Since (1.2) is the time semidiscretization of

(1.1), then integrability of the derivative of solutions following from integrability

of the derivative of f is not surprising. A similar statement for a domain in RN

is proved by Beck et al. in [2], but for smooth nonlinearities corresponding to

functionals with linear growth. In the setting of [2] the smooth dependence of

W on p is important for the argument. In [3], in a similar setting the Lipschitz

continuity of minimizers is shown.

If W (p) = |p|, the we can offer an additional comment about solutions

to (1.2), which is the Euler–Lagrange equation for the Rudin–Osher–Fatemi func-

tional, see [14]. We can say that if data are regular, in this case f ∈ W 1,1(T),

then we cannot detect edges, understood as jumps of u solutions to (1.2), because

jumps may not be created.

Both of our results can be expressed as no singularity formation. They

are both obtained with the same technique depending on the insight into the

structure of L1(T). The necessary preliminary results are presented in Section 2.

Namely, if function g belongs to L1(T), then it automatically enjoys a better
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integrability, see Lemma 2.1 and [13, §2.1]. In our setting g is the derivative of

data, i.e. g = fx in the case of equation (1.2) or g = (u0)x in the case of parabolic

equation (1.1). In fact, we show that this better integrability of derivatives of

data is passed to the derivatives of solutions, see Theorems 4.2 and 3.1.

We show first the desired estimates for solutions to the regularized problems

either elliptic or parabolic. The passage to the limit requires weak compactness

in L1 and the Pettis theorem. In order to show that the limit of solutions to the

regularized problems are actually solutions to the original equation we depend

on the theory of monotone operators, i.e. Minty’s trick.

In Section 3 we first prove our result for the elliptic problem. For this purpose

we study solutions to a regularized problem. The parabolic problem, treated in

Theorem 4.2, requires an additional step, as compared with the elliptic equation,

and this is why we deal with this in the last section. Section 4 is closed with

a remark on finite extinction (or rather stopping) time, which is common to the

problems we consider, if W has a singularity at p = 0.

2. Preliminaries

We gather here our assumptions on W and we present necessary information

about the structure of the space L1(Ω) for any Ω ⊂ RN .

2.1. Conditions on W and functional E. Throughout the paper, we

assume that W is an even, convex function with linear growth at infinity, i.e.

(2.1) lim
t→∞

W (t)

t
= W+, lim

t→∞

W (−t)
t

= W−.

In the above formula, W± are positive numbers. Without loss of generality we

could assume that

(2.2) W+ = W− = W∞ > 0.

Indeed, one could consider W̃ (p) = W (p) + (W−−W+)p/2 in place of W . This

modified W̃ does not change neither (1.1) nor (1.2).

We will not impose any further restrictions W . Here are some examples,

|p|, |p+ 1|+ |p− 1|,
√

1 + p2, |p|+
√

1 + p2.

We note that functional E is defined naturally on the space W 1,1(T). How-

ever, in general E is not lower semicontinuous on W 1,1(T) with respect to the L2

topology, unless W is piecewise linear, see [9], [12]. The lower semicontinuous

envelope or the relaxation of E , denoted by E , is naturally well-defined on BV(T).

For u ∈ BV(T) we write,

(2.3) E(u) = inf
{

lim
n→∞

E(un) : un → u in L2
}
.
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We know that (see [1, Theorem 5.47])

(2.4) E(u) =

∫
T
W (ux) dx+W∞

∫
T
|Dsu|.

Here, Du = uxxL1 +Dsu is a decomposition of measure Du into the absolutely

continuous part with respect to the Lebesgue measure and the part singular to it.

2.2. The useful structure of L1(Ω). Here, we recall the information on

L1(Ω) needed to derive estimates on solutions to (1.1) and (1.2).

Lemma 2.1. Let us suppose that f ∈ L1(Ω), then there exists a smooth,

convex function Φ: R→ R such that, lim|x|→∞ Φ(x)/|x| =∞ and

(2.5)

∫
Ω

Φ(f) dx <∞.

Proof. By [13, §1.2, Corollary 3], there exists a convex function Φ̃ such that

lim
|x|→∞

Φ̃(x)/|x| =∞ and

∫
Ω

Φ̃(f) dx <∞.

From now on, we will use that

Φ̃ is decreasing on (−∞, 0] and Φ̃ is increasing on [0,+∞).

In other words, 0 is minimum point of Φ̃. We can achieve that by adding to Φ̃

a linear function ap for a properly chosen real a.

Now, for all δ > 0, we define

Φ̂δ(p) =


Φ̃(p− δ) for p > δ,

Φ̃(p+ δ) for p < −δ,
Φ̃(0) for |p| ≤ δ.

Once we have it, we take Φ = Φ̂δ ∗ φδ, for any δ < 1, where φδ is the standard,

positive mollifier kernel with suppφ1 ⊂ B(0, 1) and maxφ = φ(0). It is easy to

see that Φ(p)/|p| → +∞ as |p| → +∞.

