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COHOMOLOGICAL DECOMPOSITION

OF COMPLEX NILMANIFOLDS

Adela Latorre — Luis Ugarte

Dedicated to Yuli Rudyak on the occasion of his 65th birthday

Abstract. We study pureness and fullness of invariant complex structures
on nilmanifolds. We prove that in dimension six, apart from the complex
torus, there exist only two non-isomorphic complex structures satisfying
both properties, which live on the real nilmanifold underlying the Iwasawa
manifold. We also show that the product of two almost complex manifolds
which are pure and full is not necessarily full.

1. Introduction

Nilmanifolds are compact homogeneous spaces M = Γ\G, where G is a sim-

ply connected nilpotent Lie group and Γ is a lattice of maximal rank in G. Any

structure on the Lie algebra g of G gives rise to a left-invariant structure on G

and thus, it defines a structure on M . The invariant geometry of nilmanifolds

is an important source of examples in differential geometry. For instance, up

to dimension 6, Goze and Khakimdjanov [15] classified the nilmanifolds admit-

ting a symplectic form, whereas the question of which nilmanifolds admit an

invariant complex structure was settled by Salamon in [21]. Moreover, there are

five classes of 6-dimensional nilmanifolds which do not admit either symplec-

tic forms or invariant complex structures, although Cavalcanti and Gualtieri [7]

proved that all of them admit a generalized complex structure.
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Nilmanifolds with invariant structures have provided explicit examples of

compact manifolds satisfying interesting and unusual geometrical and/or topo-

logical properties. For instance, the Kodaira-Thurston (nil)manifold [22] was the

first example of a symplectic manifold with no Kähler metric, and more gener-

ally, Benson and Gordon proved [5] that a symplectic nilmanifold satisfies the

Hard Lefschetz Condition (HLC) if and only if it is a torus. Regarding the HLC,

given a symplectic manifold (M,ω), Mathieu [19] proved that any de Rham co-

homology class of M has a symplectically harmonic representative (in the sense

of Brylinski [6]) if and only if (M,ω) satisfies the HLC, and in [16] symplectic

nilmanifolds were used to find the first examples of 6-dimensional compact man-

ifolds that are symplectically flexible, giving in this way an affirmative answer to

a question raised by Khesin and McDuff (see [24]). There are other interesting

constructions in symplectic geometry where nilmanifolds are involved (see [23]).

Nilmanifolds with invariant complex structure also play an important role in

complex geometry (see the recent book [1]).

A key ingredient in many of the geometrical/topological applications of nil-

manifolds is a result due to Nomizu [20], asserting that the Chevalley–Eilenberg

complex (
∧∗

g∗, d) of the Lie algebra g underlying the nilmanifold M = Γ \ G

is quasi-isomorphic to the de Rham complex of M . In this paper we study the

cohomological decomposition of complex nilmanifolds, with special attention to

dimension 6, motivated by the study of the pureness and fullness properties that

we explain below.

Let M be a 2n-dimensional manifold and J an almost complex structure

on M . Following [2], [18], let Hk
dR(M ;C) be the (complex) kth de Rham co-

homology group of M and, for any (p, q), denote by H
(p,q)
J (M) the subgroup

of Hp+q
dR (M ;C) consisting of the de Rham cohomology classes of total degree

p+ q that have a representative of bidegree (p, q) with respect to J . The almost

complex structure J is said to be complex- C∞-pure-and-full at the kth stage if

there is a direct sum decomposition

(1.1) Hk
dR(M ;C) =

⊕
p+q=k

H
(p,q)
J (M).

If the sum on the right hand side of (1.1) is direct, although not necessarily equal

to Hk
dR(M ;C), then J is called complex- C∞-pure at the kth stage, and if

Hk
dR(M ;C) =

∑
p+q=k

H
(p,q)
J (M),

the sum not necessarily being direct, then J is said to be complex- C∞-full at the

kth stage.

Taking H
(p,q),(q,p)
J (M) as the subgroup of Hp+q

dR (M ;C) consisting of the

classes of total degree p+ q that have a representative which is the sum of forms
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of bidegrees (p, q) and (q, p) with respect to J , one can consider the subgroups

H
(p,q),(q,p)
J (M)R = H

(p,q),(q,p)
J (M) ∩Hk

dR(M ;R)

of the (real) de Rham cohomology group Hk
dR(M ;R) and define similar concepts

of C∞-pure, C∞-full and C∞-pure-and-full at the kth stage. Also similar sub-

groups HJ
(p,q)(M) and definitions of pure or full almost complex structures can

be given by using the space of currents instead of the space of differential forms,

and the de Rham homology instead of the de Rham cohomology (for more details

and related results see [2], [3], [4], [11], [12], [13], [14], [18]).

Some relations among several pureness and fullness conditions have been

proved in the presence of additional geometric structures. For instance, by a re-

sult of Fino and Tomassini [14, Theorem 4.1], given an almost-Kähler structure

(J, ω) on a compact manifold, if the almost complex structure J is C∞-pure-and-

full and the symplectic form ω satisfies the HLC, then J is also pure-and-full.

Of special interest is the case k = 2. Motivated by a question of Donaldson

[10, Question 2], Li and Zhang studied in [18] almost complex manifolds (M,J)

which are C∞-pure-and-full (at the second stage), i.e.