Now, we check that

(2.6) Φ(p) ≤ C0Φ̃(p) + C1,

where C0 = φ(0)/δ. For p > 1 we see that

Φ(p) ≤ 1

δ

∫
R

Φ̂δ(q)φ

(
p− q
δ

)
dq ≤ φ(0)

δ

∫ p+δ

p−δ
Φ̂δ(p+ δ) dq ≤ C0Φ̃(p).

Similar inequality holds for p < −1.

If |p| ≤ δ, then

Φ(p) ≤ C0Φ̃(0) ≤ Φ̃(p) + C1,

where C1 = C0 max{1, Φ̃(0)}. Thus, (2.6) holds. Since we established (2.6), we

conclude that (2.5) holds, too.
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We recall that a family F of integrable functions is uniformly integrable if

and only if

(i) sup
f∈F

∫
Ω

|f | dµ = c <∞, and

(ii) lim
µ(A)→0

∫
A

|f | dµ = 0 uniformly with respect to f ∈ F .

Let us introduce the notation

G(v) :=

∫
D

Φ(v(x)) dx,

where D = T or D = QT . The Pettis Theorem immediately implies the following

fact.

Lemma 2.2. If a sequence F = {fk}∞k=0 ⊂ L1(D) satisfies

G(fk) ≤M <∞, k ∈ N,

then we can select a subsequence fkm converging weakly in L1(D) to f ∈ L1(D).

We address now the question of the limit passage in G or E .

Lemma 2.3. Let us suppose that fn ∈ L1(D), where D ⊂ Rd, d ≥ 1, satisfy

the following bound ∫
D

Φ(fn) dx ≤M,

where Φ is as in Lemma 2.1, and fn ⇀ f in L1(D). Then,

lim
n→∞

∫
D

Φ(fn(x)) dx ≥
∫
D

Φ(f(x)) dx.

Proof. Due to the convexity of Φ, this function is the envelope of a family

of straight lines,

Φ(p) = sup
α∈I

`α(p).

Thus, for any index α we have Φ(p) ≥ `α(p) = aαp+ bα and

lim
n→∞

∫
D

G(fn(x)) dx ≥ lim
n→∞

∫
D

`α(fn(x)) dx =

∫
D

aαf(x) dx+ bα|D|,

because any constant aα may be identified with a continuous functional over

L1(D). Thus,

lim
n→∞

∫
D

G(fn(x)) dx ≥
∫
D

`α(f(x)) dx.

After having taken the supremum over α ∈ I we reach the claim. �

Remark 2.4. We need this lemma only when d = 1 or d = 2.
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3. The elliptic problem of time semidiscretization

We first deal with integrability of solutions to the following elliptic problem,

(3.1)
1

h
(u− f) = (Wp(ux))x in Ω,

augmented with either the periodic for Ω = T or the Neumann boundary condi-

tions, when Ω = (0, 1). However, the argument will be provided for Ω = T.

First of all, we have to settle the meaning of a solution to (3.1). If we assume

that f is in L2(T), then (3.1) is formally the Euler-Lagrange equation of the

following functional,

E(u) +
1

2h

∫
T
(u− f)2 dx.

However, due to the lack of lower semicontinuity of E in general, we could under-

stand solutions to (3.1) as minimizers, which are the only critical points here, to

Ff (u) = E(u) +
1

2h

∫
T
(u− f)2 dx,

where E is the lower semicontinuous envelope of E defined in (2.3), cf. (2.4). If

u is a minimizer of Ff , then this fact just implies that

|Du|(T) ≤ 1

α
‖f‖2L2 , ‖u‖L2 ≤ 4‖f‖2L2 .

But this is not sufficient to deduce that ux ∈ L1(T).

If we wish to establish integrability of the derivative of the solution to (3.1),

we have to proceed differently. Since we expect that u ∈ W 1,1(T), we can

define the appropriate notion of a solution. We say that a function u ∈W 1,1(T)

is a weak solution to (3.1) if there exists ξ ∈ L∞(T), ξx ∈ L2(T) such that

ξ(x) ∈ ∂W (ux(x)) for almost every x ∈ T and the following identity∫
T

(
1

h
(u− f)ϕ+ ξϕx

)
dx = 0

holds for all ϕ ∈ C∞(T). We notice that since C∞(T) is dense in W 1,1(T) and

W 1,1(T) ⊂ L2(T), we can take test functions from W 1,1(T).

Theorem 3.1. Let us assume that W is convex and the assumption (2.1)–

(2.2) holds. If f ∈ W 1,1 and h > 0, then there exists a unique weak solution to

(3.1), u. The distributional derivative of u is an element of L1(T). Moreover,

(3.2) G(ux) ≤ G(fx),

where Φ is given by Lemma 2.1 for fx.

Proof. In order to obtain existence of solutions, we regularize the equation

by adding the εuxx term and smoothing out the nonlinearity, W ε(p) = (W ∗
ρε)(p), where ρε is the standard symmetric mollifying kernel. Thus, we consider,

(3.3)
1

h
(uε − f) = W ε

p (uεx)x + εuεxx, x ∈ T.
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We shall say that a function uε ∈ W 1,2(T) is a weak solution to (3.3) if the

following identity holds,

(3.4)

∫
T

(
1

h
(uε − f)ϕ+ (W ε

p (uεx) + εuεx)ϕx

)
dx = 0

for all ϕ ∈ C∞(T). In formula (3.4) we require that ϕ is smooth, but since

C∞(T) is dense in W 1,2(T) we may use uε as a test function.

We notice that equation (3.4) is the Euler-Lagrange equation for the func-

tional

Fεf (u) =

∫
T

(
1

2h
(u− f)2 +W ε(ux) +

ε

2
u2
x

)
dx.

Since Fεf is strictly convex and lower semicontinuous on W 1,2(T), we immediately

conclude the existence and the uniqueness of minimizers, uε ∈ W 1,2(T). Since

W ε is smooth, we immediately conclude that uε satisfies (3.4).

Due to the linear growth of W the derivative W ε
pp is bounded and W ε

pp+ε ≥ ε.
Hence it is easy to deduce higher regularity of uε, i.e. uε ∈W 2,2(T), because

1

h
(uε − f) = (W ε

pp(u
ε
x) + ε)uεxx.

We set

(3.5) ξε = W ε
p (uεx),

we notice that ξε ∈W 1,2(T). Since W ε is convex, then its derivative is a mono-

tone function. If we combine it with the linear growth of W , then we notice,

(3.6) ξε(x) ∈ [−W∞,W∞].

We have to deduce that the family {uε} is relatively weakly compact in

W 1,1(T). The main point is establishing the existence of a subsequence {uεx}
converging weakly in L1(T). For this purpose, we use Lemma 2.1 guaranteeing

that (2.5) holds, i.e. G(fx) < ∞. Once we have Φ, we multiply both sides of

(3.3) by Φ′′(uεx)uεxx ∈ L2(T). After integration over T and integration by parts,

we come to ∫
T
(fxΦ′(uεx)− uεxΦ′(uεx)) ≥ 0.

Now, the convexity of Φ gives us,∫
T

Φ(fx) dx−
∫
T

Φ(uεx) dx ≥
∫
T

Φ′(uεx)(fx − uεx).

Combining these two inequalities yields,

(3.7) G(uεx) ≡
∫
T

Φ(uεx) ≤
∫
T

Φ(fx) dx ≡ G(fx).

Now, we can use Lemma 2.2 to deduce the weak convergence in L1(T) of uεx
to ux ∈ L1(T) as ε → 0. In the next step, Lemma 2.3 guarantees the lower
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semicontinuity of G and E with respect to weak convergence in L1(T). Thus, we

reach the bound (3.2).

Now, we want to show that u is indeed a weak solution to (3.1), i.e. we have to

find ξ stipulated by the definition of a weak solution and to show that it has the

desired properties. For each ε > 0 we have at our disposal, solutions uε to (3.4)

and ξε defined by (3.5). We notice that due to (3.6) ξε converges (possibly

after extracting a subsequence) weakly∗ in L∞(T) to ξ and ξ(x) ∈ [−W∞,W∞]

almost everywhere.

We know that uεx converges weakly in L1(T) and we assumed that the test

function ϕ in (3.4) is in C∞(T). Thus, in order to be able to pass to the limit

in (3.4) we need to know that ε
∫
T u

ε
xϕx dx goes to zero as ε→ 0. Indeed, since

uε is a minimizer of Fεf , then we notice

ε‖uεx‖2L2 ≤ Fεf (uε) ≤ Fεf (0) =

∫
T

[
1

2h
f2 +W ε(0)

]
dx ≤

‖f‖2L2

2h
+W (1) =: CF .

Thus,

ε

∣∣∣∣ ∫
T
uεxϕx dx

∣∣∣∣ ≤ ε‖uεx‖L2‖ϕx‖L2 ≤ ε1/2
√
CF → 0.

Finally, after passing to the limit in (3.4), we obtain the following identity,

(3.8)

∫
T

(
1

h
(u− f)ϕ+ ξϕx

)
dx = 0

for all ϕ ∈ C∞(T). The density of C∞(T) in W 1,1(T) and the embedding

W 1,1(T) ⊂ L2(T) imply that we may take test functions from W 1,1(T) in (3.8).

It is important to notice that (3.8) implies that ξ ∈ W 1,2. Indeed, due

to (3.8) the weak derivative of ξ is (u− f)/h, hence our claim follows.

Now, it remains to show that ξ(x) ∈ ∂W (ux(x)) for almost every x ∈ T.

Indeed, from the construction of uε we know that for any w ∈W 1,1(T) we have

(3.9)

∫
T
W ε(wx) dx ≥

∫
T
ξε(wx − uεx) dx+

∫
T
W ε(uεx) dx.

We want to calculate the limit of both sides taking into account that

(3.10) ξε
∗
⇀ ξ in L∞(T) and uεx ⇀ ux in L1(T).

In order to proceed we have to take a close look at each term in (3.9).

Due to the locally uniform convergence of W ε to W and the Lebesgue dom-

inated convergence theorem we deduce that

(3.11) lim
ε→0

∫
T
W ε(wx) dx =

∫
T
W (wx) dx.