H2
dR(M ;R) = H+

J (M)⊕H−
J (M),

where H±
J (M) are the J-invariant and the J-anti-invariant cohomologies (see

Section 2 for details). They showed thatH−
J (M) measures the difference between

the tamed cone and the compatible cone. Moreover, Drǎghici, Li and Zhang

proved in [11] that every compact 4-dimensional almost complex manifold is

C∞-pure-and-full.

It is well-known that if M is a compact Kähler manifold then (1.1) holds for

any k [9], so the relation (1.1) can be seen as a generalization in (almost) complex

geometry of the Hodge decomposition theorem for compact Kähler manifolds.

In general, a compact complex manifold (M,J) of dimension greater than or

equal to six may be neither complex- C∞ pure nor full. Our main goal in this

paper is to investigate which invariant complex structures J on nilmanifolds are

complex- C∞-pure-and-full at every stage.

In Section 2, we first show that a Nomizu type theorem holds for the spaces

H
(p,q)
J (M) of any nilmanifold M endowed with an invariant (almost) complex

structure J . Proposition 2.2 gives conditions on the complex structures J that

ensure complex-C∞-pureness at some stages. Of special importance are the

abelian and the complex parallelizable structures, because they are always com-

plex- C∞-pure at the second stage. On the other hand, Drǎghici, Li and Zhang

proved in [13, Proposition 2.7] that the product (M1×M2, J1+J2) of two compact

almost complex manifolds (M1, J1) and (M2, J2) which are C∞-pure-and-full is

also C∞-pure-and-full provided b1(M1) = 0 or b1(M2) = 0, and they asked if

the statement holds without any assumption on the first Betti number. Using
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Proposition 2.2, in Examples 2.6 and 2.7 we consider the Kodaira–Thurston

manifold to construct some product manifolds which give a negative answer to

the previous question.

In Section 3 we study pureness and fullness at every stage of any invariant

complex structure on a nilmanifold of dimension 6, using the classification of

complex structures given in [8]. Our results can be found in the tables given at

the end of the section, in terms of the Lie algebra underlying the nilmanifold

together with the parameters defining the complex structure. Several conse-

quences are deduced from this general study. Firstly, apart from a complex

torus, there are only two complex structures (up to isomorphism) which are

complex- C∞-pure-and-full at every stage (see Theorem 3.1). One of them is the

Iwasawa manifold, whose complex structure is complex parallelizable, and its

pureness and fullness were already known [3]. However, as far as we know, the

other structure, which is abelian and lives on the real nilmanifold underlying

the Iwasawa manifold, provides a new example of a complex structure being

complex- C∞-pure-and-full at every stage. Finally, as a consequence of our gen-

eral study we also arrive at a duality result between pureness and fullness at

different stages (see Proposition 3.2).

2. Pureness and fullness of complex nilmanifolds

Let M = Γ \ G be a nilmanifold of dimension 2n. An invariant complex

structure J onM is a complex structure that comes from a left-invariant complex

structure on the nilpotent Lie group G. Equivalently, J is an endomorphism

J : g → g of the Lie algebra g of G such that J2 = − Id and satisfying the

integrability condition

[JX, JY ] = J [JX, Y ] + J [X, JY ] + [X,Y ], for any X,Y ∈ g.

Important classes of invariant complex structures on nilmanifolds are the com-

plex-parallelizable structures, for which [JX, Y ] = J [X,Y ], and the abelian struc-

tures, which satisfy the condition [JX, JY ] = [X,Y ]. A Lie algebra g has

a complex-parallelizable structure if and only if g can be endowed with a complex

Lie algebra structure. On a compact complex parallelizable nilmanifold there ex-

ists a global basis of holomorphic vector fields, the Iwasawa manifold being the

first non-trivial example of this kind (see Section 3).

Let us denote by gC the complexification of g and by g∗
C
its dual. Given

an endomorphism J : g → g such that J2 = −Id, we denote by g1,0 and g0,1

the eigenspaces corresponding to the eigenvalues ±i of J as an endomorphism

of g∗
C
, respectively. The decomposition g∗

C
= g1,0 ⊕ g0,1 induces a natural bi-

graduation on
∧∗

(g∗
C
) = ⊕p,q

∧p,q
(g∗

C
) = ⊕p,q

∧p
(g1,0) ⊗∧q

(g0,1). If d denotes

the Chevalley-Eilenberg differential of the Lie algebra, we shall also denote by d

its extension to the complexified exterior algebra, i.e. d :
∧∗

(g∗
C
) → ∧∗+1

(g∗
C
).
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It is well-known that J is a complex structure if and only if d(g1,0) ⊂ ∧2,0
(g∗

C
)⊕∧1,1(g∗

C
). Notice that abelian structures satisfy d(g1,0) ⊂ ∧1,1(g∗

C
), and they are

characterized by the fact that the complex Lie algebra g1,0 is abelian, whereas

complex-parallelizable structures satisfy d(g1,0) ⊂ ∧2,0(g∗
C
).

Salamon proved in [21] the following equivalent condition for the endomor-

phism J to be integrable: J is a complex structure if and only if g1,0 has a basis

{ωj}nj=1 such that dω1 = 0 and

(2.1) dωj ∈ I(ω1, . . . , ωj−1), for j = 2, . . . , n,

where I(ω1, . . . , ωj−1) is the ideal in
∧∗(g∗

C
) generated by {ω1, . . . , ωj−1}. From

now on, we shall denote ωj ∧ωk and ωj∧ωk simply by ωjk and ωjk, respectively.