Next, we note that the Jensen inequality gives us W ε(p) ≥ W (p). Hence, Lem-

ma 2.3 yields,

(3.12) lim
ε→0

∫
T
W ε(uεx) dx ≥ lim

ε→0

∫
T
W (uεx) dx ≥

∫
T
W (ux) dx.
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Finally, we look at
∫
T ξ

εuεx in (3.9). We use (3.4), where we take uε for a test

function. Thus, we obtain

−
∫
T
ξεuεx =

∫
T
ε|uεx|2 +

1

h

∫
T
(uε − f)uε dx.

If we use this information, then (3.9) takes the following form,∫
T
W ε(wx) dx ≥

∫
T
ξεwx dx+

∫
T
ε|uεx|2 dx+

1

h

∫
T
(uε − f)uε dx+

∫
T
W ε(uεx) dx.

After dropping the positive term
∫
T ε|u

ε
x|2 dx on the RHS and taking the liminf,

using (3.10), (3.11) and (3.12), we arrive at∫
T
W (wx) dx ≥

∫
T
ξwx dx+

1

h

∫
T
(u− f)u dx+

∫
T
W (ux) dx.

We use (3.8) again, we reach

(3.13)

∫
T
W (wx) dx ≥

∫
T
ξ(wx − ux) dx+

∫
T
W (ux) dx.

Relaying on (3.13), ux ∈ L1(T), due to Lemma 3.3 below, we deduce that

ξ(x) ∈ ∂W (ux) almost everywhere. Thus, indeed u ∈ W 1,1(T) is a weak so-

lution to (3.1). Moreover, (3.7) and Lemma 2.3 imply that∫
T

Φ(ux) dx ≤
∫
T

Φ(fx) dx. �

Before we state Lemma 3.3 we observe that our argument shows that

Corollary 3.2. If u is a solution constructed in the previous theorem, then

−ξx ∈ ∂E(u).

Proof. We will see that −ξx is an element of the subdifferential ∂E(u).

We know that for u ∈ W 1,1, it is true that E(u) = E(u). If w ∈ BV(T), then

w = v + ψ, where wx = vx, wx ∈ L1(T) and ψx = 0 L1-almost everywhere in T.

Then,

E(w) = E(v + ψ) = E(v) +

∫
T
W∞|Dsψ|.

Moreover, ξ the weak∗ limit of ξε with values in [−W∞,W∞] satisfies the same

constraint. Since Dsψ = σ|Dsψ|, where |σ| = 1 |Dsψ|-almost everywhere, then∫
T
W∞|Dsψ| − ξDsψ =

∫
T
(W∞ − ξσ)|Dsψ| ≥ 0,

because (W∞ − ξσ)(x) ≥ 0 for |Dsψ|-almost every x ∈ T.



248 A. Nakayasu — P. Rybka

Combining the available information, we obtain,

E(w)− E(u) = E(v)− E(u) +

∫
T
W∞|Dsψ|

≥
∫
T
ξ(vx − ux) dx+

∫
T
ξDsψ

= −
∫
T
ξx(v − u) dx−

∫
T
ξxψ dx = −

∫
T
ξx(w − u) dx.

In other words, −ξx ∈ ∂E(u). �

Lemma 3.3. Let us assume that ξ ∈W 1,2(T) is such that ξ(x) ∈ [−W∞,W∞]

and (3.13) holds for all w ∈ W 1,1(T). Then, ξ(x) ∈ ∂W (ux(x)) for almost all

x ∈ T.

Proof. We will construct special test functions h ∈ W 1,1(T). For any

x1, x2 ∈ T and α, ε > 0 we set,

h(x) =


α(x− x1) for x ∈ (x1 − ε, x1 + ε),

αε for x ∈ (x1 + ε, x2 − ε),
−α(x− x2) for x ∈ (x2 − ε, x2 + ε),

−αε for x ∈ T \ ((x1 − ε, x2 + ε).

Of course, we assume that 2ε < |x1 − x2|. By definition, h ∈ W 1,1(T). In our

notation we suppress the dependence of h on x1, x2 α, ε.

We stick w = u+ h into formula (3.13). The result is

(3.14)

∫ x1+ε

x1−ε
W (ux(s) + α)−W (ux(s)) ds

+

∫ x2+ε

x2−ε
W (ux(s)− α)−W (ux(s)) ds

≥ α
∫ x1+ε

x1−ε
ξ(s) ds− α

∫ x2+ε

x2−ε
ξ(s) ds.

For each α > 0 there is a full measure set Aα ⊂ T such that for all y ∈ Aα we

have

lim
ε→0

1

2ε

∫ y+ε

y−ε
W (ux(s) + α)−W (ux(s)) ds = W (ux(y) + α)−W (ux(y)).

We take any sequence 0 < αk converging to zero and the corresponding set Aαk
.