Let J be an invariant (almost) complex structure on a 2n-dimensional nil-

manifold M , and let ν be a volume element on M induced by a bi-invariant one

on the Lie group G such that, after rescaling, M has volume equal to 1. Given

any k-form α ∈ Ωk(M), one can define an element α̃ ∈ ∧k
(g∗) by

α̃(X1, . . . , Xk) =

∫
m∈M

αm(X1|m, . . . , Xk|m) ν, for X1, . . . , Xk ∈ g,

where Xj|m is the value at the point m ∈ M of the projection on M of the

left-invariant vector field Xj on the Lie group G. This defines a linear map

∼ : Ωk(M) → ∧k
(g∗), which is known as the symmetrization process. It is clear

that α̃ = α for any invariant k-form α on M . Moreover, d̃α = dα̃ for any

form α on M , that is, the map ∼ commutes with the differential d. Extending

the symmetrization process to the space of complex forms Ω∗
C
(M), one has that

if α is a form of pure type (p, q) then α̃ is again of pure type (p, q) (see [8]

for more details and other references about the symmetrization process and its

applications).

By [20] we know that the natural inclusion (
∧∗

(g∗
C
), d) ↪→ (Ω∗

C
(M), d) induces

an isomorphism ι : H∗(gC) → H∗
dR(M ;C) between the Lie algebra cohomology

and the (complex) de Rham cohomology of the nilmanifold. This implies that

any closed complex k-form α on M is cohomologous to the invariant k-form α̃,

that is, the inverse map of ι is induced by the symmetrization process. Now, if

we let

H
(p,q)
J (g) = {a ∈ Hp+q(gC) | there exists a closed (p, q)-form α

such that [α] = a},
H

(p,q)
J (M) = {a ∈ Hp+q

dR (M ;C) | there exists a closed form α of bidegree (p, q)

such that [α] = a},

then the following Nomizu type result comes straightforward (see also [4]).
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Proposition 2.1. Let J be an invariant (almost) complex structure on a nil-

manifold M . Then, the restriction to H
(p,q)
J (g) of the isomorphism

ι : Hp+q(gC) → Hp+q
dR (M ;C)

is an isomorphism onto H
(p,q)
J (M), with inverse mapping

∼ : H
(p,q)
J (M) → H

(p,q)
J (g)

given by the symmetrization process.

By [17, Lemma 2], any invariant complex structure J on a 2n-dimensional

nilmanifold M is complex- C∞-pure at the first stage, and if b1(M) = 2n − 1

then J is not complex- C∞-full at the first stage. In the following result we study

pureness at higher stages.

Proposition 2.2. Let J be an invariant complex structure on a 2n-dimen-

sional nilmanifold M . Then:

(a) H
(n,0)
J (M)∩H

(0,n)
J (M) = {[0]}, and H

(n,0)
J (M)∩H

(n−l,l)
J (M) = {[0]} =

H
(n−l,l)
J (M) ∩H

(0,n)
J (M), for any 1 ≤ l ≤ n− 1.

(b) If J is abelian or complex parallelizable, then for any 2 ≤ k ≤ n the

complex structure is complex- C∞-pure at the kth stage if and only if the

sum H
(k−1,1)
J (M)+ . . .+H

(1,k−1)
J (M) is direct; in particular, J is always

complex- C∞-pure at the second stage.

Proof. By Proposition 2.1, we reduce the proof to the level of the Lie

algebra g. Let us first see (a). Fix some l = 1, . . . , n and consider a ∈ H
(n,0)
J (g)∩

H
(n−l,l)
J (g). Then, there exist closed elements β ∈ ∧n,0

(g∗
C
) and γ ∈ ∧n−l,l

(g∗
C
)

satisfying β − γ = dα for some α ∈ ∧n−1(g∗
C
). Due to the action of d = ∂ + ∂

on the elements of total degree n− 1, necessarily β = ∂αn−1,0, where αn−1,0 is

the component of α of bidegree (n−1, 0). Notice that the integrability condition

(2.1) implies that there is a (1, 0)-basis {ωj}nj=1 such that the (n, 0)-form ω1...n

is closed, so there exists λ ∈ C such that β = λω1...n. Therefore,

|λ|2 ω1...n1...n = β ∧ β = ∂αn−1,0 ∧ β = d(αn−1,0 ∧ β).

But the Lie algebra g is unimodular and therefore b2n(g) = 1, so there cannot

exist a non-zero element of top degree which is exact, that is, necessarily λ = 0

and thus β = 0. This implies that a = [γ] = −[dα], i.e. a = 0, and so

H
(n,0)
J (g) ∩H

(n−l,l)
J (g) = {[0]} for any l = 1, . . . , n. The proof of H

(n−l,l)
J (M) ∩

H
(0,n)
J (M) = {[0]} for any l = 1, . . . , n− 1 is similar.

For the proof of (b), note that one of the implications is trivial due to the

definition of complex-C∞-pure. For the other one, it suffices to check that for

each 2 ≤ k ≤ n, we have that H
(k,0)
J (g) ∩H

(0,k)
J (g) = {[0]} and,

H
(k,0)
J (g) ∩H

(k−l,l)
J (g) = {[0]}, H

(0,k)
J (g) ∩H

(k−l,l)
J (g) = {[0]},
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for any l = 1, . . . , k − 1. The case k = n is a consequence of (a).