Subsequently, we take any x1, x2 ∈ A0 =
∞⋂
k=1

Aαk
. Then, we divide both sides

of (3.14) by 2ε and pass to the limit. In this way we obtain,

W (ux(x1)+αk)−W (ux(x1))+W (ux(x2)−αk)−W (ux(x2)) ≥ αk(ξ(x1)−ξ(x2)),
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for x1, x2 ∈ A0. Now, we divide both sides of this inequality by αk and pass to the

limit. Since W is a Lipschitz continuous function having one sided derivatives,

then we obtain,

(3.15) W+
p (ux(x1))−W−p (ux(x2)) ≥ ξ(x1)− ξ(x2).

Here W+
p (y) (resp. W−p (y)) denotes the right (resp. left) derivative of W at y.

Let us us suppose that there exists x1 ∈ T such that

(3.16) ξ(x1) > max{ω : ω ∈ ∂W (ux(x1)} ≡W+
p (ux(x1)).

Since ξ is continuous and set A0 has the full measure so it is dense, we may

assume that x1 ∈ A0.

We notice that (3.15) and (3.16) combined imply

W+
p (ux(x1))−W−p (ux(x2)) > W+

p (ux(x1))− ξ(x2).

Hence for all x2 in A0 we have

(3.17) ξ(x2) > W−p (ux(x2)).

A similar reasoning may be performed, when

ξ(x2) < min{ω : ω∈∂W (ux(x2)} ≡W−p (ux(x2)).

Let us notice that if ξ satisfies (3.13) and b is a real constant, then ξ− b satisfies

(3.13) too. Indeed, if ψ is an element of W 1,1(T), then∫
T
(ξ − b)ψx dx =

∫
T
ξψx dx.

Let us define b0 = sup{ξ(x)−W+
p (ux(x)) : x ∈ A0}. Due to the continuity of

ξ and the linear growth of W the number b0 is finite. Since we assumed (3.16),

then b0 is positive.

Let us consider shifts ξ − b, where b ∈ (0, b0). If for all such shifts we have

that

ξ(x1)− b > W−p (ux(x1)), for all x1 ∈ A0,

then due to continuity of ξ we will have

ξ(x1)− b0 ∈ ∂W (ux(x1)), for all x1 ∈ A0

hence our claim follows after redefining ξ.

If on the other hand there is b ∈ (0, b0) such that there is x1 ∈ A0 such that

ξ(x2) − b < W−p (ux(x1)), then due to the definition of b0 we have ξ(x2) − b >
W+
p (ux(x2)). Thus, we reached a contradiction with (3.17). Our claim follows.
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4. Integrability of the derivative

of solutions to the evolution problem

In this section we study the integrability of the space derivative of solutions

to the following evolution problem,

(4.1)
ut = (Wp(ux))x, (x, t) ∈ QT := T× (0, T ),

u(x, 0) = u0(x), x ∈ T.

We assume here the periodic boundary conditions, but the same argument ap-

plies to the homogeneous Neumann data. The initial value, u0, is in W 1,1(T).

The question we address here is as follows: let us suppose that u0 ∈W 1,1(T),

is it true that u(t) ∈ W 1,1(T) for almost every t > 0? We give an affirmative

answer below. This means that, in general, equation (4.1) does not create sin-

gularities like jumps.

A relatively simple way to address the question of existence of solutions is by

using the nonlinear semigroup theory by Kōmura. It is based on the observation

that (4.1) is formally a gradient flow of E . For this purpose we have to consider E ,

the lower semicontinuous envelope of E defined by formula (2.3), see also (2.4),

in place of E .

Proposition 4.1. Let us suppose that W is convex and even, with the lin-

ear growth, i.e. (2.1) holds. If u0 ∈ BV(T), then there is a unique function

u : [0,∞)→ L2(T), such that

(a) for all t > 0 we have u(t) ∈ D(∂E(u(t)));

(b) u ∈ L∞(0,∞; BV(T));

(c) −du/dt ∈ ∂E(u(t)) almost everywhere on (0,∞);

(d) u(0) = u0.

In addition, u has the right derivative for all t ∈ (0,∞) and

d+u

dt
+ (∂E(u(t)))o = 0, for a.e. t ∈ (0,∞),

where (∂E(u(t)))o is the minimal section of ∂E(u(t))), i.e. the element of ∂E(u(t)))

with the smallest norm.

Proof. Due to the convexity and lower semicontinuity of E with respect to

the L2 convergence, this fact follows immediately from [5, Theorem 3.2]. �

This theorem has a drawback. Namely, in order to make this result mean-

ingful, we have to identify the subdifferential of E . We would like to contrast it

with our main result, stated below.

Theorem 4.2. Let us suppose that W : R → R is convex with the lin-

ear growth, (2.1) holds and u0 ∈ W 1,1. Then, there is a unique weak so-

lution to (4.1), i.e. there are u ∈ L∞(0,∞;W 1,1(T)), ut ∈ L2(0,∞;L2(T)),
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ξ ∈ L∞(0,∞;L∞(T)) such that

(4.2)

∫
T
(ut(x, t)ϕ(x) + ξ(x, t)ϕx(x)) dx = 0

for almost every t > 0, for all φ ∈ C∞(T) and ξ(x, t) ∈ ∂W (ux(x, t)) for almost

every (x, t) ∈ QT . In particular, E(u(t)) = E(u(t)). Moreover, E(u(t)) ≤ E(u0).

The proof of this result will be performed in several steps. Before we engage

into it, we will make few comments. In order to construct by approximation

solutions to the elliptic problem (1.2), we had to resolve the following issues:

(1) Making sure that the limiting function u has the desired integrability

properties, see (3.2).

(2) Making sure that the limiting function u is indeed a weak solution, i.e.

the limit ξ of ξε=W ε
p (uεx) is indeed an element of ∂W (ux). For this we used

Minty’s trick.

There is another reason for regularization of solutions. This is necessary to

give meaning to the following simple informal argument. If we multiply (4.1) by

Φ′′(ux)uxx, where Φ is convex, then the right-hand-side will take the form

Φ′′(ux)W ′′(ux)u2
xx

and it will have a sign. A rigorous approach requires regularization.

In order to resolve these issues for the parabolic problem (4.1), we will pro-

ceed in a similar way, i.e. we will consider an auxiliary problem, whose initial

conditions are regular,

(4.3)
uεt = (Wp(u

ε
x))x, (x, t) ∈ QT ,

uε(x, 0) = (u0 ∗ ρε)(x), x ∈ T,

where u0 ∗ ρε is the convolution with the standard mollifying kernel ρε.

We recall the basic existence result for (4.3).

Proposition 4.3 ([10, Theorem 1]). Let us assume that W satisfies hy-

potheses of Theorem 4.2. If u0 ∈ BV(T) and (u0)x ∈ BV(T), then there ex-

ists a unique weak solution u to (4.3). More precisely, ux ∈ L∞(0, T ; BV(T)),

ut ∈ L2(QT ) and there is ξ ∈ L2(0, T ;W 1,2(T)) satisfying the (4.2). Moreover,

ξ(x, t) ∈ ∂W (ux) for almost every (x, t) ∈ QT .

In order to underline the dependence of solutions, obtained in this way, on the

mollifying parameter ε, we will denote them by uε and ξε. However, the result

above is not sufficient for establishing estimates on solutions, which require prior

regularization of W . For this purpose, we have to recall the problem, which led

to Proposition 4.3, see [10],

(4.4)
uε,γt = (W γ

p (uε,γx ))x + γuε,γxx , (x, t) ∈ QT ,

uε,γ(x, 0) = (u0 ∗ ρε)(x), x ∈ T,
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where W γ = W ∗ ργ and ργ is the standard mollifier kernel. By the classical

theory, see [8], solutions uε,γ to (4.4) are smooth.

We wish to proceed as in the proof of Theorem 3.1. For this purpose, we fix Φ

corresponding to u0,x, see Lemma 2.1. With its help we will establish additional

estimates of solutions to (4.3).

Lemma 4.4. Let us suppose that uε is a unique weak solution to (4.3) and Φ

corresponding to u0,x is given by Lemma 2.1. Then,

G(uεx(·, t)) ≤ G
(
d

dx
(uε0)

)
≤ G

(
d

dx
u0

)
.

Proof. We multiply both sides of (4.4) by Φ′′(uε,γx )uε,γxx and integrate over

T to obtain,∫
T
uε,γt (Φ′(uε,γx ))x dx =

∫
T
(W γ

pp(u
ε,γ
x ) + γ)Φ′′(uε,γx )|uε,γxx |2 dx ≥ 0.

Positivity of the right-hand-side (RHS) is guaranteed by the convexity of W γ

and Φ. Integration by parts of the left-hand-side (LHS) above yields,

d

dt

∫
T

Φ(uε,γx ) dx ≤ 0,

where the boundary terms dropped out due to the periodic boundary conditions.

After integrating in time over (0, T ) and recalling the definition of G we

obtain,

G(uε,γx ( · , t)) ≤ G(uε0,x).

From [10] we know that

(4.5) uε,γx converges to uεx strongly in Lp(0, T ;Lq(T)), p ≥ 1 and a.e. in QT ,

thus G(uεx( · , t)) ≤ G(uε0,x). Since Φ is convex, then the Jensen inequality gives

us

(4.6) G(uε0,x) ≤ G(u0,x).

Indeed, if we recall that

vε(x) =
1

ε

∫
T
v(y)ϕ

(
x− y
ε

)
dy,

where ϕ ∈ C∞(T) is the standard mollifier kernel, then we have

vε(x) =

∫
T
v(y) dµεx(y),

where µεx = (1/ε)ϕ((x− y)/ε) dy is a probability measure. If we combine the

above observation with the Jensen inequality, then we obtain,

Φ(uε0,x) = Φ

(∫
T
u0,x(y) dµεx(y)

)
≤
∫
T

Φ(u0,x(y)) dµεx(y).

Integrating over T yields (4.6). �
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Now, in order to pass to the limit with ε, we need further estimates for this

purpose.

Lemma 4.5. Suppose that uε is a unique weak solution to (4.3), then

(4.7)

∫
QT

(uεt (x, t))
2 dxdt+

∫
T
W (uεx(x, t)) dx ≤

∫
T
W (uε0,x(x)) dx.