For k = 2, . . . , n− 1, we prove first that any class a ∈ H
(k,0)
J (g)∩H

(k−l,l)
J (g)

is zero. Let β ∈ ∧k,0
(g∗

C
) and γ ∈ ∧k−l,l

(g∗
C
) be closed forms such that [β] =

a = [γ]. Then, there exists α = αk−1,0 + . . . + α0,k−1 ∈ ∧k−1
(g∗

C
) satisfying

dα = β − γ, which implies β = ∂αk−1,0. However, when J is abelian the

Lie algebra differential d satisfies d(g∗
C
) ⊂ ∧1,1

(g∗
C
), thus dαk−1,0 ∈ ∧k−1,1

(g∗
C
)

and β = ∂αk−1,0 = 0. In the same way, when J is complex parallelizable one

has d(g1,0) ⊂ ∧2,0
(g∗

C
), which in particular implies ∂(

∧k−1,0
(g∗

C
)) = 0, and

therefore β = ∂αk−1,0 = dαk−1,0. We conclude that, in any case, the form β is

cohomologous to zero, i.e. a = [β] = 0. A similar argument allows us to prove

that H
(0,k)
J (g) ∩H

(k−l,l)
J (g) = {[0]} and H

(k,0)
J (g) ∩H

(0,k)
J (g) = {[0]}. �

In [18], Li and Zhang introduced for any almost complex structure J on

a manifold M , the concept of C∞-pure-and-full associated to the second (real)

de Rham cohomology group H2
dR(M ;R). Let

H+
J (M) = {a ∈ H2

dR(M ;R) | there exists a closed J-invariant α

such that [α] = a},
H−

J (M) = {a ∈ H2
dR(M ;R) | there exists a closed J-anti-invariant α

such that [α] = a}.
If H+

J (M) ∩ H−
J (M) = {[0]} then J is called C∞-pure, and if H2

dR(M ;R) =

H+
J (M) +H−

J (M) then J is said to be C∞-full. The almost complex structure

is called C∞-pure-and-full when H2
dR(M ;R) = H+

J (M)⊕H−
J (M).

Remark 2.3. Notice that H+
J (M) = H

(1,1)
J (M)∩H2

dR(M ;R) and H−
J (M) =

H
(2,0),(0,2)
J (M)∩H2

dR(M ;R). As it is observed in [3, Remark 2], being complex-

C∞-full at the second stage is a stronger condition that being C∞-full. Moreover,

if J is integrable then complex-C∞-pure at the second stage implies C∞-pure.

Remark 2.4. Complex nilmanifolds are used in [2] to prove that being C∞-

pure and being C∞-full are non-related properties. Moreover, Angella, Tomassini

and Zhang construct in [4, Proposition 4.1] an almost-Kähler structure (J, ω, g)

on the nilmanifold underlying the Iwasawa manifold which is C∞-pure but not

C∞-full.

Every compact 4-dimensional almost complex manifold is C∞-pure-and-full

(see [11]). In [13] Drǎghici, Li and Zhang proved the following result:

Proposition 2.5 [13, Proposition 2.7]. Suppose (M1, J1) and (M2, J2) are

compact almost complex manifolds, both C∞-pure-and-full. Assume b1(M1) = 0

or b1(M2) = 0. Then (M1 ×M2, J1 + J2) is C∞-pure-and-full.

They asked if the statement holds without any assumption on b1. As a con-

sequence of Proposition 2.2, we next show that even in the complex case, the
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previous result does not hold if both b1(M1) and b1(M2) are not zero. For the

construction we will consider the Kodaira–Thurston manifold [22].

Recall that the Kodaira–Thurston manifold KT is endowed with the inva-

riant complex structure defined by the equations

(2.2) dω1 = 0, dω2 = ω11.

This complex structure is abelian and any other invariant complex structure on

KT is isomorphic to (2.2). Since KT has (real) dimension 4, we have by [11]

that it is C∞-pure-and-full (this can also be seen directly using Proposition 2.1).

A complex m-dimensional torus Tm is trivially C∞-pure-and-full because it

is Kähler. In the following example we show that the product KT × Tm is not

C∞-full.

Example 2.6. For anym ≥ 1, the compact complex manifold N = KT×Tm

is C∞-pure but not C∞-full.

Writing the complex structure equations on Tm as dωl = 0, for 3 ≤ l ≤ m+2,

we have that the structure equations for the complex nilmanifold N are

(2.3) dω1 = 0, dω2 = ω11̄, dω3 = . . . = dωm+2 = 0.

Let us first see the case m = 1. We get

H+
J (N) =H

(1,1)
J (N) ∩H2

dR(N ;R)

= 〈[ω12̄ − ω21̄], [i ω12̄ + i ω21̄], [ω13̄ − ω31̄], [i ω13̄ + i ω31̄], [i ω33̄]〉,
H−

J (N) =H
(2,0),(0,2)
J (N) ∩H2

dR(N ;R)

= 〈[ω12 + ω1̄2̄], [i ω12 − i ω1̄2̄], [ω13 + ω1̄3̄], [i ω13 − i ω1̄3̄]]〉,

since Proposition 2.1 also holds for H
(2,0),(0,2)
J (N). However, H2

dR(N ;R) =

H+
J (N)⊕H−

J (N)⊕ 〈[ω23 + ω23̄ − ω32̄ + ω2̄3̄], [i ω23 − i ω23̄ − i ω32̄ − i ω2̄3̄]〉, that
is, the complex product manifold N is C∞-pure but not C∞-full.