Proof. We multiply equation (4.4) by uε,γt and integrate over QT . Integrat-

ing the RHS by parts yields,∫
QT

|uε,γt |2 dxdt+

∫
QT

∂

∂t

(
γ

2
|uε,γx |2 +W γ(uε,γx )

)
dxdt = 0.

Performing the integration over (0, T ) leads us to,

(4.8)

∫
QT

|uε,γt |2 dxdt+

∫
T

(γ
2
|uε,γx (x, t)|2 +W γ(uε,γx (x, t))

)
dx

=

∫
T

(γ
2
uε0,x(x)|2 +W γ(uε0,x(x))

)
dx.

The RHS converges to ∫
T
W γ(uε0,x(x)) dx as γ→0.

We may drop
1

2

∫
T
γ|uε,γx (x, t)|2 dx

on the LHS. The lower semicontinuity of the L2 norm yields

lim
γ→0+

∫
QT

|uε,γt |2 dx dt ≥
∫
QT

|uεt |2 dx dt.

Now, when regularizing W , we notice that the averaging of a convex function,

performed in the convolution gives us W (p) ≤ W ε(p) for all p ∈ R. As a result

we arrive at ∫
T
W (uε,γx (x, t)) ≤

∫
T
W γ(uε,γx (x, t)) ≤M.

We again use (4.5) to conclude that

lim
γ→0+

∫
T
W (uε,γx )(x, t) dx =

∫
T
W (uεx)(x, t) dx a.e. t > 0.

Combining these gives the desired result. �

We notice that Lemma 4.5 immediately implies that

(4.9) uεt ⇀ ut in L2(QT ) as ε→ 0.

We know that ξε postulated by Proposition 4.3 satisfies

ξε(x, t) ∈ ∂W (uεx( · , t)) ⊂ [−W∞,W∞].
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Here, the last inclusion is obtained by the argument, which gave us (3.6). Hence,

we deduce that there is a subsequence (not relabeled) such that

(4.10) ξε ⇀ ξ in L2(QT ) and ξε
∗
⇀ ξ in L∞(QT ).

Using the argument from [11, Theorem 2.1, p. 2292] we can show that

ξε( · , t) ∗⇀ ξ( · , t) in L∞(T) for a.e. t > 0.

We may repeat the argument of [10], [12] to claim that

(4.11) uε converges to u in Lp(0, T ;Lq(Ω)), p, q ∈ (1,∞),

hence ‖uε( · , t)− u( · , t)‖Lq → 0 for a lmost every t > 0. However, the key issue

is convergence of uεx.

We notice that due to Lemmas 4.4 and 2.2, we can select a subsequence

{uεkx }∞k=1 such that uεkx converges weakly in L1(QT ) to ux and, if we fix t >

0, there is a subsequence (not relabeled) such that uεkx ( · , t) converges weakly

in L1(Ω) to ux( · , t). However, copying the argument from [11, Theorem 2.1,

p. 2292] leads us to the following statement:

Lemma 4.6. There is a sequence uk, k ∈ N such that ukx ⇀ ux in L1(QT )

and, for almost all t > 0, ukx( · , t) ⇀ ux( · , t) in L1(Ω).

Here is an immediate conclusion from Lemmas 4.6 and 2.3:

Corollary 4.7. If ux is a weak limit in L1(QT ) of the sequence unx, then

G(u( · , t)) ≤M <∞ and E(u( · , t)) ≤ E(u0) for a.e. t > 0.

Now, we claim that u with ξ is a weak solution to (4.1). If we inspect (4.2),

the weak form of (4.1), and integrate it over (0, T ), assuming that φ ∈ C∞0 (QT ),

then we will see

(4.12)

∫
QT

uεt (x, t)φ(x, t) dx dt+

∫
QT

ξε(x, t)φx(x, t) dx dt = 0.

The stated above weak convergence of uεt and ξε gives us,∫
QT

ut(x, t)φ(x, t) dx dt+

∫
QT

ξ(x, t)φx(x, t) dx dt = 0.

We can localize it by arguing like in [11, Theorem 2.1, p. 2292],∫
T
ut(x, t)ψ(x) dx+

∫
T
ξ(x, t)ψx(x) dx = 0 for a.e. t > 0 and all ψ ∈ C∞(T).

Now, it remains to show that ξ(x, t) ∈ ∂W (ux(x, t)) for almost every (x, t)

in QT . Indeed, from the construction of uε we know that, for any w ∈W 1,1 and

for almost every t > 0, we have

(4.13)

∫
T
W (wx(x)) dx ≥

∫
T
ξε(x, t)(wx(x)− uεx(x, t)) dx+

∫
T
W (uεx(x, t)) dx.
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In order to use (4.10) and Lemma 4.6 we multiply (4.13) by ψ ≥ 0 and ψ ∈
C∞0 (0, T ) and integrate over (0, T ). We get,∫

QT

ψW (wx) dx dt ≥
∫
QT

ψξε(wx − uεx) dx dt+

∫
QT

ψW (uεx) dx dt.

Due to Lemma 2.3

lim
n→∞

∫
QT

ψW (uεx) dx dt ≥
∫
QT

ψW (ux) dx dt.

If we use uε as a test function in (4.12), then we reach,∫
QT

ξεuεx dx dt = −
∫
QT

uεtu
ε dx dt.

Since sequence uε is bounded in W 1,1(QT ), then uε converges strongly to u

in L2(QT ), (possibly after extracting a subsequence). Combining this with (4.9)

yields,

lim
n→∞

∫
QT

uεtu
ε dx dt =

∫
QT

utu dx dt.

Thus, we have reached∫
QT

ψW (wx) dx dt−
∫
QT

ψW (ux) dx dt

≥
∫
QT

ψ(ξwx + uut) dx dt =

∫
QT

ψξ(wx − ux) dx dt,

where we use (4.12) again in the last equality. Since ψ ≥ 0 was arbitrary, we

deduce that

(4.14)

∫
T
W (wx) dx−

∫
T
W (ux) dx ≥

∫
T
ξ(wx − ux) dx.

Here, we notice that since C∞(T) is dense in W 1,1(T) we can take u as (4.12).

Now, by applying Lemma 3.3 we deduce that ξ(x, t) ∈ ∂W (ux(x, t)) almost

everywhere in QT . Thus, we finalized the construction of a weak solution to

(4.1) satisfying the desired bound. Now, we notice that the solution we have

constructed satisfies the properties stipulated by Proposition 4.1; hence we de-

duce uniqueness of solutions. This concludes the proof of Theorem 4.2. �

We also notice that, in fact, in Theorem 4.2 we have constructed solutions

in the sense of Proposition 4.1.

4.1. Common properties of solutions. Since we made rather weak as-

sumptions on the nonlinearity W , we should not expect too many common fea-

tures of solutions. The property, which draws attention, when dealing with the

total variation flow is the finite stopping time of solutions, i.e. at some time

instance the solution stops moving having reached a terminal state. In this sec-

tion we will relate the finite stopping time to the lack of differentiability of W

at p = 0. The behavior of W for large arguments does not seem to matter.
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Theorem 4.8. Let us suppose that u0 ∈ W 1,1(Ω) and W is such that at all

points p, the one-sided derivatives of W , at p are greater or equal to α > 0.

Then, for all t ≥ Text, we have

u(t) ≡ u0, where u0 =
1

|Ω|

∫
Ω

u0 dx and Text ≤ Cp‖u0‖L2 ,

and Cp is the constant in the Poincaré inequality.

Proof. Observe that the average of solutions is preserved due to the bound-

ary conditions. We denote this average by u. We compute d‖u− u‖2L2/dt, while

integrating by parts

1

2

d

dt

∫
Ω

|u(x, t)− u|2 dx =

∫
Ω

(u− u)ut dx =

∫
Ω

(u− u)(Wp(ux))x

= −
∫

Ω

Wp(ux)ux = −
∫

Ω

|Wp(ux)| sgnux · ux dx.

We used here the monotonicity of Wp, which implies that

Wp(ux)ux = |Wp(ux)||ux|.

Hence,

1

2

d

dt

∫
Ω

|u(x, t)− u|2 dx ≤ −
∫

Ω

α|ux| dx ≤ −C−1
p ‖u− u‖L2 .

Here, we used the Poincaré’s inequality, ‖u − u‖L2 ≤ Cp‖ux‖L1 . We conclude

that

d

dt
‖u− u‖L2 ≤ −Cp,

what implies that Text ≤ Cp‖u0‖L2 . �
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[8] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and Quasilinear

Equations of Parabolic Type, Am. Math. Soc., Providence, R.I., 1968.

[9] M. Matusik, and P. Rybka, Oscillating facets, Port. Math. 73, (2016), 1–40.

[10] P.B. Mucha and P. Rybka, Well-posedness of sudden directional diffusion equations,

Math. Meth. Appl. Sci. 36, (2013), 2359–2370.

[11] P.B. Mucha and P. Rybka, A caricature of a singular curvature flow in the plane,

Nonlinearity 21 (2008), 2281–2316.

[12] A. Nakayasu and P. Rybka, Energy solutions to one-dimensional singular parabolic

problems with BV data are viscosity solutions, Mathematics for Nonlinear Phenomena:

Analysis and Computation, Proceedings in Honor of Professor Yoshikazu Giga’s 60th

birthday, (Y. Maekawa, Sh. Jimbo, eds.), Springer Proceedings in Mathematics and Sta-

tistics, 2017, 195–214.

[13] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure

and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991.

[14] L.I. Rudin, S.Osher and E. Fatemi, Nonlinear total variation based noise removal algo-

rithms, Physica D 60 (1992), 259–268.

Manuscript received June 11, 2017

accepted June 20, 2018

Atsushi Nakayasu

Graduate School of Mathematical Science
University of Tokyo

Komaba 3-8-1, Meguro-ku
Tokyo 153-8914, JAPAN

E-mail address: ankys@ms.u-tokyo.ac.jp

Piotr Rybka

Institute of Applied Mathematics and Mechanics

Warsaw University
ul. Banacha 2

07-097 Warsaw, POLAND

E-mail address: rybka@mimuw.edu.pl

TMNA : Volume 52 – 2018 – No 1