In general, i.e. for any m ≥ 1, since (2.3) implies that the complex structure

on N is abelian, by Proposition 2.2(b) and Remark 2.3 we have that N is C∞-

pure because it is complex- C∞-pure at the second stage. However, N is not

C∞-full because the de Rham cohomology classes

[ω2l + ω2l̄ − ωl2̄ + ω2̄l̄], [i ω2l − i ω2l̄ − i ωl2̄ − i ω2̄l̄], 3 ≤ l ≤ m+ 2,

do not belong to the sumH+
J (N)⊕H−

J (N): in fact, this is a direct consequence of

the fact that the invariant real exact 2-forms on N belong to the space generated

by i ω11̄.

Another example in (real) dimension 8 can be obtained by using the product

of two Kodaira–Thurston manifolds.
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Example 2.7. The compact complex manifold N = KT ×KT is C∞-pure

but not C∞-full.

We write the complex structure equations for N as

dω1 = dω2 = 0, dω3 = ω11̄, dω4 = ω22̄.

Notice that the complex structure of N is again abelian, so by Proposition 2.2(b)

and Remark 2.3 we have that N is C∞-pure. However, N is not C∞-full because

the de Rham cohomology classes

[ω14 + ω14̄ − ω41̄ + ω1̄4̄], [ω23 + ω23̄ − ω32̄ + ω23̄],

[ω34 + ω34̄ − ω43̄ + ω34̄], [i ω14 − i ω14̄ − i ω41̄ − i ω1̄4̄],

[i ω23 − i ω23̄ − i ω32̄ − i ω2̄3̄], [i ω34 − i ω34̄ − i ω43̄ − i ω3̄4̄],

do not belong to the direct sum H+
J (N)⊕H−

J (N). This is due to the fact that

the invariant real exact 2-forms on N belong to the space generated by i ω11̄

and i ω22̄.

Notice that in Examples 2.6 and 2.7 the first Betti numbers are far from

being zero; in fact, b1(KT ) = 3 and b1(T
m) = 2m. We do not know if the

statement of Proposition 2.5 holds if b1(M1) = 1 or b1(M2) = 1.

3. Cohomological decomposition

of 6-dimensional complex nilmanifolds

In this section we study which invariant complex structures on 6-dimensional

nilmanifolds are complex- C∞-pure or full at every stage. For this purpose we

use the classification of invariant complex structures given in [8].

Recall that a 6-dimensional nilmanifold M = Γ \ G admits an invariant

complex structure J if and only if its underlying Lie algebra g is isomorphic to

one in the following list [21]:

h1 = (0, 0, 0, 0, 0, 0), h10 = (0, 0, 0, 12, 13, 14),

h2 = (0, 0, 0, 0, 12, 34), h11 = (0, 0, 0, 12, 13, 14+ 23),

h3 = (0, 0, 0, 0, 0, 12+ 34), h12 = (0, 0, 0, 12, 13, 24),

h4 = (0, 0, 0, 0, 12, 14+ 23), h13 = (0, 0, 0, 12, 13+ 14, 24),

h5 = (0, 0, 0, 0, 13 + 42, 14 + 23), h14 = (0, 0, 0, 12, 14, 13+ 42),

h6 = (0, 0, 0, 0, 12, 13), h15 = (0, 0, 0, 12, 13+ 42, 14 + 23),

h7 = (0, 0, 0, 12, 13, 23), h16 = (0, 0, 0, 12, 14, 24),

h8 = (0, 0, 0, 0, 0, 12), h
−
19 = (0, 0, 0, 12, 23, 14− 35),

h9 = (0, 0, 0, 0, 12, 14+ 25), h
+
26 = (0, 0, 12, 13, 23, 14+ 25),
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where, for instance, the notation h2 =(0, 0, 0, 0, 12, 34) means that there exists a

basis {ei}6i=1 of real 1-forms such that de1 = de2 = de3 = de4 = 0, de5 = e1 ∧ e2,

de6 = e3 ∧ e4.

It is well-known that in dimension 6 there are, up to isomorphism, two

complex-parallelizable structures defined by the complex equations

(3.1) dω1 = dω2 = 0, dω3 = ρω12,

with ρ = 0 or 1, whose Lie algebras are h1 (for ρ = 0) and h5 (for ρ = 1), where

the latter case corresponds to the Iwasawa manifold.

The remaining complex structures in dimension 6 are parametrized, up to

equivalence, by the following three families [8]:

(3.2) Family I :

⎧⎨⎩dω1 = dω2 = 0,

dω3 = ρω12 + ω11̄ + λω12̄ +Dω22̄,

where ρ ∈ {0, 1}, λ ∈ R≥0 and D ∈ C with ImD ≥ 0;

(3.3) Family II :

⎧⎪⎪⎨⎪⎪⎩
dω1 = 0,

dω2 = ω11̄,

dω3 = ρω12 +B ω12̄ + c ω21̄,

where ρ ∈ {0, 1}, B ∈ C, c ∈ R≥0 and (ρ,B, c) �= (0, 0, 0); and

(3.4) Family III :

⎧⎪⎪⎨⎪⎪⎩
dω1 = 0,

dω2 = ω13 + ω13̄,

dω3 = ε i ω11̄ ± i(ω12̄ − ω21̄),

where ε ∈ {0, 1}.
A complex structure J is abelian if and only if it belongs to Families I or II

with ρ = 0. Moreover, Family I corresponds to complex structures on h2, . . . , h6
or h8, Family II corresponds to complex structures on h7 or h9, . . . , h16, and

Family III to h
−
19 or h+26. The possible values of the complex parameters for each

Lie algebra appear in the tables below (they provide actually a classification of

complex structures as proved in [8]).

By Nomizu theorem one can compute de Rham cohomology groups in terms

of the complex structure equations (3.2), (3.3) and (3.4). From now on, the

notation δexpression means that δexpression = 1 if expression = 0 is satisfied, and

δexpression = 0 otherwise.

Cohomology groups of complex nilmanifolds M in Family I.

H1
dR(M ;C) = 〈[ω1], [ω2], [ω1̄], [ω2̄], δρδλδImD[ω3 + ω3̄]〉,
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H2
dR(M ;C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if D = 0 :〈
[ω13], [ω12̄], [ω22̄], [ω1̄2̄], [ω1̄3̄],

[ρω23 − ω31̄ − λω32̄], [ω13̄ + λω23̄ + ρω2̄3],⎧⎨⎩[ω12], δλ[ω
21̄], δλ[ω

23 + ω23̄], δλ[ω
32̄ − ω2̄3̄], ρ = 0

[ω21̄], δλ−1[ω
23̄ + ω31̄ + ω2̄3̄], ρ = 1

〉
,

if D �= 0 :〈
[ω12̄], [ω1̄2̄], [λD̄ ω13 + |D|2ω23 + |D|2ω23̄ − ρD ω1̄3̄],

[D̄ ω13 +D ω13̄ + λD ω23 + ρD ω2̄3̄],

[ρD̄ ω13 + |D|2ω32̄ − λD ω1̄3̄ − |D|2ω2̄3̄],

[ρD ω23 − D ω31̄ − λD ω32̄ +D ω1̄3̄],⎧⎨⎩[ω12], δλ[ω
21̄], (δλ−1 + δλδImD)[ω22̄], ρ = 0

[ω21̄], [ω22̄], ρ = 1

〉
,

H3
dR(M ;C) =

〈
[ω123], [ω132̄], [ω21̄3̄], [ω1̄2̄3̄], [ω123̄ − ρω22̄3̄], [ω231̄ + λω22̄3̄],

[ω232̄ − ω22̄3̄], [ω11̄3̄ −D ω22̄3̄], [ω12̄3̄ + λω22̄3̄], [ω31̄2̄ − ρω22̄3̄],⎧⎨⎩[ω122̄], [ω133̄], [ω21̄2̄], [ω31̄3̄], ρ = λ = D = 0,

[ω122̄], [ω133̄ + ω233̄ − ω31̄3̄ − ω32̄3̄], ρ = 1, D = 0, λ = 1

〉
,

H4
dR(M ;C) =

〈
[ω1232̄], [ω21̄2̄3̄], [ω1233̄ + ρ (ω232̄3̄ − ω31̄2̄3̄)],

[ρ λω1233̄ − ω132̄3̄ + (ρ− 1)(ω231̄3̄ + λω232̄3̄)],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ω121̄3̄], [ω131̄2̄], [ω31̄2̄3̄], δλ[ω
132̄3̄], δλδD[ω122̄3̄],

δλδD[ω231̄2̄], δImD[ω131̄3̄ −D ω232̄3̄], ρ = 0

[ω231̄2̄], [D ω1233̄ + ω131̄3̄ −D ω31̄2̄3̄],

[ω231̄3̄ + λω31̄2̄3̄], δλ−1[ω
131̄2̄],

(δDδλ−1 + (1 − δλ−1))[ω
122̄3], ρ = 1

〉
,

H5
dR(M ;C) = 〈[ω1231̄3̄], [ω1232̄3̄], [ω131̄2̄3̄], [ω231̄2̄3̄], δρδλδImD[ω121̄2̄3̄]〉.
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Cohomology groups of complex nilmanifolds M in Family II.

H1
dR(M ;C) = 〈[ω1], [ω1̄], [ω2 + ω2̄], δρδc−|B|[c ω

3 + B ω3̄]〉,

H2
dR(M ;C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if ρ = 0 :

〈[ω12], [ω1̄2̄], [ω13 − c ω22̄ − ω1̄3̄],

[ω13̄ + B ω22̄ + B ω31̄], [c ω31̄ − B ω1̄3̄],

δc−|B|[ω
21̄], δc−|B|[ω

23 + ω23̄ − ω32̄ + ω2̄3̄]〉,
if ρ = 1 :〈

[ω12̄], [ω21̄], [ω13 − c ω22̄ − ω1̄3̄],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ω13̄ + ω22̄], [ω22̄ + ω31̄],

δc[ω
13], δc[ω

23 − ω32̄], δc[ω
23̄ + ω2̄3̄], B = 1

[(B − 1)ω13̄ + (|B|2 − 1)ω22̄ + (B − 1)ω31̄],

[c ω22̄ + c ω31̄ − (B − 1)ω1̄3],

δc−|B−1|[c ω
23 + (B − 1)ω23̄

−c ω32̄ + (B − 1)ω2̄3̄], B �= 1

〉
,

H3
dR(M ;C) =

〈
[ω123], [ω1̄2̄3̄], δc−|B−ρ|[ω

21̄2̄],

δc−|B−ρ|[(B − ρ)ω133̄ + B (B − ρ)ω232̄ − cB ω22̄3̄ − c ω31̄3̄],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ω123̄], [ω31̄2̄], [B ω132̄ − c ω12̄3̄],

δB[ω
231̄], (1 − δB)[c ω

12̄3̄ − Bω21̄3̄], ρ = 0,

[ω132̄ + c ω31̄2̄], [ω231̄ + B ω31̄2̄], [ω12̄3̄ + B ω31̄2̄],

[ω21̄3̄ + c ω31̄2̄], δcδB−1[ω
122̄],

δcδB−1[ω
133̄ + ω232̄], δcδB−1[ω

233̄ − ω32̄3̄],

δcδB−1[ω
22̄3̄ + ω31̄3̄], ρ = 1

〉
,

H4
dR(M ;C) =

〈
[ω1232̄], [ω122̄3̄], δB−ρ[ω

231̄2̄], δc−|B−ρ|[ω
131̄2̄],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ω1233̄], [ω31̄2̄3̄], δB−1[ω
21̄2̄3̄],

δc−|B|[c ω
132̄3̄ − B ω231̄3̄], ρ = 0

[B ω1233̄ − ω132̄3̄ − c ω31̄2̄3̄],

[c ω1233̄ − ω231̄3̄ − B ω312̄3̄], δcδB−1[ω
121̄3̄],

(δc−|B−1| + (1− δB−1)(1 − δc−|B−1|))[ω
21̄2̄3̄], ρ = 1

〉
,
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H5
dR(M ;C) = 〈[ω1231̄3̄], [ω1232̄3̄], [ω231̄2̄3̄], δρδc−|B|[ω

121̄2̄3̄]〉.
Cohomology groups of complex nilmanifolds M in Family III.

H1
dR(M ;C) = 〈[ω1], [ω1̄], δε[ω

3 + ω3̄]〉,
H2

dR(M ;C) = 〈[ω12], [ω1̄2̄], [ω23 ± 2 ε ω13̄+ω23̄], [±2 ε ω31̄+ω32̄ −ω2̄3], δε[ω
11̄]〉,

H3
dR(M ;C) = 〈[ω123], [ω123̄], [ω11̄3̄], [ω31̄2̄], [ω1̄2̄3̄], [ω232̄∓ε(ω12̄3̄−ω21̄3̄)−ω22̄3̄]〉,

H4
dR(M ;C) = 〈[ω1231̄], [ω1233̄], [ω11̄2̄3̄], [ω31̄2̄3̄], δε[ω

232̄3̄]〉,
H5

dR(M ;C) = 〈[ω1232̄3̄], [ω231̄2̄3̄], δε[ω
121̄2̄3̄]〉.

Studying complex- C∞-pureness and fullness of each 6-dimensional complex

nilmanifold M is reduced by Proposition 2.1 to the Lie algebra level (g, J).

Despite this reduction, it is not an easy task since it requires a thorough analysis

in terms of the parameters which define the different complex structures on each

one of the Lie algebras.

In order to illustrate the procedure followed to attain the results given in the

subsequent tables, here we briefly describe how to study complex- C∞-pureness

and fullness at the 2nd stage for the complex nilmanifolds corresponding to

(h4, J). First note that the complex structures J on h4 belong to Family I and

they correspond to λ = 1 and either (ρ,D) = (0, 1/4) or (ρ,D) = (1, x) with

x ∈ R \ {0}. A direct calculation shows that

H2((h4)C) = 〈 [ω12̄], [ω22̄], [ω1̄2̄], [ω13 +Dω23 +Dω23̄ − ρω1̄3̄],

[ρω13 +Dω32̄ − ω1̄3̄ −Dω2̄3̄], [ρω23 − ω31̄ − ω32̄ + ω1̄3̄],

[ω13 + ω13̄ + ω23̄ + ρω2̄3̄], δρ [ω
12], δρ−1[ω

21̄] 〉.
Notice that the cohomology classes satisfy some relations which depend on the

value of ρ:

• if ρ = 0, i.e. J is abelian, then [ω11̄] = −[ω12̄]−D [ω22̄] and [ω21̄] = [ω12̄];

• if ρ = 1, then [ω11̄] = −[ω21̄] − D [ω22̄] + [ω1̄2̄] and [ω12] = −[ω12̄] +

[ω21̄]− [ω1̄2].

In any case, the second Betti number is equal to 8.

On the other hand, one can see that

H
(2,0)
J (h4) = 〈 [ω12] 〉,

H
(0,2)
J (h4) = 〈 [ω1̄2̄] 〉,

H
(1,1)
J (h4) = 〈 [ω12̄], [ω22̄], δρ−1[ω

11̄], δρ−1[ω
21̄],

δρ−1δD+2[ω
13̄ + 2ω23̄ + ω31̄ + 2ω32̄] 〉.

Therefore, counting dimensions, we conclude that none of the complex struc-

tures is complex- C∞-full at the second stage as the sum of H
(2,0)
J (h4), H

(1,1)
J (h4)
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and H
(0,2)
J (h4) never generates the whole second complex de Rham cohomology

group.

Furthermore, when ρ = 0, we have

H
(1,1)
J (h4) = 〈 [ω12̄], [ω22̄] 〉

and the complex structure is complex- C∞-pure at the 2nd stage (this also follows

from Proposition 2.2(b)). Finally, it is easy to see that the complex structures

with ρ = 1 are not complex- C∞-pure at the 2nd stage, since for example the

element [ω1̄2̄] ∈ H
(0,2)
J (h4) also belongs to H

(1,1)
J (h4) because

[ω1̄2̄] = [ω11̄ + ω21̄ +Dω22̄].

In the tables below we sum up the behaviour of any invariant complex struc-

ture J in terms of the Lie algebra underlying the nilmanifold M and depending

on the parameters which define J . Notice that the complex-parallelizable struc-

tures (3.1) do not appear in the tables because it is well-known that they are

complex- C∞-pure-and-full at every stage [3].

Family I
Stages

1st 2nd 3rd 4th 5th

g ρ λ D = x+ iy pure full pure full pure full pure full pure full

h2
0 0 y = 1 � � � – – – – � � �
1 1 y > 0 � � – – – – – – � �

h3 0 0 ±1 � – � – – – – � – �

h4
0 1 1

4
� � � – – – – � � �

1 1 D ∈ R \ {0} � � – – – – – – � �

h5

0 1
0 � � � � � � � � � �

D ∈
(
0, 1

4

)
� � � – – – – � � �

1

0
0

� � – – � � – – � �
λ �= 0 � � – – – – – – � �
any allowed structure

� � – – – – – – � �
satisfying D �= 0

h6 1 1 0 � � – – – – – – � �

h8 0 0 0 � – � – – – – � – �

As a consequence of our study we have that the direct sum decomposition

(1.1) is satisfied for every k, only for the two complex structures (3.1) and for

one abelian complex structure on h5, concretely:

Theorem 3.1. Let J be an invariant complex structure on a 6-dimensional

nilmanifold M . Then, J is complex- C∞-pure-and-full at every stage if and only

if J is isomorphic to the complex-parallelizable structures (3.1) or to the abelian

complex structure defined by the equations dω1 = dω2 = 0 and dω3 = ω11̄ +ω12̄.
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In [3] (see also [1]) it is proved that complex- C∞-full at the kth stage implies

complex- C∞-pure at the (2n−k)th stage. In fact, suppose that there is a nonzero

class b ∈ H
(p1,q1)
J (M) ∩H

(p2,q2)
J (M) with (p1, q1) �= (p2, q2) such that p1 + q1 =

2n− k = p2 + q2. Since the pairing p : Hk
dR(M ;C)×H2n−k

dR (M ;C) → C, defined

by

p(a,b) =

∫
M

α ∧ β for a = [α] and b = [β],

is non-degenerate, there is a nonzero class a ∈ Hk
dR(M ;C) such that p(a,b) �= 0.

It is easy to check that the class a �∈ H
(k,0)
J (M)+. . .+H

(0,k)
J (M). In conclusion, if

J is not complex- C∞-pure at the (2n−k)th stage then J is not complex- C∞-full

at the kth stage.

However, in general it is not clear when the converse holds, that is, when

pure at the kth stage implies full at the (2n − k)th stage. As a consequence of

our study we get the following duality result:

Proposition 3.2. Let J be an invariant complex structure on a 6-dimensio-

nal nilmanifold M . Then, for any 1 ≤ k ≤ 5, J is complex- C∞-full at the kth

stage if and only if it is complex- C∞-pure at the (6− k)th stage.

Family II
Stages

1st 2nd 3rd 4th 5th

g ρ B c pure full pure full pure full pure full pure full

h7 1 1 0 � – – – – – – – – �

h9 0 1 1 � – � – – – – � – �

h10 1 0 1 � – – – – – – – – �

h11 1 B ∈ R \ {0, 1} |B − 1| � – – – – – – – – �

h12 1 ImB �= 0 |B − 1| � – – – – – – – – �

h13 1
c �= |B − 1|, (c, |B|) �= (0, 1)

� – – – – – – – – �
S(B,c) < 0

h14 1
c �= |B − 1|, (c, |B|) �= (0, 1)

� – – – – – – – – �
S(B,c) = 0

h15

0

0 1 � – � – � � – � – �

1
0 � – � � � � � � – �

c �= 0, 1 � – � – – – – � – �

1

0
0 � – � � � � � � – �

c �= 0, 1 � – – – – – – – – �
|B| �= 0, 1 0 � – – � – – � – – �

c �= |B − 1|, (c, |B|) �= (0, 1),
� – – – – – – – – �

cB �= 0, S(B, c) > 0

h16 1 |B| = 1, B �= 1 0 � – – � – – � – – �

where S(B, c) = c4 − 2 (|B|2 + 1) c2 + (|B|2 − 1)2.
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Family III
Stages

1st 2nd 3rd 4th 5th

g ε pure full pure full pure full pure full pure full

h
−
19 0 � – � – – – – � – �

h
+
26 1 � � � – – – – � � �
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